Qi HX, Du ZC, Hu XY, Yang JY, Chu SS et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061
Citation: Qi HX, Du ZC, Hu XY, Yang JY, Chu SS et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061

Original Article Open Access

High performance integrated photonic circuit based on inverse design method

More Information
  • The basic indexes of all-optical integrated photonic circuits include high-density integration, ultrafast response and ultra-low energy consumption. Traditional methods mainly adopt conventional micro/nano-structures. The overall size of the circuit is large, usually reaches hundreds of microns. Besides, it is difficult to balance the ultrafast response and ultra-low energy consumption problem, and the crosstalk between two traditional devices is difficult to overcome. Here, we propose and experimentally demonstrate an approach based on inverse design method to realize a high-density, ultrafast and ultra-low energy consumption integrated photonic circuit with two all-optical switches controlling the input states of an all-optical XOR logic gate. The feature size of the whole circuit is only 2.5 μm × 7 μm, and that of a single device is 2 μm × 2 μm. The distance between two adjacent devices is as small as 1.5 μm, within wavelength magnitude scale. Theoretical response time of the circuit is 150 fs, and the threshold energy is within 10 fJ/bit. We have also considered the crosstalk problem. The circuit also realizes a function of identifying two-digit logic signal results. Our work provides a new idea for the design of ultrafast, ultra-low energy consumption all-optical devices and the implementation of high-density photonic integrated circuits.
  • 加载中
  • [1] Floyd R, Hussain K, Mamun A, Gaevski M, Simin G et al. Photonics integrated circuits using AlxGa1-xN based UVC light-emitting diodes, photodetectors and waveguides. Appl Phys Express 13, 022003 (2020). doi: 10.7567/1882-0786/ab6410

    CrossRef Google Scholar

    [2] Zilkie AJ, Srinivasan P, Trita A, Schrans T, Yu GM et al. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits. IEEE J Sel Top Quant Electron 25, 8200713 (2019).

    Google Scholar

    [3] Absil PP, Verheyen P, De Heyn P, Pantouvaki M, Lepage G et al. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s. Opt Express 23, 9369–9378 (2015). doi: 10.1364/OE.23.009369

    CrossRef Google Scholar

    [4] Burgos CMV, Vamivakas N. Challenges in the path toward a scalable silicon photonics implementation of deep neural networks. IEEE J Quantum Electron 55, 8400110 (2019).

    Google Scholar

    [5] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1

    CrossRef Google Scholar

    [6] Hegde RS. Photonics inverse design: pairing deep neural networks with evolutionary algorithms. IEEE J Sel Top Quant 26, 7700908 (2020).

    Google Scholar

    [7] Fathololoumi S, Hui D, Jadhav S, Chen J, Nguyen K et al. 1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration. J Lightwave Technol 39, 1155–1161 (2021). doi: 10.1109/JLT.2020.3039218

    CrossRef Google Scholar

    [8] Brodutch A, Marchildon R, Helmy AS. Dynamically reconfigurable sources for arbitrary Gaussian states in integrated photonics circuits. Opt Express 26, 17635–17648 (2018). doi: 10.1364/OE.26.017635

    CrossRef Google Scholar

    [9] Naweed A. Photonic coherence effects from dual-waveguide coupled pair of co-resonant microring resonators. Opt Express 23, 12573–12581 (2015). doi: 10.1364/OE.23.012573

    CrossRef Google Scholar

    [10] Zhang ZC, Ng GI, Hu T, Qiu HD, Guo X et al. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system. Opt Express 24, 25665–25675 (2016). doi: 10.1364/OE.24.025665

    CrossRef Google Scholar

    [11] Azizpour MRJ, Soroosh M, Dalvand N, Seifi-Kavian Y. All-optical ultra-fast graphene-photonic crystal switch. Crystals 9, 461 (2019). doi: 10.3390/cryst9090461

    CrossRef Google Scholar

    [12] Zhang L, Sun YH, Li ZJ, Wang L, Cao SQ et al. Photonic crystal based on mott phase change material as all-optical bandgap switch and composite logic gate. Opt Mater 113, 110855 (2021). doi: 10.1016/j.optmat.2021.110855

    CrossRef Google Scholar

    [13] Chai Z, Hu XY, Yang H, Gong QH. All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption. Appl Phys Lett 108, 151104 (2016). doi: 10.1063/1.4946763

    CrossRef Google Scholar

    [14] Rutckaia V, Schilling J. Ultrafast low-energy all-optical switching. Nat Photonics 14, 4–6 (2020). doi: 10.1038/s41566-019-0571-7

    CrossRef Google Scholar

    [15] Davis TJ, Gómez DE, Eftekhari F. All-optical modulation and switching by a metamaterial of plasmonic circuits. Opt Lett 39, 4938–4941 (2014). doi: 10.1364/OL.39.004938

    CrossRef Google Scholar

    [16] Lotfi F, Sang-Nourpour N, Kheradmand R. Plasmonic all-optical switching based on metamaterial/metal waveguides with local nonlinearity. Nanotechnology 31, 015201 (2020). doi: 10.1088/1361-6528/ab44fc

    CrossRef Google Scholar

    [17] Chai Z, Hu XY, Wang FF, Li C, Ao YT et al. Ultrafast on-chip remotely-triggered all-optical switching based on epsilon-near-zero nanocomposites. Laser Photonics Rev 11, 1700042 (2017). doi: 10.1002/lpor.201700042

    CrossRef Google Scholar

    [18] Pitris S, Mitsolidou C, Moralis-Pegios M, Alexoudi T, Pleros N. Crosstalk-aware wavelength-switched all-to-all optical interconnect using sub-optimal AWGRs. IEEE Photonics Technol Lett 31, 1507–1510 (2019). doi: 10.1109/LPT.2019.2935497

    CrossRef Google Scholar

    [19] Seyedi MA, Descos A, Chen CH, Fiorentino M, Penkler D et al. Crosstalk analysis of ring resonator switches for all-optical routing. Opt Express 24, 11668–11676 (2016). doi: 10.1364/OE.24.011668

    CrossRef Google Scholar

    [20] Michaels A, Yablonovitch E. Inverse design of near unity efficiency perfectly vertical grating couplers. Opt Express 26, 4766–4779 (2018). doi: 10.1364/OE.26.004766

    CrossRef Google Scholar

    [21] Piggott AY, Lu J, Babinec TM, Lagoudakis KG, Petykiewicz J et al. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci Rep 4, 7210 (2014).

    Google Scholar

    [22] Sun P, Van Vaerenbergh T, Fiorentino M, Beausoleil R. Adjoint-method-inspired grating couplers for CWDM O-band applications. Opt Express 28, 3756–3767 (2020). doi: 10.1364/OE.382986

    CrossRef Google Scholar

    [23] Piggott AY, Lu J, Lagoudakis KG, Petykiewicz J, Babinec TM et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics 9, 374–377 (2015). doi: 10.1038/nphoton.2015.69

    CrossRef Google Scholar

    [24] Su LG, Piggott AY, Sapra NV, Petykiewicz J, Vučković J. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photonics 5, 301–305 (2018). doi: 10.1021/acsphotonics.7b00987

    CrossRef Google Scholar

    [25] Chang WJ, Ren XS, Ao YQ, Lu LH, Cheng MF. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt Express 26, 24135–24144 (2018). doi: 10.1364/OE.26.024135

    CrossRef Google Scholar

    [26] Ma HS, Huang J, Zhang KW, Yang JB. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method. Opt Commun 462, 125329 (2020). doi: 10.1016/j.optcom.2020.125329

    CrossRef Google Scholar

    [27] Chang WJ, Xu SY, Cheng MF, Liu DM, Zhang MM. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt Express 28, 28343–28351 (2020). doi: 10.1364/OE.399052

    CrossRef Google Scholar

    [28] Lu QC, Wei W, Yan X, Shen B, Luo YB et al. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator. Photonic Nanostruct Fundam Appl 32, 19–23 (2018). doi: 10.1016/j.photonics.2018.08.006

    CrossRef Google Scholar

    [29] Mirotznik MS, Prather DW, Mait JN, Beck WA, Shi SY et al. Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method. Appl Opt 39, 2871–2880 (2000). doi: 10.1364/AO.39.002871

    CrossRef Google Scholar

    [30] Shi SY, Tao XD, Yang LQ, Prather DW. Analysis of diffractive optical elements using a nonuniform finite-difference time-domain method. Opt Eng 40, 503–510 (2001). doi: 10.1117/1.1355252

    CrossRef Google Scholar

    [31] Hughes TW, Minkov M, Williamson IAD, Fan SH. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics 5, 4781–4787 (2018). doi: 10.1021/acsphotonics.8b01522

    CrossRef Google Scholar

    [32] Wang KY, Ren XS, Chang WJ, Lu LH, Liu DM et al. Inverse design of digital nanophotonic devices using the adjoint method. Photonics Res 8, 528–533 (2020). doi: 10.1364/PRJ.383887

    CrossRef Google Scholar

    [33] Deng Y, Ren SM, Fan KB, Malof JM, Padilla WJ. Neural-adjoint method for the inverse design of all-dielectric metasurfaces. Opt Express 29, 7526–7534 (2021). doi: 10.1364/OE.419138

    CrossRef Google Scholar

  • Supplementary information for High performance integrated photonic circuit based on inverse design method
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(3666) PDF downloads(429) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint