Du E, Shen SH, Qiu AQ, Chen NG. Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature. Opto-Electron Adv 5, 210045 (2022). doi: 10.29026/oea.2022.210045
Citation: Du E, Shen SH, Qiu AQ, Chen NG. Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature. Opto-Electron Adv 5, 210045 (2022). doi: 10.29026/oea.2022.210045

Original Article Open Access

Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature

More Information
  • Laser speckle imaging has been widely used for in-vivo visualization of blood perfusion in biological tissues. However, existing laser speckle imaging techniques suffer from limited quantification accuracy and spatial resolution. Here we report a novel design and implementation of a powerful laser speckle imaging platform to solve the two critical limitations. The core technique of our platform is a combination of line scan confocal microscopy with laser speckle autocorrelation imaging, which is termed Line Scan Laser Speckle Autocorrelation Imaging (LS-LSAI). The technical advantages of LS-LSAI include high spatial resolution (~4.4 μm) for visualizing and quantifying blood flow in microvessels, as well as video-rate imaging speed for tracing dynamic flow.
  • 加载中
  • [1] Fagrell B, Intaglietta M. Microcirculation: its significance in clinical and molecular medicine. J Intern Med 241, 349–362 (1997). doi: 10.1046/j.1365-2796.1997.125148000.x

    CrossRef Google Scholar

    [2] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–30 (1995). doi: 10.1038/nm0195-27

    CrossRef Google Scholar

    [3] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000). doi: 10.1038/35025220

    CrossRef Google Scholar

    [4] Fercher AF, Briers JD. Flow visualization by means of single-exposure speckle photography. Opt Commun 37, 326–330 (1981). doi: 10.1016/0030-4018(81)90428-4

    CrossRef Google Scholar

    [5] Dunn AK, Bolay H, Moskowitz MA, Boas DA. Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21, 195–201 (2001). doi: 10.1097/00004647-200103000-00002

    CrossRef Google Scholar

    [6] Postnov DD, Erdener SE, Tang JB, Boas DA. Dynamic laser speckle imaging: beyond the contrast (Conference Presentation). Proc SPIE 10877, 108770A (2019).

    Google Scholar

    [7] Williams SA, Wasserman S, Rawlinson DW, Kitney RI, Smaje LH et al. Dynamic measurement of human capillary blood pressure. Clin Sci 74, 507–512 (1988).

    Google Scholar

    [8] Fedorovich AA, Drapkina OM, Pronko KN, Sinopalnikov VI, Zemskov VM. Telemonitoring of capillary blood flow in the human skin: new opportunities and prospects. Clin Pract 15, 561–567 (2018).

    Google Scholar

    [9] Briers JD, Fercher AF. Retinal blood-flow visualization by means of laser speckle photography. Invest Ophthalmol Vis Sci 22, 255–259 (1982).

    Google Scholar

    [10] Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Invest Ophthalmol Vis Sci 35, 3825–3834 (1994).

    Google Scholar

    [11] Cheng HY, Yan YM, Duong TQ. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt Express 16, 10214–10219 (2008). doi: 10.1364/OE.16.010214

    CrossRef Google Scholar

    [12] Nagahara M, Tamaki Y, Tomidokoro A, Araie M. In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52, 87–92 (2011). doi: 10.1167/iovs.09-4422

    CrossRef Google Scholar

    [13] Briers JD, Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J Biomed Opt 1, 174–179 (1996). doi: 10.1117/12.231359

    CrossRef Google Scholar

    [14] Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imaging 5, 155–163 (2012). doi: 10.1161/CIRCIMAGING.111.970418

    CrossRef Google Scholar

    [15] Bolay H, Reuter U, Dunn AK, Huang ZH, Boas DA et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8, 136–142 (2002). doi: 10.1038/nm0202-136

    CrossRef Google Scholar

    [16] Li PC, Ni SL, Zhang L, Zeng SQ, Luo QM. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt Lett 31, 1824–1826 (2006). doi: 10.1364/OL.31.001824

    CrossRef Google Scholar

    [17] Zakharov P, Völker AC, Wyss MT, Haiss F, Calcinaghi N et al. Dynamic laser speckle imaging of cerebral blood flow. Opt Express 17, 13904–13917 (2009). doi: 10.1364/OE.17.013904

    CrossRef Google Scholar

    [18] Parthasarathy AB, Kazmi SMS, Dunn AK. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed Opt Express 1, 246–259 (2010). doi: 10.1364/BOE.1.000246

    CrossRef Google Scholar

    [19] Dunn AK. Laser speckle contrast imaging of cerebral blood flow. Ann Biomed Eng 40, 367–377 (2012). doi: 10.1007/s10439-011-0469-0

    CrossRef Google Scholar

    [20] Kazmi SMS, Richards LM, Schrandt CJ, Davis MA, Dunn AK. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 35, 1076–1084 (2015). doi: 10.1038/jcbfm.2015.84

    CrossRef Google Scholar

    [21] Chen M, Wen D, Huang SL, Gui S, Zhang ZH et al. Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy. Opt Lett 43, 5627–5630 (2018). doi: 10.1364/OL.43.005627

    CrossRef Google Scholar

    [22] Boas DA, Dunn AK. Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15, 011109 (2010). doi: 10.1117/1.3285504

    CrossRef Google Scholar

    [23] Senarathna J, Rege A, Li N, Thakor NV. Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6, 99–110 (2013). doi: 10.1109/RBME.2013.2243140

    CrossRef Google Scholar

    [24] Briers D, Duncan DD, Hirst ER, Kirkpatrick SJ, Larsson M et al. Laser speckle contrast imaging: theoretical and practical limitations. J Biomed Opt 18, 066018 (2013). doi: 10.1117/1.JBO.18.6.066018

    CrossRef Google Scholar

    [25] Vaz PG, Humeau-Heurtier A, Figueiras E, Correia C, Cardoso J. Laser speckle imaging to monitor microvascular blood flow: a review. IEEE Rev Biomed Eng 9, 106–120 (2016). doi: 10.1109/RBME.2016.2532598

    CrossRef Google Scholar

    [26] Heeman W, Steenbergen W, van Dam GM, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. J Biomed Opt 24, 080901 (2019).

    Google Scholar

    [27] Duncan DD, Kirkpatrick SJ. Can laser speckle flowmetry be made a quantitative tool? J Opt Soc Am A Opt Image Sci Vis 25, 2088–2094 (2008). doi: 10.1364/JOSAA.25.002088

    CrossRef Google Scholar

    [28] Parthasarathy AB, Tom WJ, Gopal A, Zhang XJ, Dunn AK. Robust flow measurement with multi-exposure speckle imaging. Opt Express 16, 1975–1989 (2008). doi: 10.1364/OE.16.001975

    CrossRef Google Scholar

    [29] Parthasarathy AB, Weber EL, Richards LM, Fox DJ, Dunn AK. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. J Biomed Opt 15, 066030 (2010). doi: 10.1117/1.3526368

    CrossRef Google Scholar

    [30] Richards LM, Towle EL, Fox DJ, Dunn AK. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics 1, 015006 (2014).

    Google Scholar

    [31] Hou J, Li RJ, Sun WM, Lv XK, Song LP et al. Laser speckle correlation imaging with optical clearance for blood flows. Proc SPIE 11190, 111903C (2019).

    Google Scholar

    [32] Chen NG, Pant S. Line-scan focal modulation microscopy: a comparison study (Conference Presentation). Proc SPIE 9713, 971308 (2016). doi: 10.1117/12.2212710

    CrossRef Google Scholar

    [33] Pant S, Duan YB, Xiong F, Chen NG. Augmented line-scan focal modulation microscopy for multi-dimensional imaging of zebrafish heart in vivo. Biomed Opt Express 8, 5698–5707 (2017). doi: 10.1364/BOE.8.005698

    CrossRef Google Scholar

    [34] Pant S, Li CX, Gong ZY, Chen NG. Line-scan focal modulation microscopy. J Biomed Opt 22, 50502 (2017).

    Google Scholar

    [35] Al-Qazwini Z, Ko ZYG, Mehta K, Chen NG. Ultrahigh-speed line-scan SD-OCT for four-dimensional in vivo imaging of small animal models. Biomed Opt Express 9, 1216–1228 (2018). doi: 10.1364/BOE.9.001216

    CrossRef Google Scholar

    [36] Du E, Shen SH, Chong SP, Chen NG. Multifunctional laser speckle imaging. Biomed Opt Express 11, 2007–2016 (2020). doi: 10.1364/BOE.388856

    CrossRef Google Scholar

  • Supplementary information video S1
    Supplementary information video S1
    Supplementary information video S1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(9113) PDF downloads(1044) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint