Kang JQ, Zhu R, Sun YX, Li JN, Wong KKY. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv 5, 200050 (2022). doi: 10.29026/oea.2022.200050
Citation: Kang JQ, Zhu R, Sun YX, Li JN, Wong KKY. Pencil-beam scanning catheter for intracoronary optical coherence tomography. Opto-Electron Adv 5, 200050 (2022). doi: 10.29026/oea.2022.200050

Original Article Open Access

Pencil-beam scanning catheter for intracoronary optical coherence tomography

More Information
  • Current gradient-index (GRIN) lens based proximal-driven intracoronary optical coherence tomography (ICOCT) probes consist of a spacer and a GRIN lens with large gradient constant. This design provides great flexibility to control beam profiles, but the spacer length should be well controlled to obtain desired beam profiles and thus it sets an obstacle in mass catheter fabrication. Besides, although GRIN lens with large gradient constant can provide tight focus spot, it has short depth of focus and fast-expanded beam which leads to poor lateral resolution for deep tissue. In this paper, a type of spacer-removed probe is demonstrated with a small gradient constant GRIN lens. This design simplifies the fabrication process and is suitable for mass production. The output beam of the catheter is a narrow nearly collimated light beam, referred to as pencil beam here. The full width at half maximum beam size varies from 35.1 µm to 75.3 µm in air over 3-mm range. Probe design principles are elaborated with probe/catheter fabrication and performance test. The in vivo imaging of the catheter was verified by a clinical ICOCT system. Those results prove that this novel pencil-beam scanning catheter is potentially a good choice for ICOCT systems.
  • 加载中
  • [1] Drexler W, Fujimoto JG. Optical Coherence Tomography: Technology and Application (Springer, Germany, 2008).

    Google Scholar

    [2] Adler DC, Chen Y, Huber R, Schmitt J, Connolly J et al. Three-dimensional endomicroscopy using optical coherence tomography. Nat Photonics 1, 709–716 (2007). doi: 10.1038/nphoton.2007.228

    CrossRef Google Scholar

    [3] Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002). doi: 10.1161/01.CIR.0000029927.92825.F6

    CrossRef Google Scholar

    [4] Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed Opt Express 8, 1638–1664 (2017). doi: 10.1364/BOE.8.001638

    CrossRef Google Scholar

    [5] Bouma BE, Villiger M, Otsuka K, Oh WY. Intravascular optical coherence tomography [Invited]. Biomed Opt Express 8, 2660–2686 (2017). doi: 10.1364/BOE.8.002660

    CrossRef Google Scholar

    [6] Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY et al. Comprehensive volumetric optical microscopy in vivo. Nat Med 12, 1429–1433 (2006).

    Google Scholar

    [7] Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet 390, 793–809 (2017). doi: 10.1016/S0140-6736(17)31957-8

    CrossRef Google Scholar

    [8] Ali ZA, Galougahi KK, Maehara A, Shlofmitz RA, Ben-Yehuda O et al. Intracoronary optical coherence tomography 2018: current status and future directions. JACC:Cardiovasc Interv 10, 2473–2487 (2017). doi: 10.1016/j.jcin.2017.09.042

    CrossRef Google Scholar

    [9] Räber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J 39, 3281–3300 (2018). doi: 10.1093/eurheartj/ehy285

    CrossRef Google Scholar

    [10] Regar E, van Leeuwen AMGJ, Serruys PW. Optical Coherence Tomography in Cardiovascular Research (Informa Healthcare, London, 2007).

    Google Scholar

    [11] Schuman JS, Puliafito CA, Fujimoto JG, Duker JS. Optical Coherence Tomography of Ocular Diseases 3rd ed (Slack Incorporated, Thorofare, 2012).

    Google Scholar

    [12] Lu CD, Kraus MF, Potsaid B, Liu JJ, Choi W et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express 5, 293–311 (2014). doi: 10.1364/BOE.5.000293

    CrossRef Google Scholar

    [13] Gora MJ, Suter MJ, Tearney GJ, Li XD. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. Biomed Opt Express 8, 2405–2444 (2017). doi: 10.1364/BOE.8.002405

    CrossRef Google Scholar

    [14] Kim TS, Park HS, Jang SJ, Song JW, Cho HS et al. Single cardiac cycle three-dimensional intracoronary optical coherence tomography. Biomed Opt Express 7, 4847–4858 (2016). doi: 10.1364/BOE.7.004847

    CrossRef Google Scholar

    [15] Wang TS, Pfeiffer T, Regar E, Wieser W, van Beusekom H et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomed Opt Express 6, 5021–5032 (2015). doi: 10.1364/BOE.6.005021

    CrossRef Google Scholar

    [16] Li JN, de Groot M, Helderman F, Mo JH, Daniels JMA et al. High speed miniature motorized endoscopic probe for optical frequency domain imaging. Opt Express 20, 24132–24138 (2012). doi: 10.1364/OE.20.024132

    CrossRef Google Scholar

    [17] Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ et al. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett 21, 543–545 (1996). doi: 10.1364/OL.21.000543

    CrossRef Google Scholar

    [18] Swanson E, Petersen CL, McNamara E, Lamport RB, Kelly DL. Ultra-small optical probes, imaging optics, and methods for using same. United States Patent: 6445939, September 3, 2002.

    Google Scholar

    [19] Wang W, Wang GY, Ma J, Cheng LH, Guan BO. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography. Opt Express 27, 358–366 (2019). doi: 10.1364/OE.27.000358

    CrossRef Google Scholar

    [20] Yuan W, Brown R, Mitzner W, Yarmus L, Li XD. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat Commun 8, 1531 (2017). doi: 10.1038/s41467-017-01494-4

    CrossRef Google Scholar

    [21] Diaz-Sandoval LJ, Bouma BE, Tearney GJ, Jang IK. Optical coherence tomography as a tool for percutaneous coronary interventions. Catheter Cardio Interv 65, 492–496 (2005). doi: 10.1002/ccd.20340

    CrossRef Google Scholar

    [22] Qiu Y, Wang Y, Belfield KD, Liu X. Ultrathin lensed fiber-optic probe for optical coherence tomography. Biomed Opt Express 7, 2154–2162 (2016). doi: 10.1364/BOE.7.002154

    CrossRef Google Scholar

    [23] Moon S, Piao ZL, Kim CS, Chen ZP. Lens-free endoscopy probe for optical coherence tomography. Opt Lett 38, 2014–2016 (2013). doi: 10.1364/OL.38.002014

    CrossRef Google Scholar

    [24] Yin BW, Piao ZL, Nishimiya K, Hyun C, Gardecki JA et al. 3D cellular-resolution imaging in arteries using few-mode interferometry. Light:Sci Appl 8, 104 (2019). doi: 10.1038/s41377-019-0211-5

    CrossRef Google Scholar

    [25] Li JW, Thiele S, Quirk BC, Kirk RW, Verjans JW et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light:Sci Appl 9, 124 (2020). doi: 10.1038/s41377-020-00365-w

    CrossRef Google Scholar

    [26] Kim J, Xing JC, Nam HS, Song JW, Kim JW et al. Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter. Opt Lett 42, 379–382 (2017). doi: 10.1364/OL.42.000379

    CrossRef Google Scholar

    [27] Durrani A, Javaid A, Lee S, Ha JY. Optical rotary junction incorporating a hollow shaft DC motor for high-speed catheter-based optical coherence tomography. Opt Lett 45, 487–490 (2020). doi: 10.1364/OL.382773

    CrossRef Google Scholar

    [28] Tearney GJ. Optical biopsy of in vivo tissue using optical coherence tomography (Massachusetts Institute of Technology, Cambridge, 1997).

    Google Scholar

    [29] Reed WA, Yan MF, Schnitzer MJ. Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry. Opt Lett 27, 1794–1796 (2002). doi: 10.1364/OL.27.001794

    CrossRef Google Scholar

    [30] Mao YX, Chang SD, Sherif S, Flueraru C. Graded-index fiber lens proposed for ultrasmall probes used in biomedical imaging. Appl Opt 46, 5887–5894 (2007). doi: 10.1364/AO.46.005887

    CrossRef Google Scholar

    [31] Jung W, Benalcazar WA, Ahmad A, Sharma U, Tu HH et al. Numerical analysis of gradient index lens-based optical coherence tomography imaging probes. J Biomed Opt 15, 066027 (2010). doi: 10.1117/1.3523374

    CrossRef Google Scholar

    [32] Lorenser D, Yang X, Kirk RW, Quirk BC, McLaughlin RA et al. Ultrathin side-viewing needle probe for optical coherence tomography. Opt Lett 36, 3894–3896 (2011). doi: 10.1364/OL.36.003894

    CrossRef Google Scholar

    [33] Lorenser D, Yang X, Sampson DD. Accurate modeling and design of graded-index fiber probes for optical coherence tomography using the beam propagation method. IEEE Photonics J 5, 3900015 (2013). doi: 10.1109/JPHOT.2013.2250939

    CrossRef Google Scholar

    [34] Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997). doi: 10.1126/science.276.5321.2037

    CrossRef Google Scholar

    [35] Wang LV, Wu HI. Biomedical Optics: Principles and Imaging (Wiley-Interscience, Hoboken, 2007).

    Google Scholar

    [36] Lee MW, Kim YH, Xing JC, Yoo HK. Astigmatism-corrected endoscopic imaging probe for optical coherence tomography using soft lithography. Opt Lett 45, 4867–4870 (2020). doi: 10.1364/OL.400383

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(6247) PDF downloads(868) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint