Citation: | Papanikolaou A, Tserevelakis G J, Melessanaki K, Fotakis C, Zacharakis G et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto-Electron Adv 3, 190037 (2020). doi: 10.29026/oea.2020.190037 |
[1] | Cooper M. Laser Cleaning in Conservation: An Introduction (Butterworth Heinemann, Oxford, 1998). |
[2] | Fotakis C, Anglos D, Zafiropulos V, Georgiou S, Tornari V. Lasers in the Preservation of Cultural Heritage: Principles and Applications (CRC Press, Boca Raton, 2006). |
[3] | Siano S, Agresti J, Cacciari I, Ciofini D, Mascalchi M et al. Laser cleaning in conservation of stone, metal, and painted artifacts: State of the art and new insights on the use of the Nd:YAG lasers. Appl Phys A 106, 419-446 (2012). doi: 10.1007/s00339-011-6690-8 |
[4] | Pouli P, Oujja M, Castillejo M. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Appl Phys A 106, 447-464 (2012). doi: 10.1007/s00339-011-6696-2 |
[5] | Pouli P, Papakonstantinou E, Frantzikinaki K, Panou A, Frantzi G et al. The two-wavelength laser cleaning methodology; theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis sculptures. Herit Sci 4, 9 (2016). doi: 10.1186/s40494-016-0077-2 |
[6] | Maravelaki P V, Zafiropulos V, Kilikoglou V, Kalaitzaki M, Fotakis C. Laser-induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim Acta Part B: At Spectrosc 52, 41-53 (1997). doi: 10.1016/S0584-8547(96)01573-X |
[7] | Gobernado-Mitre I, Prieto A C, Zafiropulos V, Spetsidou Y, Fotakis C. On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence. Appl Spectrosc 51, 1125-1129 (1997). doi: 10.1366/0003702971941944 |
[8] | Salimbeni R, Pini R, Siano S. Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line optical diagnostics. Spectrochim Acta Part B: At Spectrosc 56, 877-885 (2001). doi: 10.1016/S0584-8547(01)00197-5 |
[9] | Melessanaki K, Stringari C, Fotakis C, Anglos D. Laser cleaning and spectroscopy: a synergistic approach in the conservation of a modern painting. Laser Chem 2006, 42709 (2006). |
[10] | Fortes F J, Cabalín L M, Laserna J J. The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochim Acta Part B: At Spectrosc 63, 1191-1197 (2008). doi: 10.1016/j.sab.2008.06.009 |
[11] | Ciofini D, Oujja M, Cañamares M V, Siano S, Castillejo M. Spectroscopic assessment of the UV laser removal of varnishes from painted surfaces. Microchem J 124, 792-803 (2016). |
[12] | Moretti P, Iwanicka M, Melessanaki K, Dimitroulaki E, Kokkinaki O et al. Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Herit Sci 7, 44 (2019). doi: 10.1186/s40494-019-0284-8 |
[13] | Fischer C, Kakoulli I. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev Conserv 7, 3-16 (2006). doi: 10.1179/sic.2006.51.Supplement-1.3 |
[14] | Papadakis V, Loukaiti A, Pouli P. A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J Cult Herit 11, 325-328 (2010). doi: 10.1016/j.culher.2009.10.007 |
[15] | Pozo-Antonio J S, Fiorucci M P, Ramil A, Rivas T, López A J. Hyperspectral imaging as a non destructive technique to control the laser cleaning of graffiti on granite. J Nondestr Eval 35, 44 (2016). doi: 10.1007/s10921-016-0361-9 |
[16] | Klemm A J, Sanjeevan P. Application of laser speckle analysis for the assessment of cementitious surfaces subjected to laser cleaning. Appl Surf Sci 254, 2642-2649 (2008). doi: 10.1016/j.apsusc.2007.10.007 |
[17] | Bernikola E, Melessanaki K, Hatzigiannakis K, Pouli P, Tornari V. Real-time monitoring of laser assisted removal of shellac from wooden artefacts using Digital Holographic Speckle Pattern Interferometry. In Lasers in the Conservation of Artworks 52-59 (Archetype Publications Ltd, London, 2013). |
[18] | Márton Z, Kisapáti I, Török Á, Tornari V, Bernikola E et al. Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples. NDT E Int 63, 53-59 (2014). doi: 10.1016/j.ndteint.2014.01.007 |
[19] | Iwanicka M, Musiela J, Łukaszewicz J W, Stoksik H, Sylwestrzak M. The potential of OCT for assessing laser assisted removal of deposits from ceramic tiles. In Lasers in the conservation of artworks XI. Proceedings of the International Conference LACONA XI 2016 105-114 (NCU Press, 2017); http://doi.org/10.12775/3875-4.07. |
[20] | Striova J, Fontana R, Barucci M, Felici A, Marconi E et al. Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchem J 124, 331-337 (2016). |
[21] | Tserevelakis G J, Siozos P, Papanikolaou A, Melessanaki K, Zacharakis G. Non-invasive photoacoustic detection of hidden underdrawings in paintings using air-coupled transducers. Ultrasonics 98, 94-98 (2019). doi: 10.1016/j.ultras.2019.06.008 |
[22] | Cooper M I, Emmony D C, Larson J. Characterization of laser cleaning of limestone. Opt Laser Technol 27, 69-73 (1995). doi: 10.1016/0030-3992(95)93962-Q |
[23] | Lee J M, Watkins K G. In-process monitoring techniques for laser cleaning. Opt Lasers Eng 34, 429-442 (2000). doi: 10.1016/S0143-8166(00)00073-7 |
[24] | Bregar V B, Možina J. Optoacoustic analysis of the laser-cleaning process. Appl Surf Sci 185, 277-288 (2002). doi: 10.1016/S0169-4332(01)00981-3 |
[25] | Jankowska M, Śliwiński G. Acoustic monitoring for the laser cleaning of sandstone. J Cult Herit 4, 65-71 (2003). doi: 10.1016/S1296-2074(02)01230-X |
[26] | Gómez C, Costela A, García-Moreno I, Sastre R. Comparative study between IR and UV laser radiation applied to the removal of graffitis on urban buildings. Appl Surf Sci 252, 2782-2793 (2006). doi: 10.1016/j.apsusc.2005.04.051 |
[27] | Villarreal-Villela A E, Cabrera L P. Monitoring the laser ablation process of paint layers by PILA technique. Open J Appl Sci 6, 626-635 (2016). doi: 10.4236/ojapps.2016.69060 |
[28] | Tserevelakis G J, Pozo-Antonio J S, Siozos P, Rivas T, Pouli P et al. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cult Herit 35, 108-115 (2019). doi: 10.1016/j.culher.2018.05.014 |
[29] | Maravelaki-Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and origin. Anal Chim Acta 532, 187-198 (2005). doi: 10.1016/j.aca.2004.10.065 |
[30] | Potgieter-Vermaak S S, GodoiR H M, van Grieken R, Potgieter J H, Oujja M et al. Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta Part A: Mol Biomol Spectrosc 61, 2460-2467 (2005). doi: 10.1016/j.saa.2004.09.010 |
[31] | Vergès-Belmin V, Dignard C. Laser yellowing: myth or reality? J Cult Herit 4, 238-244 (2003). doi: 10.1016/S1296-2074(02)01203-7 |
[32] | Klein S, Fekrsanati F, Hildenhagen J, Dickmann K, Uphoff H et al. Discoloration of marble during laser cleaning by Nd:YAG laser wavelengths. Appl Surf Sci 171, 242-251 (2001). doi: 10.1016/S0169-4332(00)00706-6 |
[33] | Gaviño M, Castillejo M, Vergès-Belmin V, Nowik W, Oujja M et al. Black crusts removal: the effect of stone yellowing and clearing strategies. Air Pollution and Cultural Heritage Leiden: AA Balkema, 239-245 (2004). |
[34] | Zafiropulos V, Pouli P, Kylikoglou V, Maravelaki-Kalaitzaki P, Luk'yanchuk B S et al. Synchronous use of IR and UV laser pulses in the removal of encrustation: mechanistic aspects, discoloration phenomena and benefits. In Lasers in the Conservation of Artworks, 311-318 (Springer, Berlin, Heidelberg, 2005). |
[35] |
Pouli P, Fotakis C, Hermosin B, Saiz-Jimenez C, Domingo C et al. The laser-induced discoloration of stonework; a comparative study on its origins and remedies. Spectrochim Acta Part A: Mol Biomol Spectrosc 71, 932-945 (2008). |
[36] | Godet M, Vergès-Belmin V, Gauquelin N, Saheb M, Monnier J et al. Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing. Micron 115, 25-31 (2018). |
[37] | Papanikolaou A, Siozos P, Philippidis A, Melessanaki K, Pouli P. Towards the understanding of the two wavelength laser cleaning in avoiding yellowing on stonework: a micro-Raman and LIBS study. In Lasers in the Conservation of Artworks XI, Proceedings of the International Conference LACONA XI 95-104 (NCU Press, 2017); http://doi.org/10.12775/3875-4.06. |
[38] |
Wang L V, Wu H I. Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, USA, 2007). |
[39] |
Simandoux O, Prost A, Gateau J, Bossy E. Influence of nanoscale temperature rises on photoacoustic generation: discrimination between optical absorbers based on thermal nonlinearity at high frequency. Photoacoustics 3, 20-25 (2015). |
[40] | Marla D, Bhandarkar U V, Joshi S S. A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl Phys A 116, 273-285 (2014). doi: 10.1007/s00339-013-8118-0 |
[41] | Feng X H, Gao F, Xu C Y, Li G M, Zheng Y J. Self temperature regulation of photothermal therapy by laser-shared photoacoustic feedback. Opt Lett 40, 4492-4495 (2015). doi: 10.1364/OL.40.004492 |
[42] | Feng X H, Gao F, Zheng Y J. Photoacoustic-based-close-loop temperature control for nanoparticle hyperthermia. IEEE Trans Biomed Eng 62, 1728-1737 (2015). doi: 10.1109/TBME.2015.2403276 |
Schematic representation of the hybrid photoacoustic and optical experimental apparatus.
(a) Recorded PA waveform for FIR=0.8 J/cm2 at 1st, 5th and 6th laser pulse respectively. (b) Cross correlation of PA waveforms generated after the incidence of Nth and 1st pulse. (c) Maximum amplitude of cross correlation operation calculated for the first 15 laser pulses. (d) Percentage change of cross correlation maximum amplitude. The peak indicates the pulse at which the marble substrate has been reached. (e) Optical images recorded for the first 15 laser pulses. Red margin indicates the point where the maximum change has been observed according to Fig. 2(d).
(a) Maximum amplitude of cross correlation product for three different fluence values as a function of pulse number. (b) Maximum amplitude percentage change. (c) Optical image corresponding to the 8th laser pulse. (d) Optical image corresponding to the 11th laser pulse. For both cases, irradiation fluence has been equal to 1.0 J/cm2.
(a) Maximum amplitude and (b) Cross correlation maximum amplitude percentage change for irradiation with 355 nm and the simultaneous use of two wavelengths in fluence ratio FIR/FUV =4/1.
Mean PA signal for varying fluence values for the 1064 nm (a) and 355 nm (b) laser beam. The black line corresponds to the polynomial fit of the data, while the blue/red one to the linear fit in the low fluence regime. The error bars represent the standard deviation of five measurements.
(a) Mean PA signal recorded from 26 spots irradiated with FUV = FIR = 0.5 J/cm2 along with (b) Characteristic optical images corresponding to 10 incident laser pulses of IR (red margin) and UV (blue margin) radiation.
Mean normalized PA signal for 10 incident laser pulses of: FIR = 0.5 J/cm2 (red), FUV = 0.5 J/cm2 (blue), simultaneous FIR = 0.4 J/cm2 and FUV = 0.1 J/cm2 (purple), simultaneous FIR = FUV = 0.25 J/cm2 (green).