Liu SQ, Yu FH, Hong R, Xu WJ, Shao LY et al. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron Adv 5, 200078 (2022). doi: 10.29026/oea.2022.200078
Citation: Liu SQ, Yu FH, Hong R, Xu WJ, Shao LY et al. Advances in phase-sensitive optical time-domain reflectometry. Opto-Electron Adv 5, 200078 (2022). doi: 10.29026/oea.2022.200078

Review Open Access

Advances in phase-sensitive optical time-domain reflectometry

More Information
  • Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has attracted numerous attention due to its superior performance in detecting the weak perturbations along the fiber. Relying on the ultra-sensitivity of light phase to the tiny deformation of optical fiber, Φ-OTDR has been treated as a powerful technique with a wide range of applications. It is fundamental to extract the phase of scattering light wave accurately and the methods include coherent detection, I/Q demodulation, 3 by 3 coupler, dual probe pulses, and so on. Meanwhile, researchers have also made great efforts to improve the performance of Φ-OTDR. The frequency response range, the measurement accuracy, the sensing distance, the spatial resolution, and the accuracy of event discrimination, all have been enhanced by various techniques. Furthermore, lots of researches on the applications in various kinds of fields have been carried out, where certain modifications and techniques have been developed. Therefore, Φ-OTDR remains as a booming technique in both researches and applications.
  • 加载中
  • [1] Bao XY, Chen L. Recent progress in distributed fiber optic sensors. Sensors 12, 8601–8639 (2012). doi: 10.3390/s120708601

    CrossRef Google Scholar

    [2] Sun QZ, Liu DM, Wang J, Liu HR. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Opt Commun 281, 1538–1544 (2008). doi: 10.1016/j.optcom.2007.11.055

    CrossRef Google Scholar

    [3] Liang S, Zhang CX, Lin WT, Li LJ, Li C et al. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring. Opt Lett 34, 1858–1860 (2009). doi: 10.1364/OL.34.001858

    CrossRef Google Scholar

    [4] Barnoski MK, Rourke MD, Jensen S, Melville R. Optical time domain reflectometer. Appl Opt 16, 2375–2379 (1977). doi: 10.1364/AO.16.002375

    CrossRef Google Scholar

    [5] Juarez JC, Maier EW, Choi KN, Taylor HF. Distributed fiber-optic intrusion sensor system. J Lightwave Technol 23, 2081–2087 (2005). doi: 10.1109/JLT.2005.849924

    CrossRef Google Scholar

    [6] Lu YL, Zhu T, Chen L, Bao XY. Distributed vibration sensor based on coherent detection of phase-OTDR. J Lightwave Technol 28, 3243–3249 (2010).

    Google Scholar

    [7] Passy R, Gisin N, von der Weid JP, Gilgen HH. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources. J Lightwave Technol 12, 1622–1630 (1994). doi: 10.1109/50.320946

    CrossRef Google Scholar

    [8] Rogers AJ. Polarization-optical time domain reflectometry: a technique for the measurement of field distributions. Appl Opt 20, 1060–1074 (1981). doi: 10.1364/AO.20.001060

    CrossRef Google Scholar

    [9] Horiguchi T, Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Opt Lett 14, 408–410 (1989). doi: 10.1364/OL.14.000408

    CrossRef Google Scholar

    [10] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique. IEEE Photonics Technol Lett 14, 179–181 (2002). doi: 10.1109/68.980502

    CrossRef Google Scholar

    [11] Zadok A, Antman Y, Primerov N, Denisov A, Sancho J et al. Random‐access distributed fiber sensing. Laser Photonics Rev 6, L1–L5 (2012). doi: 10.1002/lpor.201200013

    CrossRef Google Scholar

    [12] Chow DM, Yang ZS, Soto MA, Thévenaz L. Distributed forward Brillouin sensor based on local light phase recovery. Nat Commun 9, 2990 (2018). doi: 10.1038/s41467-018-05410-2

    CrossRef Google Scholar

    [13] Bolognini G, Hartog A. Raman-based fibre sensors: trends and applications. Opt Fiber Technol 19, 678–688 (2013). doi: 10.1016/j.yofte.2013.08.003

    CrossRef Google Scholar

    [14] Pan ZQ, Liang KZ, Ye Q, Cai HW, Qu RH et al. Phase-sensitive OTDR system based on digital coherent detection. Proc SPIE 8311, 83110S (2011). doi: 10.1117/12.905657

    CrossRef Google Scholar

    [15] Pan ZQ, Liang KZ, Zhou J, Ye Q, Cai HW et al. Interference-fading-free phase-demodulated OTDR system. Proc SPIE 8421, 842129 (2012). doi: 10.1117/12.975656

    CrossRef Google Scholar

    [16] Tu GJ, Zhang XP, Zhang YX, Zhu F, Xia L et al. The development of an Φ-OTDR system for quantitative vibration measurement. IEEE Photonics Technol Lett 27, 1349–1352 (2015). doi: 10.1109/LPT.2015.2421354

    CrossRef Google Scholar

    [17] Yang GY, Fan XY, Wang S, Wang B, Liu QW et al. Long-range distributed vibration sensing based on phase extraction from phase-sensitive OTDR. IEEE Photonics J 8, 6802412 (2016).

    Google Scholar

    [18] Liu HH, Pang FF, Lv LB, Mei XW, Song YX et al. True phase measurement of distributed vibration sensors based on heterodyne Φ-OTDR. IEEE Photonics J 10, 7101309 (2018).

    Google Scholar

    [19] He HJ, Yan LS, Qian H, Zhang XP, Luo B et al. Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity. Opt Express 28, 226–237 (2020). doi: 10.1364/OE.378257

    CrossRef Google Scholar

    [20] Dong YK, Chen X, Liu EH, Fu C, Zhang HY et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer. Appl Opt 55, 7810–7815 (2016). doi: 10.1364/AO.55.007810

    CrossRef Google Scholar

    [21] Wang ZN, Zhang L, Wang S, Xue NT, Peng F et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt Express 24, 853–858 (2016). doi: 10.1364/OE.24.000853

    CrossRef Google Scholar

    [22] Jiang JL, Wang ZN, Wang ZT, Wu Y, Lin ST et al. Coherent kramers-kronig receiver for Φ-OTDR. J Lightwave Technol 37, 4799–4807 (2019). doi: 10.1109/JLT.2019.2920530

    CrossRef Google Scholar

    [23] Masoudi A, Belal M, Newson TP. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas Sci Technol 24, 085204 (2013). doi: 10.1088/0957-0233/24/8/085204

    CrossRef Google Scholar

    [24] Wang C, Wang C, Shang Y, Liu XH, Peng GD. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry. Opt Commun 346, 172–177 (2015). doi: 10.1016/j.optcom.2015.02.044

    CrossRef Google Scholar

    [25] He XG, Xie SR, Liu F, Cao S, Gu LJ et al. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR. Opt Lett 42, 442–445 (2017). doi: 10.1364/OL.42.000442

    CrossRef Google Scholar

    [26] Sha Z, Feng H, Zeng ZM. Phase demodulation method in phase-sensitive OTDR without coherent detection. Opt Express 25, 4831–4844 (2017). doi: 10.1364/OE.25.004831

    CrossRef Google Scholar

    [27] Masoudi A, Newson TP. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution. Opt Lett 42, 290–293 (2017). doi: 10.1364/OL.42.000290

    CrossRef Google Scholar

    [28] Chen MM, Masoudi A, Brambilla G. Performance analysis of distributed optical fiber acoustic sensors based on φ-OTDR. Opt Express 27, 9684–9695 (2019). doi: 10.1364/OE.27.009684

    CrossRef Google Scholar

    [29] Zhong Z, Wang F, Zong M, Zhang YX, Zhang XP. Dynamic measurement based on the linear characteristic of phase change in Φ-OTDR. IEEE Photonics Technol Lett 31, 1191–1194 (2019). doi: 10.1109/LPT.2019.2921608

    CrossRef Google Scholar

    [30] Qian H, Luo B, He HJ, Zhang XP, Zou XH et al. Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection. IEEE Photonics Technol Lett 32, 473–476 (2020). doi: 10.1109/LPT.2020.2979030

    CrossRef Google Scholar

    [31] Shi Y, Chen GF, Wang YY, Zhao L, Fan Z. Dynamic phase demodulation algorithm for phase-sensitive OTDR with direct detection. IEEE Access 8, 77511–77517 (2020). doi: 10.1109/ACCESS.2020.2990133

    CrossRef Google Scholar

    [32] Fang GS, Xu TW, Feng SW, Li F. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm. J Lightwave Technol 33, 2811–2816 (2015). doi: 10.1109/JLT.2015.2414416

    CrossRef Google Scholar

    [33] Shang Y, Yang YH, Wang C, Liu XH, Wang C et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering. Measurement 79, 222–227 (2016). doi: 10.1016/j.measurement.2015.09.042

    CrossRef Google Scholar

    [34] Muanenda Y, Faralli S, Oton CJ, Di Pasquale F. Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection. Opt Express 26, 687–701 (2018). doi: 10.1364/OE.26.000687

    CrossRef Google Scholar

    [35] Soto MA, Lu X, Martins HF, Gonzalez-Herraez M, Thévenaz L. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers. Opt Express 23, 24923–24936 (2015). doi: 10.1364/OE.23.024923

    CrossRef Google Scholar

    [36] Zhou L, Wang F, Wang XC, Pan Y, Sun ZQ et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR. IEEE Photonics Technol Lett 27, 1884–1887 (2015). doi: 10.1109/LPT.2015.2444419

    CrossRef Google Scholar

    [37] Pastor-Graells J, Martins HF, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121–13133 (2016). doi: 10.1364/OE.24.013121

    CrossRef Google Scholar

    [38] Zhou J, Pan ZQ, Ye Q, Cai HW, Qu RH et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source. J Lightwave Technol 31, 2947–2954 (2013). doi: 10.1109/JLT.2013.2275179

    CrossRef Google Scholar

    [39] Wu Y, Wang ZN, Xiong J, Jiang JL, Lin ST et al. Interference fading elimination with single rectangular pulse in Φ-OTDR. J Lightwave Technol 37, 3381–3387 (2019). doi: 10.1109/JLT.2019.2916682

    CrossRef Google Scholar

    [40] Zabihi M, Chen YS, Zhou T, Liu JX, Shan YY et al. Continuous fading suppression method for Φ-OTDR systems using optimum tracking over multiple probe frequencies. J Lightwave Technol 37, 3602–3610 (2019). doi: 10.1109/JLT.2019.2918353

    CrossRef Google Scholar

    [41] He HJ, Shao LY, Luo B, Li ZL, Zou XH et al. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing. Opt Express 24, 4842–4855 (2016). doi: 10.1364/OE.24.004842

    CrossRef Google Scholar

    [42] Zhang YX, Xia L, Cao CQ, Sun ZH, Li YT et al. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response. Opt Commun 382, 176–181 (2017). doi: 10.1016/j.optcom.2016.07.033

    CrossRef Google Scholar

    [43] Shan YY, Dong JY, Zeng J, Fu SY, Cai YS et al. A broadband distributed vibration sensing system assisted by a distributed feedback interferometer. IEEE Photonics J 10, 6800910 (2018).

    Google Scholar

    [44] Ma PF, Sun ZS, Liu K, Jiang JF, Wang S et al. Distributed fiber optic vibration sensing with wide dynamic range, high frequency response, and multi-points accurate location. Opt Laser Technol 124, 105966 (2020). doi: 10.1016/j.optlastec.2019.105966

    CrossRef Google Scholar

    [45] Wang ZY, Pan ZQ, Fang ZJ, Ye Q, Lu B et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Opt Lett 40, 5192–5195 (2015). doi: 10.1364/OL.40.005192

    CrossRef Google Scholar

    [46] Iida D, Toge K, Manabe T. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR. Opt Fiber Technol 36, 19–25 (2017). doi: 10.1016/j.yofte.2017.02.005

    CrossRef Google Scholar

    [47] Yang GY, Fan XY, Liu QW, He ZY. Frequency response enhancement of direct-detection phase-sensitive OTDR by using frequency division multiplexing. J Lightwave Technol 36, 1197–1203 (2018). doi: 10.1109/JLT.2017.2767086

    CrossRef Google Scholar

    [48] Zhong X, Zhang CX, Li LJ, Liang S, Li Q et al. Influences of laser source on phase-sensitivity optical time-domain reflectometer-based distributed intrusion sensor. Appl Opt 53, 4645–4650 (2014). doi: 10.1364/AO.53.004645

    CrossRef Google Scholar

    [49] Zhu F, Zhang XP, Xia L, Guo Z, Zhang YX. Active compensation method for light source frequency drifting in Φ-OTDR sensing system. IEEE Photonics Technol Lett 27, 2523–2526 (2015). doi: 10.1109/LPT.2015.2468075

    CrossRef Google Scholar

    [50] Xue NT, Fu Y, Lu CY, Xiong J, Yang L et al. Characterization and compensation of phase offset in Φ-OTDR with heterodyne detection. J Lightwave Technol 36, 5481–5487 (2018). doi: 10.1109/JLT.2018.2875086

    CrossRef Google Scholar

    [51] Yuan Q, Wang F, Liu T, Liu Y, Zhang YX et al. Compensating for influence of laser-frequency-drift in phase-sensitive OTDR with twice differential method. Opt Express 27, 3664–3671 (2019). doi: 10.1364/OE.27.003664

    CrossRef Google Scholar

    [52] Yuan Q, Wang F, Liu T, Zhang YX, Zhang XP. Using an auxiliary mach–zehnder interferometer to compensate for the influence of laser-frequency-drift in Φ-OTDR. IEEE Photonics J 11, 7100209 (2019).

    Google Scholar

    [53] Wang D, Zou J, Wang Y, Jin BQ, Bai Q et al. Distributed optical fiber low-frequency vibration detecting using cross-correlation spectrum analysis. J Lightwave Technol 38, 6664–6670 (2020). doi: 10.1109/JLT.2020.3016117

    CrossRef Google Scholar

    [54] Wang ZN, Li J, Fan MQ, Zhang L, Peng F et al. Phase-sensitive optical time-domain reflectometry with Brillouin amplification. Opt Lett 39, 4313–4316 (2014). doi: 10.1364/OL.39.004313

    CrossRef Google Scholar

    [55] He HJ, Luo B, Zou XH, Pan W, Yan LS. Enhanced phase-sensitive OTDR system with pulse width modulation Brillouin amplification. Opt Express 26, 23714–23727 (2018). doi: 10.1364/OE.26.023714

    CrossRef Google Scholar

    [56] Martins HF, Martin-Lopez S, Corredera P, Ania-Castañon JD, Frazão O et al. Distributed vibration sensing Over 125 km with enhanced SNR using Phi-OTDR over a URFL cavity. J Lightwave Technol 33, 2628–2632 (2015). doi: 10.1109/JLT.2015.2396359

    CrossRef Google Scholar

    [57] Peng F, Wu H, Jia XH, Rao YJ, Wang ZN et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt Express 22, 13804–13810 (2014). doi: 10.1364/OE.22.013804

    CrossRef Google Scholar

    [58] Muanenda Y, Oton CJ, Faralli S, Di Pasquale F. A cost-effective distributed acoustic sensor using a commercial off-the-shelf DFB laser and direct detection phase-OTDR. IEEE Photonics J 8, 6800210 (2016).

    Google Scholar

    [59] Dorize C, Awwad E. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes. Opt Express 26, 12878–12890 (2018). doi: 10.1364/OE.26.012878

    CrossRef Google Scholar

    [60] Liao RL, Tang M, Zhao C, Wu H, Fu SN et al. Harnessing oversampling in correlation-coded OTDR. Opt Express 27, 1693–1705 (2019). doi: 10.1364/OE.27.001693

    CrossRef Google Scholar

    [61] Zhou DP, Peng W, Chen L, Bao XY. Computational distributed fiber-optic sensing. Opt Express 27, 17069–17079 (2019). doi: 10.1364/OE.27.017069

    CrossRef Google Scholar

    [62] Wang ZN, Zhang B, Xiong J, Fu Y, Lin ST et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR. IEEE Internet Things J 6, 6117–6124 (2019). doi: 10.1109/JIOT.2018.2869474

    CrossRef Google Scholar

    [63] Lu B, Pan ZQ, Wang ZY, Zheng HR, Ye Q et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse. Opt Lett 42, 391–394 (2017). doi: 10.1364/OL.42.000391

    CrossRef Google Scholar

    [64] Zhang JD, Wu HT, Zheng H, Huang JS, Yin G et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification. J Lightwave Technol 37, 4748–4754 (2019). doi: 10.1109/JLT.2019.2919671

    CrossRef Google Scholar

    [65] Zhu F, Zhang YX, Xia L, Wu XL, Zhang XP. Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber bragg grating array. J Lightwave Technol 33, 4775–4780 (2015). doi: 10.1109/JLT.2015.2477243

    CrossRef Google Scholar

    [66] Wang F, Liu Y, Wei T, Zhang YX, Ji WB et al. Polarization fading elimination for ultra-weak FBG array-based Φ-OTDR using a composite double probe pulse approach. Opt Express 27, 20468–20478 (2019). doi: 10.1364/OE.27.020468

    CrossRef Google Scholar

    [67] Cedilnik G, Lees G, Schmidt PE, Herstrom S, Geisler T. Pushing the reach of fiber distributed acoustic sensing to 125 km without the use of amplification. IEEE Sens Lett 3, 5000204 (2019).

    Google Scholar

    [68] Qin ZG, Chen L, Bao XY. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technol Lett 24, 542–544 (2012). doi: 10.1109/LPT.2011.2182643

    CrossRef Google Scholar

    [69] Hui XN, Zheng SL, Zhou JH, Chi H, Jin XF et al. Hilbert–huang transform time-frequency analysis in Φ-OTDR distributed sensor. IEEE Photonics Technol Lett 26, 2403–2406 (2014). doi: 10.1109/LPT.2014.2358262

    CrossRef Google Scholar

    [70] Qin ZG, Chen H, Chang J. Signal-to-noise ratio enhancement based on empirical mode decomposition in phase-sensitive optical time domain reflectometry systems. Sensors 17, 1870 (2017). doi: 10.3390/s17081870

    CrossRef Google Scholar

    [71] Zhu T, Xiao XH, He Q, Diao DM. Enhancement of SNR and spatial resolution in Φ-OTDR system by using two-dimensional edge detection method. J Lightwave Technol 31, 2851–2856 (2013). doi: 10.1109/JLT.2013.2273553

    CrossRef Google Scholar

    [72] He HJ, Shao LY, Li HC, Pan W, Luo B et al. SNR enhancement in phase-sensitive OTDR with adaptive 2-D bilateral filtering algorithm. IEEE Photonics J 9, 6802610 (2017).

    Google Scholar

    [73] Papp A, Wiesmeyr C, Litzenberger M, Garn H, Kropatsch W. A real-time algorithm for train position monitoring using optical time-domain reflectometry. In IEEE International Conference on Intelligent Rail Transportation (ICIRT) 83–93 (IEEE, 2016); http://doi.org/10.1109/icirt.2016.7588715.

    Google Scholar

    [74] Cao C, Fan XY, Liu QW, He ZY. Practical pattern recognition system for distributed optical fiber intrusion monitoring system based on phase-sensitive coherent OTDR. In Asia Communications and Photonics Conference 2015 ASu2A. 145 (OSA, 2015); http://doi.org/10.1364/ACPC.2015.ASu2A.145.

    Google Scholar

    [75] Wang BJ, Pi SH, Sun Q, Jia B. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems. Opt Eng 54, 055104 (2015). doi: 10.1117/1.OE.54.5.055104

    CrossRef Google Scholar

    [76] Wu HJ, Xiao SK, Li XY, Wang ZN, Xu JW et al. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). J Lightwave Technol 33, 3156–3162 (2015). doi: 10.1109/JLT.2015.2421953

    CrossRef Google Scholar

    [77] Aktas M, Akgun T, Demircin MU, Buyukaydin D. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. Proc SPIE 10208, 102080G (2017). doi: 10.1117/12.2262108

    CrossRef Google Scholar

    [78] Che Q, Wen HQ, Li XY, Peng ZQ, Chen KP. Partial discharge recognition based on optical fiber distributed acoustic sensing and a convolutional neural network. IEEE Access 7, 101758–101764 (2019). doi: 10.1109/ACCESS.2019.2931040

    CrossRef Google Scholar

    [79] Wen HQ, Peng ZQ, Jian JN, Wang MH, Liu H et al. Artificial intelligent pattern recognition for optical fiber distributed acoustic sensing systems based on phase-OTDR. In 2018 Asia Communications and Photonics Conference 1–4 (IEEE, 2018); http://doi.org/10.1109/ACP.2018.8595809.

    Google Scholar

    [80] Mestayer J, Cox B, Wills P, Kiyashchenko D, Lopez J et al. Field trials of distributed acoustic sensing for geophysical monitoring. In SEG Technical Program Expanded Abstracts 2011 4253–4257 (Society of Exploration Geophysicists, 2011); http://doi.org/10.1190/1.3628095.

    Google Scholar

    [81] Molenaar MMM, Hill DJJ, Webster P, Fidan E, Birch B. First downhole application of distributed acoustic sensing for hydraulic-fracturing monitoring and diagnostics. SPE Drill Compl 27, 32–38 (2011). doi: 10.2118/140561-Pa

    CrossRef Google Scholar

    [82] Molenaar MM, Fidan E, Hill DJ. Real-time downhole monitoring of hydraulic fracturing treatments using fibre optic distributed temperature and acoustic sensing. In SPE/EAGE European Unconventional Resources Conference and Exhibition (Society of Exploration Geophysicists, 2012); http://doi.org/10.2118/152981-MS.

    Google Scholar

    [83] Mateeva A, Mestayer J, Cox B, Kiyashchenko D, Wills P et al. Advances in Distributed Acoustic Sensing (DAS) for VSP. In SEG Technical Program Expanded Abstracts 2012 1–5 (Society of Exploration Geophysicists, 2012); http://doi.org/10.1190/segam2012-0739.1.

    Google Scholar

    [84] Daley TM, Freifeld BM, Ajo-Franklin J, Dou S, Pevzner R et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Leading Edge 32, 699–706 (2013). doi: 10.1190/tle32060699.1

    CrossRef Google Scholar

    [85] Molenaar MM, Cox BE. Field cases of hydraulic fracture stimulation diagnostics using fiber optic Distributed Acoustic Sensing (DAS) measurements and analyses. In SPE Unconventional Gas Conference and Exhibition (Society of Petroleum Engineers, 2013); http://doi.org/10.2118/164030-MS.

    Google Scholar

    [86] Finfer DC, Mahue V, Shatalin SV, Parker TR, Farhadiroushan M. Borehole flow monitoring using a non-intrusive passive Distributed Acoustic Sensing (DAS). In SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2014); http://doi.org/10.2118/170844-MS.

    Google Scholar

    [87] Hartog A, Frignet B, Mackie D, Clark M. Vertical seismic optical profiling on wireline logging cable. Geophys Prospect 62, 693–701 (2014). doi: 10.1111/1365-2478.12141

    CrossRef Google Scholar

    [88] Parker T, Shatalin S, Farhadiroushan M. Distributed Acoustic Sensing – a new tool for seismic applications. First Break 32, 61–69 (2014). doi: 10.3997/1365-2397.2013034

    CrossRef Google Scholar

    [89] Yu G, Cai ZD, Chen YZ, Wang XM, Zhang QH et al. Walkaway VSP using multimode optical fibers in a hybrid wireline. Leading Edge 35, 615–619 (2016). doi: 10.1190/tle35070615.1

    CrossRef Google Scholar

    [90] Hornman K, Kuvshinov B, Zwartjes P, Franzen A. Field trial of a broadside-sensitive distributed acoustic sensing cable for surface seismic. In 75th EAGE Conference & Exhibition incorporating SPE EUROPEC (European Association of Geoscientists & Engineers, 2013);http://doi.org/10.3997/2214-4609.20130383.

    Google Scholar

    [91] Mateeva A, Lopez J, Potters H, Mestayer J, Cox B et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophys Prospect 62, 679–692 (2014). doi: 10.1111/1365-2478.12116

    CrossRef Google Scholar

    [92] Kuvshinov BN. Interaction of helically wound fibre-optic cables with plane seismic waves. Geophys Prospect 64, 671–688 (2016). doi: 10.1111/1365-2478.12303

    CrossRef Google Scholar

    [93] Hornman JC. Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables. Geophys Prospect 65, 35–46 (2017). doi: 10.1111/1365-2478.12358

    CrossRef Google Scholar

    [94] Ning ILC, Sava P. Multicomponent distributed acoustic sensing: concept and theory. Geophysics 83, P1–P8 (2018). doi: 10.1190/geo2018-0625-tiogeo.1

    CrossRef Google Scholar

    [95] Ning ILC, Sava P. High-resolution multi-component distributed acoustic sensing. Geophys Prospect 66, 1111–1122 (2018). doi: 10.1111/1365-2478.12634

    CrossRef Google Scholar

    [96] Dou S, Lindsey N, Wagner AM, Daley TM, Freifeld B et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci Rep 7, 11620 (2017). doi: 10.1038/s41598-017-11986-4

    CrossRef Google Scholar

    [97] Zeng XF, Lancelle C, Thurber C, Fratta D, Wang H et al. Properties of noise cross‐correlation functions obtained from a distributed acoustic sensing array at garner valley, California. Bull Seismol Soc Amer 107, 603–610 (2017). doi: 10.1785/0120160168

    CrossRef Google Scholar

    [98] Jousset P, Reinsch T, Ryberg T, Blanck H, Clarke A et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun 9, 2509 (2018). doi: 10.1038/s41467-018-04860-y

    CrossRef Google Scholar

    [99] Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci Rep 9, 1328 (2019). doi: 10.1038/s41598-018-36675-8

    CrossRef Google Scholar

    [100] Lindsey NJ, Dawe TC, Ajo-Franklin JB. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing. Science 366, 1103–1107 (2019). doi: 10.1126/science.aay5881

    CrossRef Google Scholar

    [101] Williams EF, Fernández-Ruiz MR, Magalhaes R, Vanthillo R, Zhan ZW et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat Commun 10, 5778 (2019). doi: 10.1038/s41467-019-13262-7

    CrossRef Google Scholar

    [102] Tejedor J, Martins HF, Piote D, Macias-Guarasa J, Pastor-Graells J et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. J Lightwave Technol 34, 4445–4453 (2016). doi: 10.1109/JLT.2016.2542981

    CrossRef Google Scholar

    [103] Tejedor J, Macias-Guarasa J, Martins HF, Piote D, Pastor-Graells J et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats. Sensors 17, 355 (2017). doi: 10.3390/s17020355

    CrossRef Google Scholar

    [104] Jiang F, Li HL, Zhang ZH, Zhang YX, Zhang XP. Localization and discrimination of the perturbation signals in fiber distributed acoustic sensing systems using spatial average kurtosis. Sensors 18, 2839 (2018). doi: 10.3390/s18092839

    CrossRef Google Scholar

    [105] Tejedor J, Macias-Guarasa J, Martins H F, Pastor-Graells J, Martín-López S et al. Real field deployment of a smart fiber-optic surveillance system for pipeline integrity threat detection: architectural issues and blind field test results. J Lightwave Technol 36, 1052–1062 (2018). doi: 10.1109/JLT.2017.2780126

    CrossRef Google Scholar

    [106] Bai Y, Xing JC, Xie F, Liu SJ, Li JX. Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning. Opt Fiber Technol 53, 102060 (2019). doi: 10.1016/j.yofte.2019.102060

    CrossRef Google Scholar

    [107] Tejedor J, Macias-Guarasa J, Martins HF, Martin-Lopez S, Gonzalez-Herraez M. A contextual GMM-HMM smart fiber optic surveillance system for pipeline integrity threat detection. J Lightwave Technol 37, 4514–4522 (2019). doi: 10.1109/JLT.2019.2908816

    CrossRef Google Scholar

    [108] Wang ZY, Zheng HR, Li LC, Liang JJ, Wang X et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network. Opt Express 27, 23682–23692 (2019). doi: 10.1364/OE.27.023682

    CrossRef Google Scholar

    [109] Jia HZ, Lou SQ, Liang S, Sheng XZ. Event identification by F-ELM model for Φ -OTDR fiber-optic distributed disturbance sensor. IEEE Sens J 20, 1297–1305 (2020). doi: 10.1109/JSEN.2019.2946289

    CrossRef Google Scholar

    [110] Li ZQ, Zhang JW, Wang MN, Chai JC, Wu Y et al. An anti-noise ϕ-OTDR based distributed acoustic sensing system for high-speed railway intrusion detection. Laser Phys 30, 085103 (2020). doi: 10.1088/1555-6611/ab9119

    CrossRef Google Scholar

    [111] Li ZQ, Zhang JW, Wang MN, Zhong YZ, Peng F. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Opt Express 28, 2925–2938 (2020). doi: 10.1364/OE.28.002925

    CrossRef Google Scholar

    [112] Xin LP, Li ZY, Gui X, Fu XL, Fan ML et al. Surface intrusion event identification for subway tunnels using ultra-weak FBG array based fiber sensing. Opt Express 28, 6794–6805 (2020). doi: 10.1364/OE.387317

    CrossRef Google Scholar

    [113] Peng F, Duan N, Rao YJ, Li J. Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol Lett 26, 2055–2057 (2014). doi: 10.1109/LPT.2014.2346760

    CrossRef Google Scholar

    [114] Wang ZY, Pan ZQ, Ye Q, Lu B, Fang ZJ et al. Novel distributed passive vehicle tracking technology using phase sensitive optical time domain reflectometer. Chin Opt Lett 13, 100603 (2015). doi: 10.3788/COL201513.100603

    CrossRef Google Scholar

    [115] Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS. In 26th International Conference on Optical Fiber Sensors ThE35 (SPIE, 2018);http://doi.org/10.1364/OFS.2018.ThE35.

    Google Scholar

    [116] Huang MF, Salemi M, Chen YH, Zhao JN, Xia TJ et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J Lightwave Technol 38, 75–81 (2020). doi: 10.1109/JLT.2019.2935422

    CrossRef Google Scholar

    [117] Kowarik S, Hussels MT, Chruscicki S, Münzenberger S, Lämmerhirt A et al. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis. Sensors 20, 450 (2020). doi: 10.3390/s20020450

    CrossRef Google Scholar

    [118] Wiesmeyr C, Litzenberger M, Waser M, Papp A, Garn H et al. Real-time train tracking from distributed acoustic sensing data. Appl Sci 10, 448 (2020). doi: 10.3390/app10020448

    CrossRef Google Scholar

    [119] Rohwetter P, Eisermann R, Krebber K. Distributed acoustic sensing: towards partial discharge monitoring. Proc SPIE 9634, 96341C (2015). doi: 10.1117/12.2194850

    CrossRef Google Scholar

    [120] Pan WX, Zhao K, Xie C, Li XR, Chen J et al. Distributed online monitoring method and application of cable partial discharge based on φ-OTDR. IEEE Access 7, 144444–144450 (2019). doi: 10.1109/ACCESS.2019.2944570

    CrossRef Google Scholar

    [121] Chen Z, Zhang L, Liu HH, Peng P, Liu ZC et al. 3D printing technique-improved phase-sensitive OTDR for breakdown discharge detection of gas-insulated switchgear. Sensors 20, 1045 (2020). doi: 10.3390/s20041045

    CrossRef Google Scholar

    [122] Choi KN, Taylor HF. Spectrally stable Er-fiber laser for application in phase-sensitive optical time-domain reflectometry. IEEE Photonics Technol Lett 15, 386–388 (2003). doi: 10.1109/LPT.2003.807905

    CrossRef Google Scholar

    [123] Rao YJ, Luo J, Ran ZL, Yue JF, Luo XD et al. Long-distance fiber-optic φ-OTDR intrusion sensing system. Proc SPIE 7503, 75031O (2009). doi: 10.1117/12.835324

    CrossRef Google Scholar

    [124] Martins HF, Martin-Lopez S, Filograno ML, Corredera P, Frazão O et al. Comparison of the use of first and second-order Raman amplification to assist a phase-sensitive optical time domain reflectometer in distributed vibration sensing over 125 km. Proc SPIE 9157, 91576K (2014). doi: 10.1117/12.2059483

    CrossRef Google Scholar

    [125] Wang ZN, Zeng JJ, Li J, Fan MQ, Wu H et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Opt Lett 39, 5866–5869 (2014). doi: 10.1364/OL.39.005866

    CrossRef Google Scholar

    [126] Tian XZ, Dang R, Tan DJ, Liu L, Wang HM. 123 km Φ-OTDR system based on bidirectional erbium-doped fiber amplifier. Proc SPIE 10158, 101580P (2016). doi: 10.1117/12.2246763

    CrossRef Google Scholar

    [127] Sha Z, Feng H, Shi Y, Zhang W, Zeng ZM. Phase-sensitive OTDR with 75-km single-end sensing distance based on RP-EDF amplification. IEEE Photonics Technol Lett 29, 1308–1311 (2017). doi: 10.1109/LPT.2017.2721963

    CrossRef Google Scholar

    [128] Song MP, Zhu WJ, Xia QL, Yin C, Lu Y et al. 151-km single-end phase-sensitive optical time-domain reflectometer assisted by optical repeater. Opt Eng 57, 027104 (2018).

    Google Scholar

    [129] Shi Y, Feng H, Zeng ZM. A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy. Sensors 15, 21957–21970 (2015). doi: 10.3390/s150921957

    CrossRef Google Scholar

    [130] Uyar F, Onat T, Unal C, Kartaloglu T, Ozdur I et al. 94.8 Km-range direct detection fiber optic distributed acoustic sensor. In Conference on Lasers and Electro-Optics AF1K. 7 (OSA, 2019); http://doi.org/10.1364/CLEO_AT.2019.AF1K.7.

    Google Scholar

    [131] Wang X, Lu B, Wang ZY, Zheng HR, Liang JJ et al. Interference-fading-free φ-OTDR based on differential phase shift pulsing technology. IEEE Photonics Technol Lett 31, 39–42 (2019). doi: 10.1109/LPT.2018.2881757

    CrossRef Google Scholar

    [132] Zhang JD, Zheng H, Zhu T, Yin GL, Liu M et al. Long range fading free phase-sensitive reflectometry based on multi-tone NLFM pulse. In 26th International Conference on Optical Fiber Sensors TuC3 (OSA, 2018);http://doi.org/10.1364/OFS.2018.TuC3.

    Google Scholar

    [133] Wu Y, Wang ZN, Xiong J, Jiang JL, Rao YJ. Bipolar-coding Φ-OTDR with interference fading elimination and frequency drift compensation. J Lightwave Technol 38, 6121–6128 (2020). doi: 10.1109/JLT.2020.3003440

    CrossRef Google Scholar

    [134] Alekseev AE, Vdovenko VS, Gorshkov BG, Potapov VT, Simikin DE. Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber. Laser Phys 26, 095101 (2016). doi: 10.1088/1054-660X/26/9/095101

    CrossRef Google Scholar

    [135] Zhang XP, Sun ZH, Shan YY, Li YT, Wang F et al. A high performance distributed optical fiber sensor based on Φ-OTDR for dynamic strain measurement. IEEE Photonics J 9, 6802412 (2017).

    Google Scholar

    [136] Pang FF, He MT, Liu HH, Mei XW, Tao JM et al. A fading-discrimination method for distributed vibration sensor using coherent detection of Φ -OTDR. IEEE Photonics Technol Lett 28, 2752–2755 (2016). doi: 10.1109/LPT.2016.2616023

    CrossRef Google Scholar

    [137] Qin ZG, Zhu T, Chen L, Bao XY. High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR. IEEE Photonics Technol Lett 23, 1091–1093 (2011). doi: 10.1109/LPT.2011.2157337

    CrossRef Google Scholar

    [138] Ren MQ, Lu P, Chen L, Bao XY. Theoretical and experimental analysis of Φ -OTDR based on polarization diversity detection. IEEE Photonics Technol Lett 28, 697–700 (2016). doi: 10.1109/LPT.2015.2504968

    CrossRef Google Scholar

    [139] Alekseev AE, Tezadov YA, Potapov VT. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source. Laser Phys 27, 055101 (2017). doi: 10.1088/1555-6611/aa6378

    CrossRef Google Scholar

    [140] Li J, Zhang ZT, Gan JL, Zhang ZS, Heng XB et al. Influence of laser linewidth on phase-OTDR system based on heterodyne detection. J Lightwave Technol 37, 2641–2647 (2019). doi: 10.1109/JLT.2018.2886461

    CrossRef Google Scholar

    [141] Liang KZ, Pan ZQ, Zhou J, Ye Q, Cai HW et al. Multi-parameter vibration detection system based on phase sensitive optical time domain reflectometer. Chin J Lasers 39, 0805004 (2012). doi: 10.3788/CJL201239.0805004

    CrossRef Google Scholar

    [142] Li Q, Zhang CX, Li LJ, Zhong X. Localization mechanisms and location methods of the disturbance sensor based on phase-sensitive OTDR. Optik 125, 2099–2103 (2014). doi: 10.1016/j.ijleo.2013.10.036

    CrossRef Google Scholar

    [143] Ölçer I, Öncü A. Adaptive temporal matched filtering for noise suppression in fiber optic distributed acoustic sensing. Sensors 17, 1288 (2017). doi: 10.3390/s17061288

    CrossRef Google Scholar

    [144] Qin ZG, Chen H, Chang J. Detection performance improvement of distributed vibration sensor based on curvelet denoising method. Sensors 17, 1380 (2017). doi: 10.3390/s17061380

    CrossRef Google Scholar

    [145] Zhang XP, Cao L, Shan YY, Li M, Wang F et al. Performance optimization for a phase-sensitive optical time-domain reflectometry based on multiscale matched filtering. Opt Eng 58, 056114 (2019).

    Google Scholar

    [146] Qu S, Chang J, Cong ZH, Chen H, Qin ZG. Data compression and SNR enhancement with compressive sensing method in phase-sensitive OTDR. Opt Commun 433, 97–103 (2019). doi: 10.1016/j.optcom.2018.09.064

    CrossRef Google Scholar

    [147] Zhu T, He Q, Xiao XH, Bao XY. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt Express 21, 2953–2963 (2013). doi: 10.1364/OE.21.002953

    CrossRef Google Scholar

    [148] He Q, Zhu T, Xiao XH, Zhang BM, Diao DM et al. All fiber distributed vibration sensing using modulated time-difference pulses. IEEE Photonics Technol Lett 25, 1955–1957 (2013). doi: 10.1109/LPT.2013.2276124

    CrossRef Google Scholar

    [149] Liang S, Sheng XZ, Lou SQ, Feng Y, Zhang KN. Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification. IEEE Photonics J 8, 6802112 (2016).

    Google Scholar

    [150] He Q, Zhu T, Zhou J, Diao DM, Bao XY. Frequency response enhancement by periodical nonuniform sampling in distributed sensing. IEEE Photonics Technol Lett 27, 2158–2161 (2015). doi: 10.1109/LPT.2015.2455525

    CrossRef Google Scholar

    [151] Ma PF, Liu K, Sun ZS, Jiang JF, Wang S et al. Distributed single fiber optic vibration sensing with high frequency response and multi-points accurate location. Opt Lasers Eng 129, 106060 (2020). doi: 10.1016/j.optlaseng.2020.106060

    CrossRef Google Scholar

    [152] Sun ZS, Liu K, Jiang JF, Ma PF, Wang S et al. Distributed vibration sensing with high frequency response by using WDM based integrated scheme. J Phys D:Appl Phys 53, 155106 (2020). doi: 10.1088/1361-6463/ab6bee

    CrossRef Google Scholar

    [153] Wu MS, Fan XY, Zhang XP, Yan LS, He ZY. Frequency response enhancement of phase-sensitive OTDR for interrogating weak reflector array by using OFDM and vernier effect. J Lightwave Technol 38, 4874–4882 (2020). doi: 10.1109/JLT.2020.2993588

    CrossRef Google Scholar

    [154] Wu H, Zhang J, Sun X, Deng M, Yin G et al. Frequency response enhancement for long-range φ-OTDR system by additive random sampling and nonlinear frequency modulation. Proc SPIE 11048, 110484Q (2019). doi: 10.1117/12.2522938

    CrossRef Google Scholar

    [155] He Q, Liu R, Tan CD, Tang LJ, Shang XJ. The detection of non-Gaussian vibrations with improved spatial resolution and signal-to-noise ratio in distributed sensing. arXiv preprint arXiv: 1901.05846 (2019).

    Google Scholar

    [156] Feng SW, Xu TW, Huang JF, Yang Y, Ma LL et al. Sub-meter spatial resolution phase-sensitive optical time-domain reflectometry system using double interferometers. Appl Sci 8, 1899 (2018). doi: 10.3390/app8101899

    CrossRef Google Scholar

    [157] Lu B, Wang ZY, Zheng HR, Ye Q, Qu RH et al. Pulse compression phase sensitive optical time domain reflectometer with sub-meter resolution. Proc SPIE 10323, 103230O (2017). doi: 10.1117/12.2264980

    CrossRef Google Scholar

    [158] Lu B, Zheng HR, Wang ZY, Ye Q, Wei F et al. High spatial resolution Φ-OTDR with long sensing distance. In 26th International Conference on Optical Fiber Sensors ThE25 (OSA, 2018); http://doi.org/10.1364/OFS.2018.ThE25.

    Google Scholar

    [159] Marcon L, Soto MA, Soriano-Amat M, Costa L, Martins HF et al. Boosting the spatial resolution in chirped pulse ϕ-OTDR using sub-band processing. Proc SPIE 11199, 111991W (2019). doi: 10.1117/12.2539794

    CrossRef Google Scholar

    [160] Cortes C, Vapnik V. Support-vector networks. Mach Learn 20, 273–297 (1995).

    Google Scholar

    [161] Tipping ME. Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1, 211–244 (2001).

    Google Scholar

    [162] Lippmann R. An introduction to computing with neural nets. IEEE ASSP Mag 4, 4–22 (1987). doi: 10.1109/MASSP.1987.1165593

    CrossRef Google Scholar

    [163] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 86, 2278–2324 (1998). doi: 10.1109/5.726791

    CrossRef Google Scholar

    [164] Zhu H, Pan C, Sun XH. Vibration pattern recognition and classification in OTDR based distributed optical-fiber vibration sensing system. Proc SPIE 9062, 906205 (2014). doi: 10.1117/12.2045268

    CrossRef Google Scholar

    [165] Wu HJ, Li XY, Peng ZP, Rao YJ. A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (φ-OTDR). Proc SPIE 9157, 91575O (2014). doi: 10.1117/12.2058503

    CrossRef Google Scholar

    [166] Bi FK, Feng C, Qu HQ, Zheng T, Wang CL. Harmful intrusion detection algorithm of optical fiber pre-warning system based on correlation of orthogonal polarization signals. Photonic Sens 7, 226–233 (2017). doi: 10.1007/s13320-017-0399-z

    CrossRef Google Scholar

    [167] Qu HQ, Ren XC, Li GX, Li YH, Zhang CN. Study on the algorithm of vibration source identification based on the optical fiber vibration pre-warning system. Photonic Sens 5, 180–188 (2015). doi: 10.1007/s13320-015-0245-0

    CrossRef Google Scholar

    [168] Wu H, Li X, Li H, Wu Y, Gong Y et al. An effective signal separation and extraction method using multi-scale wavelet decomposition for phase-sensitive OTDR system. Proc SPIE 8916, 89160Z (2013). doi: 10.1117/12.2035836

    CrossRef Google Scholar

    [169] Li Q, Zhang CX, Li CS. Fiber-optic distributed sensor based on phase-sensitive OTDR and wavelet packet transform for multiple disturbances location. Optik 125, 7235–7238 (2014). doi: 10.1016/j.ijleo.2014.07.128

    CrossRef Google Scholar

    [170] Wu HJ, Qian Y, Zhang W, Tang CH. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring. Photonic Sens 7, 305–310 (2017). doi: 10.1007/s13320-017-0360-1

    CrossRef Google Scholar

    [171] Jiang F, Li HL, Zhang ZH, Zhang XP. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN. Proc SPIE 10618, 1061804 (2018). doi: 10.1117/12.2286220

    CrossRef Google Scholar

    [172] Sun Q, Feng H, Yan XY, Zeng ZM. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction. Sensors 15, 15179–15197 (2015). doi: 10.3390/s150715179

    CrossRef Google Scholar

    [173] Xu CJ, Guan JJ, Bao M, Lu JG, Ye W. Pattern recognition based on enhanced multifeature parameters for vibration events in φ‐OTDR distributed optical fiber sensing system. Microw Opt Technol Lett 59, 3134–3141 (2017). doi: 10.1002/mop.30886

    CrossRef Google Scholar

    [174] Marie TFB, Han DZ, An BW, Li JY. A research on fiber-optic vibration pattern recognition based on time-frequency characteristics. Adv Mech Eng , 10 (2018). doi: 10.1177/1687814018813468

    CrossRef Google Scholar

    [175] Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightwave Technol 27, 1142–1146 (2009). doi: 10.1109/JLT.2008.928957

    CrossRef Google Scholar

    [176] Garcia-Ruiz A, Pastor-Graells J, Martins HF, Tow KH, Thévenaz L et al. Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances. Opt Express 25, 1789–1805 (2017). doi: 10.1364/OE.25.001789

    CrossRef Google Scholar

    [177] Garcia-Ruiz A, Morana A, Costa L, Martins HF, Martin-Lopez S et al. Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry. Opt Lett 44, 5286–5289 (2019). doi: 10.1364/OL.44.005286

    CrossRef Google Scholar

    [178] Liang JJ, Wang ZY, Lu B, Wang X, Li LC et al. Distributed acoustic sensing for 2D and 3D acoustic source localization. Opt Lett 44, 1690–1693 (2019). doi: 10.1364/OL.44.001690

    CrossRef Google Scholar

    [179] Magalhães R, Garcia-Ruiz A, Martins HF, Pereira J, Margulis W et al. Fiber-based distributed bolometry. Opt Express 27, 4317–4328 (2019). doi: 10.1364/OE.27.004317

    CrossRef Google Scholar

    [180] Mikhailov S, Zhang L, Geernaert T, Berghmans F, Thévenaz L. Distributed hydrostatic pressure measurement using phase-OTDR in a highly birefringent photonic crystal fiber. J Lightwave Technol 37, 4496–4500 (2019). doi: 10.1109/JLT.2019.2904756

    CrossRef Google Scholar

    [181] Szostkiewicz Ł, Soto MA, Yang ZS, Dominguez-Lopez A, Parola I et al. High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers. Opt Express 27, 20763–20773 (2019). doi: 10.1364/OE.27.020763

    CrossRef Google Scholar

    [182] Ashry I, Mao Y, Al-Fehaid Y, Al-Shawaf A, Al-Bagshi M et al. Early detection of red palm weevil using distributed optical sensor. Sci Rep 10, 3155 (2020). doi: 10.1038/s41598-020-60171-7

    CrossRef Google Scholar

    [183] Magalhães R, Costa L, Martin-Lopez S, Gonzalez-Herraez M, Braña AF et al. Long-range distributed solar irradiance sensing using optical fibers. Sensors 20, 908 (2020). doi: 10.3390/s20030908

    CrossRef Google Scholar

    [184] Liu T, Li H, He T, Fan C, Yan Z et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electron Adv 4, 200037 (2021).

    Google Scholar

    [185] Li M, Wang H, Tao G. Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool. Open Pet Eng J 8, 272–281 (2015). doi: 10.2174/1874834101508010272

    CrossRef Google Scholar

    [186] Li ZF, Zhan ZW. Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the Brady geothermal field. Geophys J Int 215, 1583–1593 (2018). doi: 10.1093/gji/ggy359

    CrossRef Google Scholar

    [187] Curtis A, Gerstoft P, Sato H, Snieder R, Wapenaar K. Seismic interferometry—turning noise into signal. Leading Edge 25, 1082–1092 (2006). doi: 10.1190/1.2349814

    CrossRef Google Scholar

    [188] Owen A, Duckworth G, Worsley J. OptaSense: fibre optic distributed acoustic sensing for border monitoring. In 2012 European Intelligence and Security Informatics Conference 362-364 (IEEE, 2012); http://doi.org/10.1109/eisic.2012.59.

    Google Scholar

    [189] Duckworth GL, Ku EM. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism. Proc SPIE 8711, 87110G (2013). doi: 10.1117/12.2017712

    CrossRef Google Scholar

    [190] Hill D. Distributed Acoustic Sensing (DAS): theory and applications. In Frontiers in Optics 2015 FTh4E. 1 (OSA, 2016); http://doi.org/10.1364/FIO.2015.FTh4E.1.

    Google Scholar

    [191] Shao LY, Liu SQ, Bandyopadhyay S, Yu FH, Xu WJ et al. Data-driven distributed optical vibration sensors: a review. IEEE Sens J 20, 6224–6239 (2020). doi: 10.1109/JSEN.2019.2939486

    CrossRef Google Scholar

    [192] Wu HJ, Chen JP, Liu XR, Xiao Y, Wang MJ et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J Lightwave Technol 37, 4359–4366 (2019). doi: 10.1109/JLT.2019.2923839

    CrossRef Google Scholar

    [193] Zheng JD, Cheng JS, Yang Y. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy. Mech Mach Theory 70, 441–453 (2013). doi: 10.1016/j.mechmachtheory.2013.08.014

    CrossRef Google Scholar

    [194] Aziz W, Arif M. Multiscale permutation entropy of physiological time series. In 2005 Pakistan Section Multitopic Conference 1–6 (IEEE, 2005); http://doi.org/10.1109/INMIC.2005.334494.

    Google Scholar

    [195] Chen YP, Li JN, Xiao HX, Jin XJ, Yan SC et al. Dual path networks. In Proceedings of the 31st Conference on Neural Information Processing Systems 4470–4478 (ACM, 2017); http://doi.org/10.5555/3294996.3295200

    Google Scholar

    [196] Wang ZY, Lu B, Zheng HR, Ye Q, Pan ZQ et al. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR. Proc SPIE 10323, 103237G (2017). doi: 10.1117/12.2265169

    CrossRef Google Scholar

    [197] Güemes A, Fernández-López A, Díaz-Maroto PF, Lozano A, Sierra-Perez J. Structural health monitoring in composite structures by fiber-optic sensors. Sensors 18, 1094 (2018). doi: 10.3390/s18041094

    CrossRef Google Scholar

    [198] Dukanac D. Application of UHF method for partial discharge source location in power transformers. IEEE Trans Dielectr Electr Insul 25, 2266–2278 (2018). doi: 10.1109/TDEI.2018.006996

    CrossRef Google Scholar

    [199] Rodrigo Mor A, Castro Heredia LC, Muñoz FA. A novel approach for partial discharge measurements on GIS using HFCT sensors. Sensors 18, 4482 (2018).

    Google Scholar

    [200] Sheng BJ, Zhou CK, Hepburn DM, Dong X, Peers G et al. Partial discharge pulse propagation in power cable and partial discharge monitoring system. IEEE Trans Dielectr Electr Insul 21, 948–956 (2014). doi: 10.1109/TDEI.2014.6832236

    CrossRef Google Scholar

    [201] Pan WX, Liu MY, Zhao K, Zhang YB, Liu TC. A practical short-circuit current calculation method for DFIG-based wind farm considering voltage distribution. IEEE Access 7, 31774–31781 (2019). doi: 10.1109/ACCESS.2019.2902848

    CrossRef Google Scholar

    [202] Rohwetter P, Eisermann R, Krebber K. Random quadrature demodulation for direct detection single-pulse rayleigh C-OTDR. J Lightwave Technol 34, 4437–4444 (2016). doi: 10.1109/JLT.2016.2557586

    CrossRef Google Scholar

    [203] Pouet B, Breugnot S, Clémenceau P. Robust laser‐ultrasonic interferometer based on random quadrature demodulation. AIP Conf Proc 820, 233–239 (2006). doi: 10.1063/1.2184534

    CrossRef Google Scholar

    [204] Zhao Z, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3 3, 190024 (2020).

    Google Scholar

    [205] Swart PL, Chtcherbakov AA, Joubert WL, Shlyagin MG. Study of the pressure dependence of hydrogen diffusion in optical fiber by an interferometric technique. Opt Commun 217, 189–196 (2003). doi: 10.1016/S0030-4018(03)01107-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(5)

Article Metrics

Article views(25716) PDF downloads(3051) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint