Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052 (2022). doi: 10.29026/oea.2022.210052
Citation: Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052 (2022). doi: 10.29026/oea.2022.210052

Original Article Open Access

Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics

More Information
  • We present a novel approach for tailoring the laser induced surface topography upon femtosecond (fs) pulsed laser irradiation. The method employs spatially controlled double fs laser pulses to actively regulate the hydrodynamic microfluidic motion of the melted layer that gives rise to the structures formation. The pulse train used, in particular, consists of a previously unexplored spatiotemporal intensity combination including one pulse with Gaussian and another with periodically modulated intensity distribution created by Direct Laser Interference Patterning (DLIP). The interpulse delay is appropriately chosen to reveal the contribution of the microfluidic melt flow, while it is found that the sequence of the Gaussian and DLIP pulses remarkably influences the surface profile attained. Results also demonstrate that both the spatial intensity of the double pulse and the effective number of pulses per irradiation spot can further be modulated to control the formation of complex surface morphologies. The underlying physical processes behind the complex patterns’ generation were interpreted in terms of a multiscale model combining electron excitation with melt hydrodynamics. We believe that this work can constitute a significant step forward towards producing laser induced surface structures on demand by tailoring the melt microfluidic phenomena.
  • 加载中
  • [1] Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [2] Stratakis E, Bonse J, Heitz J, Siegel J, Tsibidis GD et al. Laser engineering of biomimetic surfaces. Mater Sci Eng: R: Rep 141, 100562 (2020). doi: 10.1016/j.mser.2020.100562

    CrossRef Google Scholar

    [3] Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [4] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20, 4049–4054 (2008). doi: 10.1002/adma.200800651

    CrossRef Google Scholar

    [5] Zorba V, Persano L, Pisignano D, Athanassiou A, Stratakis E et al. Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation. Nanotechnology 17, 3234–3238 (2006). doi: 10.1088/0957-4484/17/13/026

    CrossRef Google Scholar

    [6] Diels JC, Rudolph W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on A Femtosecond Time Scale 2nd ed (Academic Press, Amsterdam, 2006).

    Google Scholar

    [7] Papadopoulou EL, Samara A, Barberoglou M, Manousaki A, Pagakis SN et al. Silicon scaffolds promoting three-dimensional neuronal web of cytoplasmic processes. Tissue Eng Part C-Methods 16, 497–502 (2010). doi: 10.1089/ten.tec.2009.0216

    CrossRef Google Scholar

    [8] Cirelli RA, Watson GP, Nalamasu O. Optical lithography. In Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ et al. Encyclopedia of Materials: Science and Technology 6441–6448 (Elsevier, Oxford, 2001); https://doi.org/10.1016/B0-08-043152-6/01138-4.

    Google Scholar

    [9] Smith CLC, Thilsted AH, Garcia-Ortiz CE, Radko IP, Marie R et al. Efficient excitation of channel plasmons in tailored, UV-lithography-defined V-grooves. Nano Lett 14, 1659–1664 (2014). doi: 10.1021/nl5002058

    CrossRef Google Scholar

    [10] Sugioka KJ, Meunier M, Piqué A. Laser precision microfabrication (Springer, Berlin, 2010); http://www.loc.gov/catdir/enhancements/fy1316/2010931868-b.html.

    Google Scholar

    [11] Stratakis E. Nanomaterials by ultrafast laser processing of surfaces. Sci Adv Mater 4, 407–431 (2012). doi: 10.1166/sam.2012.1297

    CrossRef Google Scholar

    [12] Wan ZF, Chen X, Gu M. Laser scribed graphene for supercapacitors. Opto-Electron Adv 4, 200079 (2021). doi: 10.29026/oea.2021.200079

    CrossRef Google Scholar

    [13] Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures-a scientific evergreen. IEEE J Sel Top Quant 23, 9000615 (2017).

    Google Scholar

    [14] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [15] Rudenko A, Colombier JP, Höhm S, Rosenfeld A, Krüger J et al. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci Rep 7, 12306 (2017). doi: 10.1038/s41598-017-12502-4

    CrossRef Google Scholar

    [16] Bonse J, Krüger J, Höhm S, Rosenfeld A. Femtosecond laser-induced periodic surface structures. J Laser Appl 24, 042006 (2012). doi: 10.2351/1.4712658

    CrossRef Google Scholar

    [17] Tsibidis GD, Barberoglou M, Loukakos PA, Stratakis E, Fotakis C. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions. Phys Rev B 86, 115316 (2012). doi: 10.1103/PhysRevB.86.115316

    CrossRef Google Scholar

    [18] Allahyari E, JJ Nivas J, Skoulas E, Bruzzese R, Tsibidis GD et al. On the formation and features of the supra-wavelength grooves generated during femtosecond laser surface structuring of silicon. Appl Surf Sci 528, 146607 (2020). doi: 10.1016/j.apsusc.2020.146607

    CrossRef Google Scholar

    [19] Tsibidis GD, Skoulas E, Papadopoulos A, Stratakis E. Convection roll-driven generation of supra-wavelength periodic surface structures on dielectrics upon irradiation with femtosecond pulsed lasers. Phys Rev B 94, 081305(R) (2016). doi: 10.1103/PhysRevB.94.081305

    CrossRef Google Scholar

    [20] Tsibidis GD, Fotakis C, Stratakis E. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B 92, 041405(R) (2015). doi: 10.1103/PhysRevB.92.041405

    CrossRef Google Scholar

    [21] Nivas JJJ, He ST, Rubano A, Vecchione A, Paparo D et al. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep 5, 17929 (2015). doi: 10.1038/srep17929

    CrossRef Google Scholar

    [22] Papadopoulos A, Skoulas E, Mimidis A, Perrakis G, Kenanakis G et al. Biomimetic omnidirectional antireflective glass via direct ultrafast laser nanostructuring. Adv Mater 31, 1901123 (2019).

    Google Scholar

    [23] Tsibidis GD, Skoulas E, Stratakis E. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett 40, 5172–5175 (2015). doi: 10.1364/OL.40.005172

    CrossRef Google Scholar

    [24] Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017). doi: 10.1038/srep45114

    CrossRef Google Scholar

    [25] Rudenko A, Mauclair C, Garrelie F, Stoian R, Colombier JP. Light absorption by surface nanoholes and nanobumps. Appl Surf Sci 470, 228–233 (2019). doi: 10.1016/j.apsusc.2018.11.111

    CrossRef Google Scholar

    [26] Sipe JE, Young JF, Preston JS, van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141

    CrossRef Google Scholar

    [27] Milles S, Soldera M, Voisiat B, Lasagni AF. Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures. Sci Rep 9, 13944 (2019). doi: 10.1038/s41598-019-49615-x

    CrossRef Google Scholar

    [28] Rosenkranz A, Hans M, Gachot C, Thome A, Bonk S et al. Direct Laser interference patterning: tailoring of contact area for frictional and antibacterial properties. Lubricants 4, 2 (2016). doi: 10.3390/lubricants4010002

    CrossRef Google Scholar

    [29] Alamri S, Aguilar-Morales AI, Lasagni AF. Controlling the wettability of polycarbonate substrates by producing hierarchical structures using Direct Laser Interference Patterning. Eur Polym J 99, 27–37 (2018). doi: 10.1016/j.eurpolymj.2017.12.001

    CrossRef Google Scholar

    [30] Peter A, Lutey AHA, Faas S, Romoli L, Onuseit V et al. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces. Opt Laser Technol 123, 105954 (2020). doi: 10.1016/j.optlastec.2019.105954

    CrossRef Google Scholar

    [31] Alamri S, Fraggelakis F, Kunze T, Krupop B, Mincuzzi G et al. On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation. Materials 12, 1018 (2019). doi: 10.3390/ma12071018

    CrossRef Google Scholar

    [32] Voisiat B, Aguilar-Morales AI, Kunze T, Lasagni AF. Development of an analytical model for optimization of direct laser interference patterning. Materials 13, 200 (2020). doi: 10.3390/ma13010200

    CrossRef Google Scholar

    [33] Müller DW, Fox T, Grützmacher PG, Suarez S, Mücklich F. Applying ultrashort pulsed direct laser interference patterning for functional surfaces. Sci Rep 10, 3647 (2020). doi: 10.1038/s41598-020-60592-4

    CrossRef Google Scholar

    [34] Bieda M, Siebold M, Lasagni AF. Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning. Appl Surf Sci 387, 175–182 (2016). doi: 10.1016/j.apsusc.2016.06.100

    CrossRef Google Scholar

    [35] Fraggelakis F, Tsibidis GD, Stratakis E. Tailoring submicrometer periodic surface structures via ultrashort pulsed direct laser interference patterning. Phys Rev B 103, 054105 (2021). doi: 10.1103/PhysRevB.103.054105

    CrossRef Google Scholar

    [36] Barberoglou M, Tsibidis GD, Gray D, Magoulakis E, Fotakis C et al. The influence of ultra-fast temporal energy regulation on the morphology of Si surfaces through femtosecond double pulse laser irradiation. Appl Phys A 113, 273–283 (2013). doi: 10.1007/s00339-013-7893-y

    CrossRef Google Scholar

    [37] Höhm S, Herzlieb M, Rosenfeld A, Krüger J, Bonse J. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation. Opt Express 23, 61–71 (2015). doi: 10.1364/OE.23.000061

    CrossRef Google Scholar

    [38] Fraggelakis F, Mincuzzi G, Lopez J, Manek-Hönninger I, Kling R. Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl Surf Sci 470, 677–686 (2019). doi: 10.1016/j.apsusc.2018.11.106

    CrossRef Google Scholar

    [39] Pozrikidis C. Introduction to theoretical and computational fluid dynamics (Oxford University Press, New York, 1997); http://www.loc.gov/catdir/enhancements/fy0603/96026420-d.html.

    Google Scholar

    [40] Bulgakova NM, Bourakov IM. Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt. Appl Surf Sci 197-198, 41–44 (2002). doi: 10.1016/S0169-4332(02)00300-8

    CrossRef Google Scholar

    [41] Kelly R, Miotello A. Comments on explosive mechanisms of laser sputtering. Appl Surf Sci 96–98, 205–215 (1996).

    Google Scholar

    [42] Rudenko A, Mauclair C, Garrelie F, Stoian R, Colombier JP. Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nanophotonics 8, 459 (2019). doi: 10.1515/nanoph-2018-0206

    CrossRef Google Scholar

    [43] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910 (2009). doi: 10.1063/1.3261734

    CrossRef Google Scholar

    [44] Tsibidis GD, Stratakis E. Ripple formation on silver after irradiation with radially polarised ultrashort-pulsed lasers. J Appl Phys 121, 163106 (2017). doi: 10.1063/1.4982071

    CrossRef Google Scholar

    [45] Hensel R, Helbig R, Aland S, Voigt A, Neinhuis C et al. Tunable nano-replication to explore the omniphobic characteristics of springtail skin. NPG Asia Mater 5, e37–e37 (2013). doi: 10.1038/am.2012.66

    CrossRef Google Scholar

    [46] Sedao X, Shugaev MV, Wu CP, Douillard T, Esnouf C et al. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 10, 6995–7007 (2016). doi: 10.1021/acsnano.6b02970

    CrossRef Google Scholar

    [47] Fang RR, Vorobyev A, Guo CL. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci Appl 6, e16256 (2017). doi: 10.1038/lsa.2016.256

    CrossRef Google Scholar

    [48] Bonse J, Wiggins SM, Solis J. Phase transitions induced by femtosecond laser pulse irradiation of indium phosphide. Appl Surf Sci 248, 151–156 (2005). doi: 10.1016/j.apsusc.2005.03.018

    CrossRef Google Scholar

    [49] Lin ZB, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77, 075133 (2008). doi: 10.1103/PhysRevB.77.075133

    CrossRef Google Scholar

  • Supplementary information for Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(9617) PDF downloads(698) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint