Liu B, Yu Y, Chen Z, Han W Q. True random coded photon counting Lidar. Opto-Electron Adv 3, 190044 (2020). doi: 10.29026/oea.2020.190044
Citation: Liu B, Yu Y, Chen Z, Han W Q. True random coded photon counting Lidar. Opto-Electron Adv 3, 190044 (2020). doi: 10.29026/oea.2020.190044

Original Article Open Access

True random coded photon counting Lidar

More Information
  • A true random coded photon counting Lidar system is proposed in this paper, in which a single photon detector acts as the true random sequence signal generator instead of the traditional function generator. Compared with the traditional pseudo-random coded method, the true random coded method not only improves the anti-crosstalk capability of the system, but more importantly, it effectively overcomes the adverse effect of the detector's dead time on the ranging performance. The experiment results show that the ranging performance of the true random coded method is obviously better than that of the pseudo-random coded method. As a result, a three-dimensional scanning imaging of a model car is completed by the true random coded method.
  • 加载中
  • [1] McCarthy A, Collins R J, Krichel N J, Fernández V, Wallace A M et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting. Appl Opt 48, 6241-6251 (2009). doi: 10.1364/AO.48.006241

    CrossRef Google Scholar

    [2] Albota M A, Heinrichs R M, Kocher D G, Marino R M, Fouche D G et al. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Appl Opt 41, 7671-7678 (2002). doi: 10.1364/AO.41.007671

    CrossRef Google Scholar

    [3] Degnan J, Wells D, Machan R, Leventhal E. Second generation airborne 3D imaging lidars based on photon counting. Proc SPIE 6771, 67710N (2007). doi: 10.1117/12.732086

    CrossRef Google Scholar

    [4] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping. Remote Sens 8, 958 (2016). doi: 10.3390/rs8110958

    CrossRef Google Scholar

    [5] Takeuchi N, Sugimoto N, Baba H, Sakurai K. Random modulation CW lidar. Appl Opt 22, 1382-1386 (1983). doi: 10.1364/AO.22.001382

    CrossRef Google Scholar

    [6] Sun X L, Abshire J B, Krainak M A, Hasselbrack W B. Photon counting pseudorandom noise code laser altimeters. Proc SPIE 6771, 677100 (2007). doi: 10.1117/12.735453

    CrossRef Google Scholar

    [7] Hiskett P A, Parry C S, McCarthy A, Buller G S. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates. Opt Express 16, 13685-13698 (2008). doi: 10.1364/OE.16.013685

    CrossRef Google Scholar

    [8] Krichel N J, McCarthy A, Buller G S. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances. Opt Express 18, 9192-9206 (2010). doi: 10.1364/OE.18.009192

    CrossRef Google Scholar

    [9] Rieger P, Ullrich A. A novel range ambiguity resolution technique applying pulse-position modulation in time-of-flight ranging applications. Proc SPIE 8379, 83790R (2012). doi: 10.1117/12.919140

    CrossRef Google Scholar

    [10] Zhang Y F, He Y, Yang F, Luo Y, Chen W B. Three-dimensional imaging Lidar system based on high speed pseudorandom modulation and photon counting. Chin Opt Lett 14, 111101 (2016). doi: 10.3788/COL201614.111101

    CrossRef Google Scholar

    [11] Yang F, Zhang X, He Y, Chen W B. High speed pseudorandom Modulation fiber laser ranging system. Chin Opt Lett 12, 082801 (2014). doi: 10.3788/COL201412.082801

    CrossRef Google Scholar

    [12] Zhang Q, Soon H W, Tian H T, Fernando S, Ha Y J et al. Pseudo-random single photon counting for time-resolved optical measurement. Opt Express 16, 13233-13239 (2008). doi: 10.1364/OE.16.013233

    CrossRef Google Scholar

    [13] Zhang Q, Chen L, Chen N G. Pseudo-random single photon counting: a high-speed implementation. Biomed Opt Express 1, 41-46 (2010). doi: 10.1364/BOE.1.000041

    CrossRef Google Scholar

    [14] Zhang F, Du P F, Liu Q, Gong M L, Fu X. Adaptive strategy for CPPM single-photon collision avoidance LIDAR against dynamic crosstalk. Opt Express 25, 12237-12250 (2017). doi: 10.1364/OE.25.012237

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(8844) PDF downloads(2541) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint