Citation: | Liu B, Yu Y, Chen Z, Han W Q. True random coded photon counting Lidar. Opto-Electron Adv 3, 190044 (2020). doi: 10.29026/oea.2020.190044 |
[1] | McCarthy A, Collins R J, Krichel N J, Fernández V, Wallace A M et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Appl Opt 48, 6241-6251 (2009). doi: 10.1364/AO.48.006241 |
[2] | Albota M A, Heinrichs R M, Kocher D G, Marino R M, Fouche D G et al. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl Opt 41, 7671-7678 (2002). doi: 10.1364/AO.41.007671 |
[3] | Degnan J, Wells D, Machan R, Leventhal E. Second generation airborne 3D imaging lidars based on photon counting. Proc SPIE 6771, 67710N (2007). doi: 10.1117/12.732086 |
[4] | Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping. Remote Sens 8, 958 (2016). doi: 10.3390/rs8110958 |
[5] | Takeuchi N, Sugimoto N, Baba H, Sakurai K. Random modulation CW lidar. Appl Opt 22, 1382-1386 (1983). doi: 10.1364/AO.22.001382 |
[6] | Sun X L, Abshire J B, Krainak M A, Hasselbrack W B. Photon counting pseudorandom noise code laser altimeters. Proc SPIE 6771, 677100 (2007). doi: 10.1117/12.735453 |
[7] | Hiskett P A, Parry C S, McCarthy A, Buller G S. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates. Opt Express 16, 13685-13698 (2008). doi: 10.1364/OE.16.013685 |
[8] | Krichel N J, McCarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances. Opt Express 18, 9192-9206 (2010). doi: 10.1364/OE.18.009192 |
[9] | Rieger P, Ullrich A. A novel range ambiguity resolution technique applying pulse-position modulation in time-of-flight ranging applications. Proc SPIE 8379, 83790R (2012). doi: 10.1117/12.919140 |
[10] | Zhang Y F, He Y, Yang F, Luo Y, Chen W B. Three-dimensional imaging Lidar system based on high speed pseudorandom modulation and photon counting. Chin Opt Lett 14, 111101 (2016). doi: 10.3788/COL201614.111101 |
[11] | Yang F, Zhang X, He Y, Chen W B. High speed pseudorandom Modulation fiber laser ranging system. Chin Opt Lett 12, 082801 (2014). doi: 10.3788/COL201412.082801 |
[12] | Zhang Q, Soon H W, Tian H T, Fernando S, Ha Y J et al. Pseudo-random single photon counting for time-resolved optical measurement. Opt Express 16, 13233-13239 (2008). doi: 10.1364/OE.16.013233 |
[13] | Zhang Q, Chen L, Chen N G. Pseudo-random single photon counting: a high-speed implementation. Biomed Opt Express 1, 41-46 (2010). doi: 10.1364/BOE.1.000041 |
[14] | Zhang F, Du P F, Liu Q, Gong M L, Fu X. Adaptive strategy for CPPM single-photon collision avoidance LIDAR against dynamic crosstalk. Opt Express 25, 12237-12250 (2017). doi: 10.1364/OE.25.012237 |
(a) Pseudo-random sequence and (b) true random sequence.
True random coded photon counting Lidar system.
Normalized auto-correlation function of the true random sequence
Normalized auto-correlation range images with two different echo photons number for the true random coded method and the pseudo-random coded method.
The detection probability statistical results of the true random coded method and the pseudo-random coded method at different mean echo photons number.
Normalized cross-correlation range images for the true random sequence (a) and the sparse pseudo-random sequence (b).
(a) The picture of the model car and (b) three-dimensional scanning imaging of the model car.