Shen TY, Qin JJ, Bai YJ, Zhang J, Shi L et al. Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites. Opto-Electron Adv 5, 200051 (2022). doi: 10.29026/oea.2022.200051
Citation: Shen TY, Qin JJ, Bai YJ, Zhang J, Shi L et al. Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites. Opto-Electron Adv 5, 200051 (2022). doi: 10.29026/oea.2022.200051

Original Article Open Access

Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites

More Information
  • Up-conversion lasing actions are normally difficult to realize in light-emitting materials due to small multi-photon absorption cross section and fast dephasing of excited states during multi-photon excitation. This paper reports an easily accessible up-conversion amplified spontaneous emission (ASE) in organic-inorganic hybrid perovskites (MAPbBr3) films by optically exciting broad gap states with sub-bandgap laser excitation. The broad absorption was optimized by adjusting the grain sizes in the MAPbBr3 films. At low sub-bandgap pumping intensities, directly exciting the gap states leads to 2-photon, 3-photon, and 4-photon up-conversion spontaneous emission, revealing a large optical cross section of multi-photon excitation occurring in such hybrid perovskite films. At moderate pumping intensity (1.19 mJ/cm2) of 700 nm laser excitation, a significant spectral narrowing phenomenon was observed with the full width at half maximum (FWHM) decreasing from 18 nm to 4 nm at the peak wavelength of 550 nm, simultaneously with a nonlinear increase on spectral peak intensity, showing an up-conversion ASE realized at low threshold pumping fluence. More interestingly, the up-conversion ASE demonstrated a giant magnetic field effect, leading to a magneto-ASE reaching 120%. In contrast, the up-conversion photoluminescence (PL) showed a negligible magnetic field effect (< 1%). This observation provides an evidence to indicate that the light-emitting states responsible for up-conversion ASE are essentially formed as spatially extended states. The angular dependent spectrum results further verify the existence of spatially extended states which are polarized to develop coherent in-phase interaction. Clearly, using broad gap states with spatially extended light-emitting states presents a new approach to develop up-conversion ASE in organic-inorganic hybrid perovskites.
  • 加载中
  • [1] Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc 136, 8094–8099 (2014). doi: 10.1021/ja5033259

    CrossRef Google Scholar

    [2] De Wolf S, Holovsky J, Moon SJ, Löper P, Niesen B et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5, 1035–1039 (2014). doi: 10.1021/jz500279b

    CrossRef Google Scholar

    [3] Ahmadi M, Wu T, Hu B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Adv Mater 29, 1605242 (2017). doi: 10.1002/adma.201605242

    CrossRef Google Scholar

    [4] Kazim S, Nazeeruddin MK, Grätzel M, Ahmad S. Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed 53, 2812–2824 (2014). doi: 10.1002/anie.201308719

    CrossRef Google Scholar

    [5] Ball JM, Stranks SD, Hörantner MT, Hüttner S, Zhang W et al. Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ Sci 8, 602–609 (2015). doi: 10.1039/C4EE03224A

    CrossRef Google Scholar

    [6] Quan LN, Quintero-Bermudez R, Voznyy O, Walters G, Jain A et al. Highly emissive green perovskite nanocrystals in a solid state crystalline matrix. Adv Mater 29, 1605945 (2017). doi: 10.1002/adma.201605945

    CrossRef Google Scholar

    [7] Li Z, Kong L, Huang S, Li L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew Chem Int Ed 56, 8134–8138 (2017). doi: 10.1002/anie.201703264

    CrossRef Google Scholar

    [8] Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater 28, 6804–6834 (2016). doi: 10.1002/adma.201600669

    CrossRef Google Scholar

    [9] Xing GC, Mathews N, Lim SS, Yantara N, Liu XF et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13, 476–480 (2014). doi: 10.1038/nmat3911

    CrossRef Google Scholar

    [10] Jia YF, Kerner RA, Grede AJ, Rand BP, Giebink NC. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat Photonics 11, 784–788 (2017). doi: 10.1038/s41566-017-0047-6

    CrossRef Google Scholar

    [11] Jia YF, Kerner RA, Grede AJ, Brigeman AN, Rand BP et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett 16, 4624–4629 (2016). doi: 10.1021/acs.nanolett.6b01946

    CrossRef Google Scholar

    [12] Dhanker R, Brigeman AN, Larsen AV, Stewart RJ, Asbury JB et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett 105, 151112 (2014). doi: 10.1063/1.4898703

    CrossRef Google Scholar

    [13] Arora N, Dar MI, Hezam M, Tress W, Jacopin G et al. Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv Funct Mater 26, 2846–2854 (2016). doi: 10.1002/adfm.201504977

    CrossRef Google Scholar

    [14] Wang KY, Li G, Wang S, Liu S, Sun WZ et al. Dark-field sensors based on organometallic halide perovskite microlasers. Adv Mater 30, 1801481 (2018). doi: 10.1002/adma.201801481

    CrossRef Google Scholar

    [15] Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6, 8056 (2015). doi: 10.1038/ncomms9056

    CrossRef Google Scholar

    [16] Evans TJS, Schlaus A, Fu YP, Zhong XJ, Atallah TL et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv Opt Mater 6, 1700982 (2018). doi: 10.1002/adom.201700982

    CrossRef Google Scholar

    [17] Fu YP, Zhu HM, Schrader AW, Liang D, Ding Q et al. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett 16, 1000–1008 (2016). doi: 10.1021/acs.nanolett.5b04053

    CrossRef Google Scholar

    [18] Zhu HM, Fu YP, Meng F, Wu XX, Gong ZZ et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14, 636–642 (2015). doi: 10.1038/nmat4271

    CrossRef Google Scholar

    [19] He GS, Yong KT, Zheng QD, Sahoo Y, Baev A et al. Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range. Opt Express 15, 12818–12833 (2007). doi: 10.1364/OE.15.012818

    CrossRef Google Scholar

    [20] Tian YP, Li L, Zhang JZ, Yang JX, Zhou HP et al. Investigations and facile synthesis of a series of novel multi-functional two-photon absorption materials. J Mater Chem 17, 3646–3654 (2007). doi: 10.1039/b703853d

    CrossRef Google Scholar

    [21] Oliveira SL, Corrêa DS, Misoguti L, Constantino CJL, Aroca RF et al. Perylene derivatives with large two-photon-absorption cross-sections for application in optical limiting and upconversion lasing. Adv Mater 17, 1890–1893 (2005). doi: 10.1002/adma.200500533

    CrossRef Google Scholar

    [22] Xu YQ, Chen Q, Zhang CF, Wang R, Wu H et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J Am Chem Soc 138, 3761–3768 (2016). doi: 10.1021/jacs.5b12662

    CrossRef Google Scholar

    [23] Nagamine G, Rocha JO, Bonato LG, Nogueira AF, Zaharieva Z et al. Two-photon absorption and two-photon-induced gain in perovskite quantum dots. J Phys Chem Lett 9, 3478–3484 (2018). doi: 10.1021/acs.jpclett.8b01127

    CrossRef Google Scholar

    [24] Pan J, Sarmah SP, Murali B, Dursun I, Peng W et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J Phys Chem Lett 6, 5027–5033 (2015). doi: 10.1021/acs.jpclett.5b02460

    CrossRef Google Scholar

    [25] Li CL, Zang ZG, Han C, Hu ZP, Tang XS et al. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017). doi: 10.1016/j.nanoen.2017.08.013

    CrossRef Google Scholar

    [26] Zheng Z, Wang XX, Shen YW, Luo ZY, Li LG et al. Space-confined synthesis of 2D all-inorganic CsPbI3 perovskite nanosheets for multiphoton-pumped lasing. Adv Opt Mater 6, 1800879 (2018). doi: 10.1002/adom.201800879

    CrossRef Google Scholar

    [27] Liao Q, Jin X, Fu HB. Tunable halide perovskites for miniaturized solid-state laser applications. Adv Opt Mater 7, 1900099 (2019). doi: 10.1002/adom.201900099

    CrossRef Google Scholar

    [28] Wang Y, Li XM, Zhao X, Xiao L, Zeng HB et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett 16, 448–453 (2016). doi: 10.1021/acs.nanolett.5b04110

    CrossRef Google Scholar

    [29] Yang DC, Xie C, Sun JH, Zhu H, Xu XH et al. Amplified spontaneous emission from organic–inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation. Adv Opt Mater 4, 1053–1059 (2016). doi: 10.1002/adom.201600047

    CrossRef Google Scholar

    [30] He L, Li MX, Urbas A, Hu B. Optically tunable magneto-capacitance phenomenon in organic semiconducting materials developed by electrical polarization of intermolecular charge-transfer States. Adv Mater 26, 3956–3961 (2014). doi: 10.1002/adma.201305965

    CrossRef Google Scholar

    [31] Hu B, Yan L, Shao M. Magnetic-field effects in organic semiconducting materials and devices. Adv Mater 21, 1500–1516 (2009). doi: 10.1002/adma.200802386

    CrossRef Google Scholar

    [32] Xu HX, Wang MS, Yu ZG, Wang K, Hu B. Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes. Adv Phys 68, 49–121 (2019). doi: 10.1080/00018732.2019.1590295

    CrossRef Google Scholar

    [33] Zhang J, Hu B. Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy 76, 104999 (2020). doi: 10.1016/j.nanoen.2020.104999

    CrossRef Google Scholar

    [34] Zhang J, Qin JJ, Wu T, Hu B. Doping induced orbit–orbit interaction between excitons while enhancing photovoltaic performance in tin perovskite solar cells. J Phys Chem Lett 11, 6996–7001 (2020). doi: 10.1021/acs.jpclett.0c01859

    CrossRef Google Scholar

    [35] Bai YJ, Qin JJ, Shi L, Zhang J, Wang MS et al. Amplified spontaneous emission realized by cogrowing large/small grains with self-passivating defects and aligning transition dipoles. Adv Opt Mater 7, 1900345 (2019). doi: 10.1002/adom.201900345

    CrossRef Google Scholar

    [36] Qin JJ, Zhang J, Bai YJ, Ma SB, Wang MS et al. Enabling self-passivation by attaching small grains on surfaces of large grains toward high-performance perovskite LEDs. iScience 19, 378–387 (2019). doi: 10.1016/j.isci.2019.07.044

    CrossRef Google Scholar

    [37] Tiguntseva E, Koshelev K, Furasova A, Tonkaev P, Mikhailovskii V et al. Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles. ACS Nano 14, 8149–8156 (2020). doi: 10.1021/acsnano.0c01468

    CrossRef Google Scholar

    [38] Makarov S, Furasova A, Tiguntseva E, Hemmetter A, Berestennikov A et al. Halide-perovskite resonant nanophotonics. Adv Opt Mater 7, 1800784 (2019). doi: 10.1002/adom.201800784

    CrossRef Google Scholar

    [39] deQuilettes DW, Frohna K, Emin D, Kirchartz T, Bulovic V et al. Charge-carrier recombination in halide perovskites. Chem Rev 119, 11007–11019 (2019). doi: 10.1021/acs.chemrev.9b00169

    CrossRef Google Scholar

    [40] Berestennikov AS, Voroshilov PM, Makarov SV, Kivshar YS. Active meta-optics and nanophotonics with halide perovskites. Appl Phys Rev 6, 031307 (2019). doi: 10.1063/1.5107449

    CrossRef Google Scholar

    [41] Makarov SV, Milichko V, Ushakova EV, Omelyanovich M, Pasaran AC et al. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4, 728–735 (2017). doi: 10.1021/acsphotonics.6b00940

    CrossRef Google Scholar

    [42] Li MX, He L, Xu HX, Shao M, Tisdale J et al. Interaction between optically-generated charge-transfer states and magnetized charge-transfer states toward magneto-electric coupling. J Phys Chem Lett 6, 4319–4325 (2015). doi: 10.1021/acs.jpclett.5b01838

    CrossRef Google Scholar

    [43] Perry CH, Lu F, Namavar F, Kalkhoran NM, Soref RA. Photoluminescence spectra from porous silicon (111) microstructures: temperature and magnetic-field effects. Appl Phys Lett 60, 3117–3119 (1992). doi: 10.1063/1.106770

    CrossRef Google Scholar

    [44] Hsiao YC, Wu T, Li MX, Hu B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv Mater 27, 2899–2906 (2015). doi: 10.1002/adma.201405946

    CrossRef Google Scholar

    [45] Zhang J, Wu T, Duan JS, Ahmadi M, Jiang FY et al. Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells. Nano Energy 38, 297–303 (2017). doi: 10.1016/j.nanoen.2017.05.061

    CrossRef Google Scholar

    [46] Jones MAG, Morton JJL, Taylor RA, Ardavan A, Briggs GAD. PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys Status Solidi (B) 243, 3037–3041 (2006). doi: 10.1002/pssb.200669162

    CrossRef Google Scholar

    [47] Pushkarev AP, Korolev VI, Markina DI, Komissarenko FE, Naujokaitis A et al. A few-minute synthesis of CsPbBr3 nanolasers with a high quality factor by spraying at ambient conditions. ACS Appl Mater Interfaces 11, 1040–1048 (2019). doi: 10.1021/acsami.8b17396

    CrossRef Google Scholar

  • Supplementary Information for Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(6186) PDF downloads(742) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint