Wang DW, Han HL, Sa B, Li KL, Yan JJ et al. A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion. Opto-Electron Adv 5, 210058 (2022). doi: 10.29026/oea.2022.210058
Citation: Wang DW, Han HL, Sa B, Li KL, Yan JJ et al. A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion. Opto-Electron Adv 5, 210058 (2022). doi: 10.29026/oea.2022.210058

Review Open Access

A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion

More Information
  • Additive manufacturing (AM), or 3D printing, is an emerging technology that “adds” materials up and constructs products through a layer-by-layer procedure. Laser powder bed fusion (LPBF) is a powder-bed-based AM technology that can fabricate a large variety of metallic materials with excellent quality and accuracy. However, various defects such as porosity, cracks, and incursions can be generated during the printing process. As the most universal and a near-inevitable defect, porosity plays a substantial role in determining the mechanical performance of as-printed products. This work presents a comprehensive review of literatures that focused on the porosity in LPBF printed metals. The formation mechanisms, evaluation methods, effects on mechanical performance with corresponding models, and controlling methods of porosity have been illustrated and discussed in-depth. Achievements in four representative metals, namely Ti−6Al−4V, 316L, Inconel 718, and AlSi10Mg, have been critically reviewed with a statistical analysis on the correlation between porosity fraction and tensile properties. Ductility has been determined as the most sensitive property to porosity among several key tensile properties. This review also provides potential directions and opportunities to address the current porosity-related challenges.
  • 加载中
  • [1] Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies (Springer, Berlin, 2015).

    Google Scholar

    [2] Calignano F, Manfredi D, Ambrosio EP, Biamino S, Lombardi M et al. Overview on additive manufacturing technologies. Proc IEEE 105, 593–612 (2017). doi: 10.1109/JPROC.2016.2625098

    CrossRef Google Scholar

    [3] Lu BH, Lan HB, Liu HZ. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv 1, 170004 (2018).

    Google Scholar

    [4] Brighenti R, Cosma MP, Marsavina L, Spagnoli A, Terzano M. Laser-based additively manufactured polymers: a review on processes and mechanical models. J Mater Sci 56, 961–998 (2021). doi: 10.1007/s10853-020-05254-6

    CrossRef Google Scholar

    [5] Zhou YH, Li WP, Wang DW, Zhang L, Ohara K et al. Selective laser melting enabled additive manufacturing of Ti–22Al–25Nb intermetallic: excellent combination of strength and ductility, and unique microstructural features associated. Acta Mater 173, 117–129 (2019). doi: 10.1016/j.actamat.2019.05.008

    CrossRef Google Scholar

    [6] Hu YB, Cong WL. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites. Ceram Int 44, 20599–20612 (2018). doi: 10.1016/j.ceramint.2018.08.083

    CrossRef Google Scholar

    [7] Chueh YH, Zhang XJ, Wei C, Sun Z, Li L. Additive manufacturing of polymer-metal/ceramic functionally graded composite components via multiple material laser powder bed fusion. J Manuf Sci Eng 142, 051003 (2020). doi: 10.1115/1.4046594

    CrossRef Google Scholar

    [8] Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46, 151–186 (2016). doi: 10.1146/annurev-matsci-070115-032024

    CrossRef Google Scholar

    [9] ISO/ASTM52900–15 Standard terminology for additive manufacturing – general principles – terminology. ASTM International,doi: 10.1520/ISOASTM52900-15 (2015).

    Google Scholar

    [10] Xie WD, Mu XX, Guo YX, et al. Research progress of additive manufacturing of high-performance polymers and the applications. Opto-Electron Eng 48, 210137 (2021). doi: 10.12086/oee.2021.210137

    CrossRef Google Scholar

    [11] Gebhardt A. Understanding Additive Manufacturing. Gebhardt A, ed. Understanding Additive Manufacturing, edn, (Hanser, Munich, Germany, 2011); https://doi.org/10.3139/9783446431621.fm.

    Google Scholar

    [12] Kang JW, Shangguan HL, Deng CY, Hu YY, Yi JH et al. Additive manufacturing-driven mold design for castings. Addit Manuf 22, 472–478 (2018).

    Google Scholar

    [13] Hirt L, Reiser A, Spolenak R, Zambelli T. Additive manufacturing of metal structures at the micrometer scale. Adv Mater 29, 1604211 (2017). doi: 10.1002/adma.201604211

    CrossRef Google Scholar

    [14] Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 117, 371–392 (2016). doi: 10.1016/j.actamat.2016.07.019

    CrossRef Google Scholar

    [15] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 92, 112–224 (2018). doi: 10.1016/j.pmatsci.2017.10.001

    CrossRef Google Scholar

    [16] DebRoy T, Mukherjee T, Milewski JO, Elmer JW, Ribic B et al. Scientific, technological and economic issues in metal printing and their solutions. Nat Mater 18, 1026–1032 (2019). doi: 10.1038/s41563-019-0408-2

    CrossRef Google Scholar

    [17] Zhao XY, Deng WW. Printing photovoltaics by electrospray. Opto-Electron Adv 3, 190038 (2020). doi: 10.29026/oea.2020.190038

    CrossRef Google Scholar

    [18] Haghdadi N, Laleh M, Moyle M, Primig S. Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56, 64–107 (2021). doi: 10.1007/s10853-020-05109-0

    CrossRef Google Scholar

    [19] Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363, 849–852 (2019). doi: 10.1126/science.aav4687

    CrossRef Google Scholar

    [20] Opatová K, Zetková I, Kučerová L. Relationship between the size and inner structure of particles of virgin and re-used MS1 maraging steel powder for additive manufacturing. Materials 13, 956 (2020). doi: 10.3390/ma13040956

    CrossRef Google Scholar

    [21] Bartlett JL, Li XD. An overview of residual stresses in metal powder bed fusion. Addit Manuf 27, 131–149 (2019).

    Google Scholar

    [22] Kruth JP, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann 56, 730–759 (2007). doi: 10.1016/j.cirp.2007.10.004

    CrossRef Google Scholar

    [23] Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ et al. Review of selective laser melting: materials and applications. Appl Phys Rev 2, 041101 (2015). doi: 10.1063/1.4935926

    CrossRef Google Scholar

    [24] Tan JH, Wong WLE, Dalgarno KW. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf 18, 228–255 (2017).

    Google Scholar

    [25] Dong YP, Tang JC, Wang DW, Wang N, He ZD et al. Additive manufacturing of pure Ti with superior mechanical performance, low cost, and biocompatibility for potential replacement of Ti-6Al-4V. Mater Design 196, 109142 (2020). doi: 10.1016/j.matdes.2020.109142

    CrossRef Google Scholar

    [26] Wang JC, Liu YJ, Qin P, Liang SX, Sercombe TB et al. Selective laser melting of Ti–35Nb composite from elemental powder mixture: microstructure, mechanical behavior and corrosion behavior. Mater Sci Eng:A 760, 214–224 (2019). doi: 10.1016/j.msea.2019.06.001

    CrossRef Google Scholar

    [27] Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108, 36–45 (2016). doi: 10.1016/j.actamat.2016.02.014

    CrossRef Google Scholar

    [28] Khairallah SA, Martin AA, Lee JRI, Guss G, Calta NP et al. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368, 660–665 (2020). doi: 10.1126/science.aay7830

    CrossRef Google Scholar

    [29] Zhao C, Parab ND, Li XX, Fezzaa K, Tan WD et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science 370, 1080–1086 (2020). doi: 10.1126/science.abd1587

    CrossRef Google Scholar

    [30] Zhang B, Li YT, Bai Q. Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 30, 515–527 (2017). doi: 10.1007/s10033-017-0121-5

    CrossRef Google Scholar

    [31] Taheri H, Shoaib MRBM, Koester LW, Bigelow TA, Collins PC et al. Powder-based additive manufacturing - a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int J Addit Subtract Mater Manuf 1, 172–209 (2017).

    Google Scholar

    [32] Gu DD, Hagedorn YC, Meiners W, Meng GB, Batista RJS et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 60, 3849–3860 (2012). doi: 10.1016/j.actamat.2012.04.006

    CrossRef Google Scholar

    [33] Bidare P, Bitharas I, Ward RM, Attallah MM, Moore AJ. Fluid and particle dynamics in laser powder bed fusion. Acta Mater 142, 107–120 (2018). doi: 10.1016/j.actamat.2017.09.051

    CrossRef Google Scholar

    [34] Ye JC, Khairallah SA, Rubenchik AM, Crumb MF, Guss G et al. Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv Eng Mater 21, 1900185 (2019). doi: 10.1002/adem.201900185

    CrossRef Google Scholar

    [35] Tenbrock C, Kelliger T, Praetzsch N, Ronge M, Jauer L et al. Effect of laser-plume interaction on part quality in multi-scanner Laser Powder Bed Fusion. Addit Manuf 38, 101810 (2021).

    Google Scholar

    [36] Xie XZ, Zhou CX, Wei X, Hu W, Ren QL. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv 2, 180017 (2019).

    Google Scholar

    [37] Wang DW, Zhou YH, Shen J, Liu Y, Li DF et al. Selective laser melting under the reactive atmosphere: a convenient and efficient approach to fabricate ultrahigh strength commercially pure titanium without sacrificing ductility. Mater Sci Eng:A 762, 138078 (2019). doi: 10.1016/j.msea.2019.138078

    CrossRef Google Scholar

    [38] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog Mater Sci 117, 100724 (2021). doi: 10.1016/j.pmatsci.2020.100724

    CrossRef Google Scholar

    [39] Leung CLA, Marussi S, Atwood RC, Towrie M, Withers PJ et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun 9, 1355 (2018).

    Google Scholar

    [40] Du Plessis A, Yadroitsava I, Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: a review focusing on X-ray tomography insights. Mater Design 187, 108385 (2020). doi: 10.1016/j.matdes.2019.108385

    CrossRef Google Scholar

    [41] Pineau A, Benzerga AA, Pardoen T. Failure of metals I: brittle and ductile fracture. Acta Mater 107, 424–483 (2016). doi: 10.1016/j.actamat.2015.12.034

    CrossRef Google Scholar

    [42] Ng GKL, Jarfors AEW, Bi G, Zheng HY. Porosity formation and gas bubble retention in laser metal deposition. Appl Phys A 97, 641–649 (2009). doi: 10.1007/s00339-009-5266-3

    CrossRef Google Scholar

    [43] Kasperovich G, Haubrich J, Gussone J, Requena G. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater Design 105, 160–170 (2016). doi: 10.1016/j.matdes.2016.05.070

    CrossRef Google Scholar

    [44] Zhou X, Wang DZ, Liu XH, Zhang DD, Qu SL et al. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater 98, 1–16 (2015). doi: 10.1016/j.actamat.2015.07.014

    CrossRef Google Scholar

    [45] Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48, 300–307 (2013). doi: 10.1016/j.ijfatigue.2012.11.011

    CrossRef Google Scholar

    [46] Zhao B, Gain AK, Ding WF, Zhang LC, Li XY et al. A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol 95, 2641–2659 (2018). doi: 10.1007/s00170-017-1415-6

    CrossRef Google Scholar

    [47] Tammas-Williams S, Withers PJ, Todd I, Prangnell PB. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr Mater 122, 72–76 (2016).

    Google Scholar

    [48] Girelli L, Tocci M, Gelfi M, Pola A. Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater Sci Eng:A 739, 317–328 (2019). doi: 10.1016/j.msea.2018.10.026

    CrossRef Google Scholar

    [49] Barua S, Liou F, Newkirk J, Sparks T. Vision-based defect detection in laser metal deposition process. Rapid Prototyping J 20, 77–85 (2014). doi: 10.1108/RPJ-04-2012-0036

    CrossRef Google Scholar

    [50] Hojjatzadeh SMH, Parab ND, Yan WT, Guo QL, Xiong LH et al. Pore elimination mechanisms during 3D printing of metals. Nat Commun 10, 3088 (2019). doi: 10.1038/s41467-019-10973-9

    CrossRef Google Scholar

    [51] King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214, 2915–2925 (2014). doi: 10.1016/j.jmatprotec.2014.06.005

    CrossRef Google Scholar

    [52] Ge WJ, Fuh JYH, Na SJ. Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V. J Manuf Process 62, 646–654 (2021). doi: 10.1016/j.jmapro.2021.01.005

    CrossRef Google Scholar

    [53] Wang L, Zhang YM, Yan WT. Evaporation model for keyhole dynamics during additive manufacturing of metal. Phys Rev Appl 14, 064039 (2020). doi: 10.1103/PhysRevApplied.14.064039

    CrossRef Google Scholar

    [54] Zhao C, Guo QL, Li XX, Parab N, Fezzaa K et al. Bulk-explosion-induced metal spattering during laser processing. Phys Rev X 9, 021052 (2019).

    Google Scholar

    [55] Anisimov SI, Khokhlov VA. Instabilities in Laser-Matter Interaction. (CRC Press, Boca Raton, 1995).

    Google Scholar

    [56] Sankin GN, Simmons WN, Zhu SL, Zhong P. Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95, 034501 (2005). doi: 10.1103/PhysRevLett.95.034501

    CrossRef Google Scholar

    [57] Tang M, Pistorius PC. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94, 192–201 (2017). doi: 10.1016/j.ijfatigue.2016.06.002

    CrossRef Google Scholar

    [58] Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol 221, 112–120 (2015). doi: 10.1016/j.jmatprotec.2015.02.013

    CrossRef Google Scholar

    [59] Zeng GH, Song T, Dai YH, Tang HP, Yan M. 3D printed breathable mould steel: small micrometer-sized, interconnected pores by creatively introducing foaming agent to additive manufacturing. Mater Design 169, 107693 (2019). doi: 10.1016/j.matdes.2019.107693

    CrossRef Google Scholar

    [60] Chen G, Zhao SY, Tan P, Wang J, Xiang CS et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol 333, 38–46 (2018). doi: 10.1016/j.powtec.2018.04.013

    CrossRef Google Scholar

    [61] Chen G, Zhou Q, Zhao SY, Yin JO, Tan P et al. A pore morphological study of gas-atomized Ti-6Al-4V powders by scanning electron microscopy and synchrotron X-ray computed tomography. Powder Technol 330, 425–430 (2018). doi: 10.1016/j.powtec.2018.02.053

    CrossRef Google Scholar

    [62] Ternovoi YF, Tsipunov AG, Kuratchenko SB, Kuimova OM, Kondakova KV. Pore formation in atomized powders. Sov Powder Metall Met Ceram 24, 10–13 (1985). doi: 10.1007/BF00792199

    CrossRef Google Scholar

    [63] Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I et al. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Mater Characteriz 102, 47–61 (2015). doi: 10.1016/j.matchar.2015.02.008

    CrossRef Google Scholar

    [64] Wu ZH, Basu D, Meyer JLL, Larson E, Kuo R et al. Study of powder gas entrapment and its effects on porosity in 17-4 PH stainless steel parts fabricated in laser powder bed fusion. JOM 73, 177–188 (2021). doi: 10.1007/s11837-020-04491-z

    CrossRef Google Scholar

    [65] Li S, Hassanin H, Attallah MM, Adkins NJE, Essa K. The development of TiNi-based negative Poisson's ratio structure using selective laser melting. Acta Mater 105, 75–83 (2016). doi: 10.1016/j.actamat.2015.12.017

    CrossRef Google Scholar

    [66] Cunningham R, Nicolas A, Madsen J, Fodran E, Anagnostou E et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Mater Res Lett 5, 516–525 (2017). doi: 10.1080/21663831.2017.1340911

    CrossRef Google Scholar

    [67] Braun J, Kaserer L, Stajkovic J, Leitz KH, Tabernig B et al. Molybdenum and tungsten manufactured by selective laser melting: analysis of defect structure and solidification mechanisms. Int J Refract Met Hard Mater 84, 104999 (2019). doi: 10.1016/j.ijrmhm.2019.104999

    CrossRef Google Scholar

    [68] Polozov I, Sufiiarov V, Kantyukov A, Popovich A. Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112, 106554 (2019). doi: 10.1016/j.intermet.2019.106554

    CrossRef Google Scholar

    [69] Tang M, Pistorius PC, Beuth JL. Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14, 39–48 (2017).

    Google Scholar

    [70] Chlebus E, Kuźnicka B, Kurzynowski T, Dybała B. Microstructure and mechanical behaviour of Ti―6Al―7Nb alloy produced by selective laser melting. Mater Characteriz 62, 488–495 (2011). doi: 10.1016/j.matchar.2011.03.006

    CrossRef Google Scholar

    [71] Attar H, Löber L, Funk A, Calin M, Zhang LC et al. Mechanical behavior of porous commercially pure Ti and Ti–TiB composite materials manufactured by selective laser melting. Mater Sci Eng:A 625, 350–356 (2015). doi: 10.1016/j.msea.2014.12.036

    CrossRef Google Scholar

    [72] Hou YH, Liu B, Liu Y, Zhou YH, Song TT et al. Ultra-low cost Ti powder for selective laser melting additive manufacturing and superior mechanical properties associated. Opto-Electron Adv 2, 180028 (2019).

    Google Scholar

    [73] Honarvar F, Varvani-Farahani A. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control. Ultrasonics 108, 106227 (2020). doi: 10.1016/j.ultras.2020.106227

    CrossRef Google Scholar

    [74] Waller JM, Parker BH, Hodges KL, Burke ER, Walker JL et al. Nondestructive evaluation of additive manufacturing. National Aeronautics and Space Administration, (2014).

    Google Scholar

    [75] Masuo H, Tanaka Y, Morokoshi S, Yagura H, Uchida T et al. Effects of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. Proced Struct Integrity 7, 19–26 (2017). doi: 10.1016/j.prostr.2017.11.055

    CrossRef Google Scholar

    [76] Wits WW, Carmignato S, Zanini F, Vaneker THJ. Porosity testing methods for the quality assessment of selective laser melted parts. CIRP Ann 65, 201–204 (2016). doi: 10.1016/j.cirp.2016.04.054

    CrossRef Google Scholar

    [77] Rafi HK, Karthik NV, Gong HJ, Starr TL, Stucker BE. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. J Mater Eng Perform 22, 3872–3883 (2013). doi: 10.1007/s11665-013-0658-0

    CrossRef Google Scholar

    [78] Slotwinski JA, Garboczi EJ. Porosity of additive manufacturing parts for process monitoring. AIP Conf Proc 1581, 1197–1204 (2014).

    Google Scholar

    [79] Monchiet V, Bonnet G. A gurson-type model accounting for void size effects. Int J Solids Struct 50, 320–327 (2013). doi: 10.1016/j.ijsolstr.2012.09.005

    CrossRef Google Scholar

    [80] Becker R. The effect of porosity distribution on ductile failure. J Mech Phys Solids 35, 577–599 (1987). doi: 10.1016/0022-5096(87)90018-4

    CrossRef Google Scholar

    [81] Romano S, Abel A, Gumpinger J, Brandão AD, Beretta S. Quality control of AlSi10Mg produced by SLM: metallography versus CT scans for critical defect size assessment. Addit Manuf 28, 394–405 (2019).

    Google Scholar

    [82] Romano S, Brandão A, Gumpinger J, Gschweitl M, Beretta S. Qualification of AM parts: extreme value statistics applied to tomographic measurements. Mater Design 131, 32–48 (2017). doi: 10.1016/j.matdes.2017.05.091

    CrossRef Google Scholar

    [83] Murakami Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals. JSME Int J Ser I, Solid Mech Strength Mater 32, 167–180 (1989). doi: 10.1299/jsmea1988.32.2_167

    CrossRef Google Scholar

    [84] Sanaei N, Fatemi A, Phan N. Defect characteristics and analysis of their variability in metal L-PBF additive manufacturing. Mater Design 182, 108091 (2019). doi: 10.1016/j.matdes.2019.108091

    CrossRef Google Scholar

    [85] Romano S, Brückner-Foit A, Brandão A, Gumpinger J, Ghidini T et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: defect-based modelling and prediction of fatigue strength. Eng Fract Mech 187, 165–189 (2018). doi: 10.1016/j.engfracmech.2017.11.002

    CrossRef Google Scholar

    [86] Murakami Y, Beretta S. Small defects and inhomogeneities in fatigue strength: experiments, models and statistical implications. Extremes 2, 123–147 (1999). doi: 10.1023/A:1009976418553

    CrossRef Google Scholar

    [87] Pineau A, McDowell DL, Busso EP, Antolovich SD. Failure of metals II: fatigue. Acta Mater 107, 484–507 (2016). doi: 10.1016/j.actamat.2015.05.050

    CrossRef Google Scholar

    [88] Murakami Y. Inclusion rating by statistics of extreme values and its application to fatigue strength prediction and quality control of materials. J Res Natl Inst Stand Technol 99, 345–351 (1994). doi: 10.6028/jres.099.032

    CrossRef Google Scholar

    [89] Dowling NE, Katakam S, Narayanasamy R. Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue (Pearson Education Limited, London, 2012).

    Google Scholar

    [90] Kabir MR, Richter H. Modeling of processing-induced pore morphology in an additively-manufactured Ti-6Al-4V alloy. Materials 10, 145 (2017). doi: 10.3390/ma10020145

    CrossRef Google Scholar

    [91] Mbiakop A, Constantinescu A, Danas K. An analytical model for porous single crystals with ellipsoidal voids. J Mech Phys Solids 84, 436–467 (2015). doi: 10.1016/j.jmps.2015.07.011

    CrossRef Google Scholar

    [92] Madou K, Leblond JB, Morin L. Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids – II: Evolution of the length and orientation of the void axes. Eur J Mech - A/Solid 42, 490–507 (2013). doi: 10.1016/j.euromechsol.2013.06.005

    CrossRef Google Scholar

    [93] Komori K. Improvement of an ellipsoidal void model for simulating ductile fracture behavior. Key Eng Mater 577–578, 93–96 (2013).

    Google Scholar

    [94] Komori K. An ellipsoidal void model for simulating ductile fracture behavior. Mech Mater 60, 36–54 (2013). doi: 10.1016/j.mechmat.2013.01.002

    CrossRef Google Scholar

    [95] Hidetaka K. What did archimedes find at “Eureka” moment?. Paipetis SA, Ceccarelli M, eds. The Genius of Archimedes -- 23 Centuries of Influence on Mathematics, Science and Engineering, 265–276 (Springer, Dordrecht, 2010).

    Google Scholar

    [96] Spierings AB, Schneider M, Eggenberger R. Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyping J 17, 380–386 (2011). doi: 10.1108/13552541111156504

    CrossRef Google Scholar

    [97] Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J Mater Process Technol 220, 202–214 (2015). doi: 10.1016/j.jmatprotec.2015.01.025

    CrossRef Google Scholar

    [98] Chen P, Li S, Zhou YH, Yan M, Attallah MM. Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying. J Mater Sci Technol 43, 40–43 (2020). doi: 10.1016/j.jmst.2020.01.002

    CrossRef Google Scholar

    [99] Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes' principle. Int J Cast Met Res 11, 247–257 (1999). doi: 10.1080/13640461.1999.11819281

    CrossRef Google Scholar

    [100] Kak AC, Slaney M, Wang G. Principles of computerized tomographic imaging. Med Phys 29, 107 (2002).

    Google Scholar

    [101] Cunningham R, Narra SP, Montgomery C, Beuth J, Rollett AD. Synchrotron-based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM 69, 479–484 (2017). doi: 10.1007/s11837-016-2234-1

    CrossRef Google Scholar

    [102] Kantzos CA, Cunningham RW, Tari V, Rollett AD. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling. Comput Mech 61, 575–580 (2018). doi: 10.1007/s00466-017-1531-z

    CrossRef Google Scholar

    [103] Abd Halim S, Abd Halim MS, Hadi NA. Surface Reconstruction from Computed Tomography (CT) Image of Human Head with the Effect of Noise. AIP Conf Proc 2013, 020017 (2018).

    Google Scholar

    [104] Ziółkowski G, Chlebus E, Szymczyk P, Kurzac J. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Arch Civ Mech Eng 14, 608–614 (2014). doi: 10.1016/j.acme.2014.02.003

    CrossRef Google Scholar

    [105] Gong H, Rafi K, Starr T, Stucker B. c. In Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference 12–14 (2013).

    Google Scholar

    [106] Vanderesse N, Ky I, González FQ, Nuño N, Bocher P. Image analysis characterization of periodic porous materials produced by additive manufacturing. Mater Design 92, 767–778 (2016). doi: 10.1016/j.matdes.2015.12.062

    CrossRef Google Scholar

    [107] Xia MJ, Gu DD, Yu GQ, Dai DH, Chen HY et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy. Int J Mach Tools Manu 116, 96–106 (2017). doi: 10.1016/j.ijmachtools.2017.01.005

    CrossRef Google Scholar

    [108] Attar H, Ehtemam-Haghighi S, Kent D, Wu XH, Dargusch MS. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater Sci Eng:A 705, 385–393 (2017). doi: 10.1016/j.msea.2017.08.103

    CrossRef Google Scholar

    [109] Cheeke JDN. Fundamentals and Applications of Ultrasonic Waves (CRC Press, Boca Raton, 2010).

    Google Scholar

    [110] Shull PJ. Nondestructive Evaluation: Theory, Techniques, and Applications (Marcel Dekker, New York, 2002).

    Google Scholar

    [111] Fathi-Haftshejani P, Honarvar F. Nondestructive evaluation of clad rods by inversion of acoustic scattering data. J Nondestruct Eval 38, 67 (2019). doi: 10.1007/s10921-019-0605-6

    CrossRef Google Scholar

    [112] Everton SK, Dickens P, Tuck C, Dutton B. Identification of sub-surface defects in parts produced by additive manufacturing, using laser generated ultrasound. Additive Manufacturing and 3D Printing Research Group, University of Nottingham, (2016).

    Google Scholar

    [113] Slotwinski JA, Garboczi EJ, Hebenstreit KM. Porosity measurements and analysis for metal additive manufacturing process control. J Res Natl Inst Stand Technol 119, 494–528 (2014). doi: 10.6028/jres.119.019

    CrossRef Google Scholar

    [114] Cerniglia D, Scafidi M, Pantano A, Rudlin J. Inspection of additive-manufactured layered components. Ultrasonics 62, 292–298 (2015). doi: 10.1016/j.ultras.2015.06.001

    CrossRef Google Scholar

    [115] Nadimpalli VK, Yang L, Nagy PB. In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT E Int 93, 117–130 (2018).

    Google Scholar

    [116] Javadi Y, Mohseni E, MacLeod CN, Lines D, Vasilev M et al. Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system. Mater Design 191, 108655 (2020). doi: 10.1016/j.matdes.2020.108655

    CrossRef Google Scholar

    [117] Wang XH, Li WT, Li Y, Zhou ZG, Zhang JJ et al. Phased array ultrasonic testing of micro-flaws in additive manufactured titanium block. Mater Res Express 7, 016572 (2020). doi: 10.1088/2053-1591/ab6929

    CrossRef Google Scholar

    [118] Mahmoudi M, Elwany A, Yadollahi A, Thompson SM, Bian LK et al. Mechanical properties and microstructural characterization of selective laser melted 17-4 PH stainless steel. Rapid Prototyping J 23, 280–294 (2017). doi: 10.1108/RPJ-12-2015-0192

    CrossRef Google Scholar

    [119] Vilardell AM, Fredriksson G, Yadroitsev I, Krakhmalev P. Fracture mechanisms in the as-built and stress-relieved laser powder bed fusion Ti6Al4V ELI alloy. Opt Laser Technol 109, 608–615 (2019). doi: 10.1016/j.optlastec.2018.08.042

    CrossRef Google Scholar

    [120] Su XM. Toward an understanding of local variability of fatigue strength with microstructures. Int J Fatigue 30, 1007–1015 (2008). doi: 10.1016/j.ijfatigue.2007.08.016

    CrossRef Google Scholar

    [121] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci 54, 397–425 (2009). doi: 10.1016/j.pmatsci.2008.06.004

    CrossRef Google Scholar

    [122] Luo JP, Huang YJ, Xu JY, Sun JF, Dargusch MS et al. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young's modulus: mechanical property, biocompatibility, and proteomics analysis. Mater Sci Eng:C 114, 110903 (2020). doi: 10.1016/j.msec.2020.110903

    CrossRef Google Scholar

    [123] Gong HJ, Rafi K, Gu HF, Ram GDJ, Starr T et al. Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater Design 86, 545–554 (2015). doi: 10.1016/j.matdes.2015.07.147

    CrossRef Google Scholar

    [124] Waddell M, Walker K, Bandyopadhyay R, Kapoor K, Mallory A et al. Small fatigue crack growth behavior of Ti-6Al-4V produced via selective laser melting: in situ characterization of a 3D crack tip interactions with defects. Int J Fatigue 137, 105638 (2020).

    Google Scholar

    [125] Aqida SN, Ghazali MI, Hashim J. Effect of porosity on mechanical properties of metal matrix composite: an overview. Jurnal Teknologi 40, 17–32 (2004).

    Google Scholar

    [126] Hardin RA, Beckermann C. Effect of porosity on the stiffness of cast steel. Metall Mater Trans A 38, 2992–3006 (2007). doi: 10.1007/s11661-007-9390-4

    CrossRef Google Scholar

    [127] Schijve J. Stress concentration at notches. Schijve J, ed. Fatigue of Structures and Materials, 45–70 (Springer, Dordrecht, 2001).

    Google Scholar

    [128] Bert CW. Prediction of elastic moduli of solids with oriented porosity. J Mater Sci 20, 2220–2224 (1985).

    Google Scholar

    [129] Rossi RC. Prediction of the elastic moduli of composites. J Am Ceram Soc 51, 433–440 (1968). doi: 10.1111/j.1151-2916.1968.tb11914.x

    CrossRef Google Scholar

    [130] Roberts AP, Garboczi EJ. Elastic properties of model porous ceramics. J Am Ceram Soc 83, 3041–3048 (2000). doi: 10.1111/j.1151-2916.2000.tb01680.x

    CrossRef Google Scholar

    [131] Zhang EL, Wang B. On the compressive behaviour of sintered porous coppers with low to medium porosities—Part I: experimental study. Int J Mech Sci 47, 744–756 (2005). doi: 10.1016/j.ijmecsci.2004.12.011

    CrossRef Google Scholar

    [132] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties 2nd ed (Cambridge University Press, Cambridge, 1997).

    Google Scholar

    [133] Tekmen C, Ozdemir I, Cocen U, Onel K. The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater Sci Eng:A 360, 365–371 (2003). doi: 10.1016/S0921-5093(03)00461-1

    CrossRef Google Scholar

    [134] Palchik V, Hatzor YH. The influence of porosity on tensile and compressive strength of porous chalks. Rock Mech Rock Eng 37, 331–341 (2004). doi: 10.1007/s00603-003-0020-1

    CrossRef Google Scholar

    [135] Lecarme L, Tekog̃lu C, Pardoen T. Void growth and coalescence in ductile solids with stage III and stage IV strain hardening. Int J Plast 27, 1203–1223 (2011).

    Google Scholar

    [136] Feng ZQ, Yang YQ, Chen YX, Huang B, Fu MS et al. In-situ TEM investigation of fracture process in an Al–Cu–Mg alloy. Mater Sci Eng:A 586, 259–266 (2013). doi: 10.1016/j.msea.2013.08.013

    CrossRef Google Scholar

    [137] Ragab AR. A model for ductile fracture based on internal necking of spheroidal voids. Acta Mater 52, 3997–4009 (2004). doi: 10.1016/j.actamat.2004.05.015

    CrossRef Google Scholar

    [138] Yadroitsev I, Krakhmalev P, Yadroitsava I, Du Plessis A. Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications. JOM 70, 372–377 (2018). doi: 10.1007/s11837-017-2655-5

    CrossRef Google Scholar

    [139] Rollett AD, Kocks UF. A review of the stages of work hardening. Solid State Phenom 35–36, 1–18 (1993).

    Google Scholar

    [140] Susmel L, Taylor D. On the use of the theory of critical distances to predict static failures in ductile metallic materials containing different geometrical features. Eng Fract Mech 75, 4410–4421 (2008). doi: 10.1016/j.engfracmech.2008.04.018

    CrossRef Google Scholar

    [141] Voisin T, Calta NP, Khairallah SA, Forien JB, Balogh L et al. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater Design 158, 113–126 (2018).

    Google Scholar

    [142] Benzerga AA, Besson J, Pineau A. Anisotropic ductile fracture: Part I: experiments. Acta Mater 52, 4623–4638 (2004). doi: 10.1016/j.actamat.2004.06.020

    CrossRef Google Scholar

    [143] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I—yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99, 2–15 (1977). doi: 10.1115/1.3443401

    CrossRef Google Scholar

    [144] Tvergaard V. On localization in ductile materials containing spherical voids. Int J Fract 18, 237–252 (1982). doi: 10.1007/BF00015686

    CrossRef Google Scholar

    [145] Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech Sep 54, 525–531 (1987). doi: 10.1115/1.3173064

    CrossRef Google Scholar

    [146] Hao S, Brocks W. The Gurson-Tvergaard-Needleman-model for rate and temperature-dependent materials with isotropic and kinematic hardening. Comput Mech 20, 34–40 (1997). doi: 10.1007/s004660050213

    CrossRef Google Scholar

    [147] Haynes R. A study of the effect of porosity content on the ductility of sintered metals. Powder Metal 20, 17–20 (1977). doi: 10.1179/pom.1977.20.1.17

    CrossRef Google Scholar

    [148] Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatigue 98, 14–31 (2017). doi: 10.1016/j.ijfatigue.2017.01.001

    CrossRef Google Scholar

    [149] Daniewicz SR, Shamsaei N. An introduction to the fatigue and fracture behavior of additive manufactured parts. Int J Fatigue 94, 167 (2017). doi: 10.1016/j.ijfatigue.2016.07.007

    CrossRef Google Scholar

    [150] Tammas-Williams S, Withers PJ, Todd I, Prangnell PB. The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci Rep 7, 7308 (2017). doi: 10.1038/s41598-017-06504-5

    CrossRef Google Scholar

    [151] Biswal R, Zhang X, Syed AK, Awd M, Ding JL et al. Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int J Fatigue 122, 208–217 (2019). doi: 10.1016/j.ijfatigue.2019.01.017

    CrossRef Google Scholar

    [152] Liao D, Zhu SP, Correia JAFO, De Jesus AMP, Berto F. Recent advances on notch effects in metal fatigue: a review. Fatigue Fract Eng Mater Struct 43, 637–659 (2020). doi: 10.1111/ffe.13195

    CrossRef Google Scholar

    [153] Chastand V, Tezenas A, Cadoret Y, Quaegebeur P, Maia W et al. Fatigue characterization of Titanium Ti-6Al-4V samples produced by additive manufacturing. Proced Struct Inte 2, 3168–3176 (2016).

    Google Scholar

    [154] Taylor D. The theory of critical distances. Eng Fract Mech 75, 1696–1705 (2008). doi: 10.1016/j.engfracmech.2007.04.007

    CrossRef Google Scholar

    [155] Skallerud B, Iveland T, Härkegård G. Fatigue life assessment of aluminum alloys with casting defects. Eng Fract Mech 44, 857–874 (1993). doi: 10.1016/0013-7944(93)90108-5

    CrossRef Google Scholar

    [156] Sheridan L, Scott-Emuakpor OE, George T, Gockel JE. Relating porosity to fatigue failure in additively manufactured alloy 718. Mater Sci Eng:A 727, 170–176 (2018). doi: 10.1016/j.msea.2018.04.075

    CrossRef Google Scholar

    [157] Yamashita Y, Murakami T, Mihara R, Okada M, Murakami Y. Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting. Int J Fatigue 117, 485–495 (2018). doi: 10.1016/j.ijfatigue.2018.08.002

    CrossRef Google Scholar

    [158] Prithivirajan V, Sangid MD. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity. Mater Design 150, 139–153 (2018). doi: 10.1016/j.matdes.2018.04.022

    CrossRef Google Scholar

    [159] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions 2nd ed (Academic Press, London, 2019).

    Google Scholar

    [160] Susmel L. The theory of critical distances: a review of its applications in fatigue. Eng Fract Mech 75, 1706–1724 (2008). doi: 10.1016/j.engfracmech.2006.12.004

    CrossRef Google Scholar

    [161] Taylor D. Applications of the theory of critical distances in failure analysis. Eng Fail Anal 18, 543–549 (2011). doi: 10.1016/j.engfailanal.2010.07.002

    CrossRef Google Scholar

    [162] Newman JC, Piascik RS. Fatigue Crack Growth Thresholds, Endurance Limits, and Design (ASTM International, West Conshohocken, PA, 2000).

    Google Scholar

    [163] Witkin DB, Patel DN, Helvajian H, Steffeney L, Diaz A. Surface treatment of powder-bed fusion additive manufactured metals for improved fatigue life. J Mater Eng Perform 28, 681–692 (2019). doi: 10.1007/s11665-018-3732-9

    CrossRef Google Scholar

    [164] Fatemi A, Molaei R, Phan N. Multiaxial fatigue of additive manufactured metals. MATEC Web Conf 300, 01003 (2019). doi: 10.1051/matecconf/201930001003

    CrossRef Google Scholar

    [165] Ronneberg T, Davies CM, Hooper PA. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Mater Design 189, 108481 (2020). doi: 10.1016/j.matdes.2020.108481

    CrossRef Google Scholar

    [166] Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tools Manuf 128, 1–20 (2018). doi: 10.1016/j.ijmachtools.2018.01.003

    CrossRef Google Scholar

    [167] DebRoy T, Mukherjee T, Wei HL, Elmer JW, Milewski JO. Metallurgy, mechanistic models and machine learning in metal printing. Nat Rev Mater 6, 48–68 (2021). doi: 10.1038/s41578-020-00236-1

    CrossRef Google Scholar

    [168] Lütjering G, Williams JC. Titanium (Springer, Berlin Heidelberg, 2007).

    Google Scholar

    [169] Qian M, Xu W, Brandt M, Tang HP. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties. MRS Bull 41, 775–784 (2016). doi: 10.1557/mrs.2016.215

    CrossRef Google Scholar

    [170] Liu SY, Shin YC. Additive manufacturing of Ti6Al4V alloy: a review. Mater Design 164, 107552 (2019). doi: 10.1016/j.matdes.2018.107552

    CrossRef Google Scholar

    [171] Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A et al. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2, 20–32 (2009). doi: 10.1016/j.jmbbm.2008.05.004

    CrossRef Google Scholar

    [172] Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58, 3303–3312 (2010). doi: 10.1016/j.actamat.2010.02.004

    CrossRef Google Scholar

    [173] Krakhmalev P, Fredriksson G, Yadroitsava I, Kazantseva N, Du Plessis A et al. Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Phys Proced 83, 778–788 (2016). doi: 10.1016/j.phpro.2016.08.080

    CrossRef Google Scholar

    [174] Xu W, Brandt M, Sun S, Elambasseril J, Liu Q et al. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater 85, 74–84 (2015). doi: 10.1016/j.actamat.2014.11.028

    CrossRef Google Scholar

    [175] Losertová M, Kubeš V. Microstructure and mechanical properties of selective laser melted Ti6Al4V alloy. IOP Conf Ser:Mater Sci Eng 266, 012009 (2017).

    Google Scholar

    [176] Vilaro T, Colin C, Bartout JD. As-Fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metall Mater Trans A 42, 3190–3199 (2011). doi: 10.1007/s11661-011-0731-y

    CrossRef Google Scholar

    [177] Mertens A, Reginster S, Paydas H, Contrepois Q, Dormal T et al. Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metal 57, 184–189 (2014). doi: 10.1179/1743290114Y.0000000092

    CrossRef Google Scholar

    [178] Yan M, Xu W, Dargusch MS, Tang HP, Brandt M et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metal 57, 251–257 (2014). doi: 10.1179/1743290114Y.0000000108

    CrossRef Google Scholar

    [179] Yu Q, Qi L, Tsuru T, Traylor R, Rugg D et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science 347, 635–639 (2015). doi: 10.1126/science.1260485

    CrossRef Google Scholar

    [180] Facchini L, Magalini E, Robotti P, Molinari A, Höges S et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping J 16, 450–459 (2010). doi: 10.1108/13552541011083371

    CrossRef Google Scholar

    [181] Wysocki B, Maj P, Sitek R, Buhagiar J, Kurzydłowski KJ et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants. Appl Sci 7, 657 (2017). doi: 10.3390/app7070657

    CrossRef Google Scholar

    [182] Simonelli M, Tse YY, Tuck C. The formation of α + β microstructure in as-fabricated selective laser melting of Ti–6Al–4V. J Mater Res 29, 2028–2035 (2014). doi: 10.1557/jmr.2014.166

    CrossRef Google Scholar

    [183] Qiu CL, Adkins NJE, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng:A 578, 230–239 (2013). doi: 10.1016/j.msea.2013.04.099

    CrossRef Google Scholar

    [184] Saravanan M, Devaraju A, Venkateshwaran N, Krishnakumari A, Saarvesh J. A review on recent progress in coatings on AISI austenitic stainless steel. Mater Today:Proc 5, 14392–14396 (2018). doi: 10.1016/j.matpr.2018.03.024

    CrossRef Google Scholar

    [185] Kong DC, Ni XQ, Dong CF, Lei XW, Zhang L et al. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater Design 152, 88–101 (2018). doi: 10.1016/j.matdes.2018.04.058

    CrossRef Google Scholar

    [186] Wang YM, Voisin T, McKeown JT, Ye JC, Calta NP et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17, 63–71 (2018). doi: 10.1038/nmat5021

    CrossRef Google Scholar

    [187] Zhong Y, Liu LF, Wikman S, Cui DQ, Shen ZJ. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470, 170–178 (2016). doi: 10.1016/j.jnucmat.2015.12.034

    CrossRef Google Scholar

    [188] Saeidi K, Gao X, Lofaj F, Kvetkova L, Shen ZJ. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting. J Alloys Compd 633, 463–469 (2015). doi: 10.1016/j.jallcom.2015.01.249

    CrossRef Google Scholar

    [189] Kong DC, Ni XQ, Dong CF, Zhang L, Man C et al. Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochim Acta 276, 293–303 (2018). doi: 10.1016/j.electacta.2018.04.188

    CrossRef Google Scholar

    [190] Ni XQ, Kong DC, Wen Y, Zhang L, Wu WH et al. Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int J Miner, Metall, Mater 26, 319–328 (2019). doi: 10.1007/s12613-019-1740-x

    CrossRef Google Scholar

    [191] Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chlebus E. Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater Sci Eng:A 718, 64–73 (2018). doi: 10.1016/j.msea.2018.01.103

    CrossRef Google Scholar

    [192] Mertens A, Reginster S, Contrepois Q, Dormal T, Lemaire O et al. Microstructures and mechanical properties of stainless steel aisi 316l processed by selective laser melting. Mater Sci Forum 783–786, 898–903 (2014).

    Google Scholar

    [193] Kong DC, Dong CF, Ni XQ, Zhang L, Yao JZ et al. Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes. J Mater Sci Technol 35, 1499–1507 (2019). doi: 10.1016/j.jmst.2019.03.003

    CrossRef Google Scholar

    [194] Stoll P, Spierings A, Wegener K. Impact of a process interruption on tensile properties of SS 316L parts and hybrid parts produced with selective laser melting. Int J Adv Manuf Technol 103, 367–376 (2019). doi: 10.1007/s00170-019-03560-1

    CrossRef Google Scholar

    [195] Blinn B, Klein M, Glassner C, Smaga M, Aurich JC et al. An investigation of the microstructure and fatigue behavior of additively manufactured AISI 316L stainless steel with regard to the influence of heat treatment. Metals 8, 220 (2018). doi: 10.3390/met8040220

    CrossRef Google Scholar

    [196] Yin YJ, Sun JQ, Guo J, Kan XF, Yang DC. Mechanism of high yield strength and yield ratio of 316 L stainless steel by additive manufacturing. Mater Sci Eng:A 744, 773–777 (2019). doi: 10.1016/j.msea.2018.12.092

    CrossRef Google Scholar

    [197] Wang GQ, Liu Q, Rao H, Liu HC, Qiu CL. Influence of porosity and microstructure on mechanical and corrosion properties of a selectively laser melted stainless steel. J Alloys Compd 831, 154815 (2020). doi: 10.1016/j.jallcom.2020.154815

    CrossRef Google Scholar

    [198] Jeon JM, Park JM, Yu JH, Kim JG, Seong Y et al. Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel. Mater Sci Eng:A 763, 138152 (2019). doi: 10.1016/j.msea.2019.138152

    CrossRef Google Scholar

    [199] Wu AS, Brown DW, Kumar M, Gallegos GF, King WE. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A 45, 6260–6270 (2014). doi: 10.1007/s11661-014-2549-x

    CrossRef Google Scholar

    [200] Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 60, 2229–2239 (2012). doi: 10.1016/j.actamat.2011.12.032

    CrossRef Google Scholar

    [201] Hosseini E, Popovich VA. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf 30, 100877 (2019).

    Google Scholar

    [202] Yi JH, Kang JW, Wang TJ, Wang X, Feng T et al. Microstructure and mechanical behavior of bright crescent areas in Inconel 718 sample fabricated by selective laser melting. Mater Design 197, 109259 (2021). doi: 10.1016/j.matdes.2020.109259

    CrossRef Google Scholar

    [203] Qi H, Azer M, Ritter A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured INCONEL 718. Metall Mater Trans A 40, 2410–2422 (2009). doi: 10.1007/s11661-009-9949-3

    CrossRef Google Scholar

    [204] Paulonis DF, Schirra JJ. Alloy 718 at Pratt & Whitney-Historical perspective and future challenges. Superalloys 718, 13–23 (2001).

    Google Scholar

    [205] Aydinöz ME, Brenne F, Schaper M, Schaak C, Tillmann W et al. On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading. Mater Sci Eng:A 669, 246–258 (2016). doi: 10.1016/j.msea.2016.05.089

    CrossRef Google Scholar

    [206] Kirka MM, Unocic KA, Raghavan N, Medina F, Dehoff RR et al. Microstructure development in electron beam-melted inconel 718 and associated tensile properties. JOM 68, 1012–1020 (2016). doi: 10.1007/s11837-016-1812-6

    CrossRef Google Scholar

    [207] Caiazzo F, Alfieri V, Corrado G, Argenio P. Laser powder-bed fusion of Inconel 718 to manufacture turbine blades. Int J Adv Manuf Technol 93, 4023–4031 (2017). doi: 10.1007/s00170-017-0839-3

    CrossRef Google Scholar

    [208] Li SM, Xiao H, Liu KY, Xiao WJ, Li YQ et al. Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: a comparative study. Mater Design 119, 351–360 (2017). doi: 10.1016/j.matdes.2017.01.065

    CrossRef Google Scholar

    [209] Du JH, Lu XD, Deng Q, Qu JL, Zhuang JY et al. High-temperature structure stability and mechanical properties of novel 718 superalloy. Mater Sci Eng: A 452–453, 584–591 (2007).

    Google Scholar

    [210] Bean GE, Witkin DB, McLouth TD, Pate DN, Zaldivar RJ. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit Manuf 22, 207–215 (2018).

    Google Scholar

    [211] Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens. Addit Manuf 21, 248–254 (2018).

    Google Scholar

    [212] Georgilas K, Khan RHU, Kartal ME. The influence of pulsed laser powder bed fusion process parameters on Inconel 718 material properties. Mater Sci Eng:A 769, 138527 (2020). doi: 10.1016/j.msea.2019.138527

    CrossRef Google Scholar

    [213] Popovich VA, Borisov EV, Popovich AA, Sufiiarov VS, Masaylo DV et al. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Design 114, 441–449 (2017). doi: 10.1016/j.matdes.2016.10.075

    CrossRef Google Scholar

    [214] Smith DH, Bicknell J, Jorgensen L, Patterson BM, Cordes NL et al. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Mater Characteriz 113, 1–9 (2016). doi: 10.1016/j.matchar.2016.01.003

    CrossRef Google Scholar

    [215] Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng:A 639, 647–655 (2015). doi: 10.1016/j.msea.2015.05.035

    CrossRef Google Scholar

    [216] Ni M, Chen C, Wang XJ, Wang PW, Li RD et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing. Mater Sci Eng:A 701, 344–351 (2017). doi: 10.1016/j.msea.2017.06.098

    CrossRef Google Scholar

    [217] Valdez M, Kozuch C, Faierson EJ, Jasiuk I. Induced porosity in Super Alloy 718 through the laser additive manufacturing process: microstructure and mechanical properties. J Alloys Compd 725, 757–764 (2017). doi: 10.1016/j.jallcom.2017.07.198

    CrossRef Google Scholar

    [218] Wang ZM, Guan K, Gao M, Li XY, Chen XF et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J Alloys Compd 513, 518–523 (2012). doi: 10.1016/j.jallcom.2011.10.107

    CrossRef Google Scholar

    [219] Moussaoui K, Rubio W, Mousseigne M, Sultan T, Rezai F. Effects of Selective Laser Melting additive manufacturing parameters of Inconel 718 on porosity, microstructure and mechanical properties. Mater Sci Eng:A 735, 182–190 (2018).

    Google Scholar

    [220] Lu YJ, Wu SQ, Gan YL, Huang TT, Yang CG et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Technol 75, 197–206 (2015). doi: 10.1016/j.optlastec.2015.07.009

    CrossRef Google Scholar

    [221] Polmear I, StJohn D, Nie JF, Qian M. Light Alloys: Metallurgy of the Light Metals 5th ed (Elsevier, Boston, 2017).

    Google Scholar

    [222] Tradowsky U, White J, Ward RM, Read N, Reimers W et al. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Design 105, 212–222 (2016). doi: 10.1016/j.matdes.2016.05.066

    CrossRef Google Scholar

    [223] Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C et al. 3D printing of Aluminium alloys: additive Manufacturing of Aluminium alloys using selective laser melting. Prog Mater Sci 106, 100578 (2019). doi: 10.1016/j.pmatsci.2019.100578

    CrossRef Google Scholar

    [224] Altıparmak SC, Yardley VA, Shi ZS, Lin JG. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int J Lightw Mater Manuf 4, 246–261 (2021).

    Google Scholar

    [225] Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017). doi: 10.1038/nature23894

    CrossRef Google Scholar

    [226] Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Design 34, 159–169 (2012). doi: 10.1016/j.matdes.2011.07.067

    CrossRef Google Scholar

    [227] Li W, Li S, Liu J, Zhang A, Zhou Y et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng:A 663, 116–125 (2016). doi: 10.1016/j.msea.2016.03.088

    CrossRef Google Scholar

    [228] Chen B, Moon SK, Yao X, Bi G, Shen J et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater 141, 45–49 (2017). doi: 10.1016/j.scriptamat.2017.07.025

    CrossRef Google Scholar

    [229] Awd M, Stern F, Kampmann A, Kotzem D, Tenkamp J et al. Microstructural characterization of the anisotropy and cyclic deformation behavior of selective laser melted AlSi10Mg structures. Metals 8, 825 (2018). doi: 10.3390/met8100825

    CrossRef Google Scholar

    [230] Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio EP et al. From powders to dense metal parts: characterization of a commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013). doi: 10.3390/ma6030856

    CrossRef Google Scholar

    [231] Rosenthal I, Stern A, Frage N. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam Additive Manufacturing (AM) technology. Metallogr, Microstruct, Anal 3, 448–453 (2014). doi: 10.1007/s13632-014-0168-y

    CrossRef Google Scholar

    [232] Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater Sci Technol 31, 917–923 (2015). doi: 10.1179/1743284714Y.0000000702

    CrossRef Google Scholar

    [233] Anwar AB, Pham QC. Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol 240, 388–396 (2017). doi: 10.1016/j.jmatprotec.2016.10.015

    CrossRef Google Scholar

    [234] Li X, Huang ZH, Qi WJ, Wang J, Li YJ et al. Microstructure and mechanical properties of AlSi10Mg alloy fabricated by SLM technology. Mater Sci 9, 564–572 (2019).

    Google Scholar

    [235] Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Proced 39, 439–446 (2012). doi: 10.1016/j.phpro.2012.10.059

    CrossRef Google Scholar

    [236] Fatemi A, Molaei R, Sharifimehr S, Phan N, Shamsaei N. Multiaxial fatigue behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect. Int J Fatigue 100, 347–366 (2017). doi: 10.1016/j.ijfatigue.2017.03.044

    CrossRef Google Scholar

    [237] Shrestha R, Simsiriwong J, Shamsaei N, Thompson SM, Bian LK. Effect of build orientation on the fatigue behavior of stainless steel 316L manufactured via a laser-powder bed fusion process. In 27th Annual Solid Frefform Fabrication Symposium Proceedings 605–616 (2016).

    Google Scholar

    [238] Raus AA, Wahab MS, Ibrahim M, Kamarudin K, Ahmed A et al. Mechanical and physical properties of AlSi10Mg processed through selective laser melting. AIP Conf Proc 1831, 020027 (2017).

    Google Scholar

    [239] Shi J, Wang YC. Development of metal matrix composites by laser-assisted additive manufacturing technologies: a review. J Mater Sci 55, 9883–9917 (2020). doi: 10.1007/s10853-020-04730-3

    CrossRef Google Scholar

    [240] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci 253, 8064–8069 (2007). doi: 10.1016/j.apsusc.2007.02.088

    CrossRef Google Scholar

    [241] Boley CD, Khairallah SA, Rubenchik AM. Calculation of laser absorption by metal powders in additive manufacturing. Appl Opt 54, 2477–2482 (2015). doi: 10.1364/AO.54.002477

    CrossRef Google Scholar

    [242] Irrinki H, Dexter M, Barmore B, Enneti R, Pasebani S et al. Effects of powder attributes and laser powder bed fusion (L-PBF) process conditions on the densification and mechanical properties of 17-4 PH stainless steel. JOM 68, 860–868 (2016). doi: 10.1007/s11837-015-1770-4

    CrossRef Google Scholar

    [243] Heeling T, Cloots M, Wegener K. Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14, 116–125 (2017).

    Google Scholar

    [244] Bai YC, Yang YQ, Wang D, Zhang MK. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater Sci Eng:A 703, 116–123 (2017). doi: 10.1016/j.msea.2017.06.033

    CrossRef Google Scholar

    [245] Gu H, Wei C, Li L, Han QQ, Setchi R et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int J Heat Mass Trans 151, 119458 (2020). doi: 10.1016/j.ijheatmasstransfer.2020.119458

    CrossRef Google Scholar

    [246] Yu GQ, Gu DD, Dai DH, Xia MJ, Ma CL et al. On the role of processing parameters in thermal behavior, surface morphology and accuracy during laser 3D printing of aluminum alloy. J Phys D:Appl Phys 49, 135501 (2016). doi: 10.1088/0022-3727/49/13/135501

    CrossRef Google Scholar

    [247] Wang ZK, Yan WT, Liu WK, Liu MB. Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech 63, 649–661 (2019). doi: 10.1007/s00466-018-1614-5

    CrossRef Google Scholar

    [248] Yan WT, Lian YP, Yu C, Kafka OL, Liu ZL et al. An integrated process–structure–property modeling framework for additive manufacturing. Comput Methods Appl Mech Eng 339, 184–204 (2018). doi: 10.1016/j.cma.2018.05.004

    CrossRef Google Scholar

    [249] Yang M, Wang L, Yan WT. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening. npj Comput Mater 7, 56 (2021). doi: 10.1038/s41524-021-00524-6

    CrossRef Google Scholar

    [250] Simonelli M, Tse YY, Tuck C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Mater Sci Eng:A 616, 1–11 (2014). doi: 10.1016/j.msea.2014.07.086

    CrossRef Google Scholar

    [251] Chen CP, Yin J, Zhu HH, Xiao ZX, Zhang L et al. Effect of overlap rate and pattern on residual stress in selective laser melting. Int J Mach Tools Manu 145, 103433 (2019). doi: 10.1016/j.ijmachtools.2019.103433

    CrossRef Google Scholar

    [252] Chen CY, Xie YC, Yan XC, Yin S, Fukanuma H et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Addit Manuf 27, 595–605 (2019).

    Google Scholar

    [253] Atkinson HV, Davies S. Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A 31, 2981–3000 (2000). doi: 10.1007/s11661-000-0078-2

    CrossRef Google Scholar

    [254] Finfrock CB, Exil A, Carroll JD, Deibler L. Effect of hot isostatic pressing and powder feedstock on porosity, microstructure, and mechanical properties of selective laser melted AlSi10Mg. Metallogr, Microstruct, Anal 7, 443–456 (2018). doi: 10.1007/s13632-018-0456-z

    CrossRef Google Scholar

    [255] Haan J, Asseln M, Zivcec M, Eschweiler J, Radermacher R et al. Effect of subsequent Hot Isostatic Pressing on mechanical properties of ASTM F75 alloy produced by Selective Laser Melting. Powder Metal 58, 161–165 (2015). doi: 10.1179/0032589915Z.000000000236

    CrossRef Google Scholar

    [256] Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T. On the fatigue properties of metals manufactured by selective laser melting — the role of ductility. J Mater Res 29, 1911–1919 (2014). doi: 10.1557/jmr.2014.157

    CrossRef Google Scholar

    [257] Schneller W, Leitner M, Springer S, Grün F, Taschauer M. Effect of HIP treatment on microstructure and fatigue strength of selectively laser melted AlSi10Mg. J Manuf Mater Process 3, 16 (2019).

    Google Scholar

    [258] Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: a review. J Mach Eng 18, 5–24 (2018).

    Google Scholar

    [259] Gibson I, Rosen D, Stucker B, Khorasani M. Hybrid additive manufacturing. Gibson I, Rosen D, Stucker B, Khorasani M, eds. Additive Manufacturing Technologies, 347–366 (Springer, Cham, 2021); https://doi.org/10.1007/978-3-030-56127-7_12.

    Google Scholar

    [260] Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Design 95, 431–445 (2016). doi: 10.1016/j.matdes.2016.01.099

    CrossRef Google Scholar

    [261] Bisht M, Ray N, Verbist F, Coeck S. Correlation of selective laser melting-melt pool events with the tensile properties of Ti-6Al-4V ELI processed by laser powder bed fusion. Addit Manuf 22, 302–306 (2018).

    Google Scholar

    [262] Tapia G, Elwany A. A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136, 060801 (2014). doi: 10.1115/1.4028540

    CrossRef Google Scholar

    [263] Purtonen T, Kalliosaari A, Salminen A. Monitoring and adaptive control of laser processes. Phys Proced 56, 1218–1231 (2014). doi: 10.1016/j.phpro.2014.08.038

    CrossRef Google Scholar

    [264] Furumoto T, Alkahari MR, Ueda T, Aziz MSA, Hosokawa A. Monitoring of laser consolidation process of metal powder with high speed video camera. Phys Proced 39, 760–766 (2012). doi: 10.1016/j.phpro.2012.10.098

    CrossRef Google Scholar

    [265] Clijsters S, Craeghs T, Buls S, Kempen K, Kruth JP. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol 75, 1089–1101 (2014). doi: 10.1007/s00170-014-6214-8

    CrossRef Google Scholar

    [266] Renken V, Von Freyberg A, Schünemann K, Pastors F, Fischer A. In-process closed-loop control for stabilising the melt pool temperature in selective laser melting. Prog Addit Manuf 4, 411–421 (2019). doi: 10.1007/s40964-019-00083-9

    CrossRef Google Scholar

    [267] Wei KW, Lv M, Zeng XY, Xiao ZX, Huang G et al. Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5Sn alloy. Mater Characteriz 150, 67–77 (2019). doi: 10.1016/j.matchar.2019.02.010

    CrossRef Google Scholar

    [268] Chua CK, Wong CH, Yeong WY. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing (Academic Press, London, 2017).

    Google Scholar

    [269] Mancisidor AM, Garciandia F, Sebastian MS, Álvarez P, Díaz J et al. Reduction of the residual porosity in parts manufactured by selective laser melting using skywriting and high focus offset strategies. Phys Proced 83, 864–873 (2016). doi: 10.1016/j.phpro.2016.08.090

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(5)

Article Metrics

Article views(24460) PDF downloads(1731) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint