Papanikolaou A, Tserevelakis G J, Melessanaki K, Fotakis C, Zacharakis G et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto-Electron Adv 3, 190037 (2020). doi: 10.29026/oea.2020.190037
Citation: Papanikolaou A, Tserevelakis G J, Melessanaki K, Fotakis C, Zacharakis G et al. Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework. Opto-Electron Adv 3, 190037 (2020). doi: 10.29026/oea.2020.190037

Original Article Open Access

Development of a hybrid photoacoustic and optical monitoring system for the study of laser ablation processes upon the removal of encrustation from stonework

More Information
  • In the context of this work, a prototype hybrid photoacoustic (PA) and optical system for the on-line monitoring of laser cleaning procedures is presented. The developed apparatus has enabled the detection of MHz frequency range acoustic waves generated during the laser ablation process. The intrinsically generated PA signals combined with high resolution optical images provide the opportunity to follow the cleaning process accurately and in real time. Technical mock-ups have been used to demonstrate the potential of this novel technique with emphasis given to applications that refer to the restoration of Cultural Heritage (CH) surfaces. Towards this purpose, the real time monitoring of the laser assisted removal of unwanted encrustation from stonework has been achieved using IR and UV wavelengths. This novel approach has allowed for the precise determination of the critical number of laser pulses required for the elimination of the encrustation layer, while highlighting the dominant ablation mechanisms according to the irradiation wavelength. The promising results obtained using the prototype hybrid PA and optical system can open up new perspectives in the monitoring of laser cleaning interventions, promoting an improved restoration outcome.
  • 加载中
  • [1] Cooper M. Laser Cleaning in Conservation: An Introduction (Butterworth Heinemann, Oxford, 1998).

    Google Scholar

    [2] Fotakis C, Anglos D, Zafiropulos V, Georgiou S, Tornari V. Lasers in the Preservation of Cultural Heritage: Principles and Applications (CRC Press, Boca Raton, 2006).

    Google Scholar

    [3] Siano S, Agresti J, Cacciari I, Ciofini D, Mascalchi M et al. Laser cleaning in conservation of stone, metal, and painted artifacts: State of the art and new insights on the use of the Nd:YAG lasers. Appl Phys A 106, 419-446 (2012). doi: 10.1007/s00339-011-6690-8

    CrossRef Google Scholar

    [4] Pouli P, Oujja M, Castillejo M. Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Appl Phys A 106, 447-464 (2012). doi: 10.1007/s00339-011-6696-2

    CrossRef Google Scholar

    [5] Pouli P, Papakonstantinou E, Frantzikinaki K, Panou A, Frantzi G et al. The two-wavelength laser cleaning methodology; theoretical background and examples from its application on CH objects and monuments with emphasis to the Athens Acropolis sculptures. Herit Sci 4, 9 (2016). doi: 10.1186/s40494-016-0077-2

    CrossRef Google Scholar

    [6] Maravelaki P V, Zafiropulos V, Kilikoglou V, Kalaitzaki M, Fotakis C. Laser-induced breakdown spectroscopy as a diagnostic technique for the laser cleaning of marble. Spectrochim Acta Part B: At Spectrosc 52, 41-53 (1997). doi: 10.1016/S0584-8547(96)01573-X

    CrossRef Google Scholar

    [7] Gobernado-Mitre I, Prieto A C, Zafiropulos V, Spetsidou Y, Fotakis C. On-line monitoring of laser cleaning of limestone by laser-induced breakdown spectroscopy and laser-induced fluorescence. Appl Spectrosc 51, 1125-1129 (1997). doi: 10.1366/0003702971941944

    CrossRef Google Scholar

    [8] Salimbeni R, Pini R, Siano S. Achievement of optimum laser cleaning in the restoration of artworks: expected improvements by on-line optical diagnostics. Spectrochim Acta Part B: At Spectrosc 56, 877-885 (2001). doi: 10.1016/S0584-8547(01)00197-5

    CrossRef Google Scholar

    [9] Melessanaki K, Stringari C, Fotakis C, Anglos D. Laser cleaning and spectroscopy: a synergistic approach in the conservation of a modern painting. Laser Chem 2006, 42709 (2006).

    Google Scholar

    [10] Fortes F J, Cabalín L M, Laserna J J. The potential of laser-induced breakdown spectrometry for real time monitoring the laser cleaning of archaeometallurgical objects. Spectrochim Acta Part B: At Spectrosc 63, 1191-1197 (2008). doi: 10.1016/j.sab.2008.06.009

    CrossRef Google Scholar

    [11] Ciofini D, Oujja M, Cañamares M V, Siano S, Castillejo M. Spectroscopic assessment of the UV laser removal of varnishes from painted surfaces. Microchem J 124, 792-803 (2016).

    Google Scholar

    [12] Moretti P, Iwanicka M, Melessanaki K, Dimitroulaki E, Kokkinaki O et al. Laser cleaning of paintings: in situ optimization of operative parameters through non-invasive assessment by optical coherence tomography (OCT), reflection FT-IR spectroscopy and laser induced fluorescence spectroscopy (LIF). Herit Sci 7, 44 (2019). doi: 10.1186/s40494-019-0284-8

    CrossRef Google Scholar

    [13] Fischer C, Kakoulli I. Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Rev Conserv 7, 3-16 (2006). doi: 10.1179/sic.2006.51.Supplement-1.3

    CrossRef Google Scholar

    [14] Papadakis V, Loukaiti A, Pouli P. A spectral imaging methodology for determining on-line the optimum cleaning level of stonework. J Cult Herit 11, 325-328 (2010). doi: 10.1016/j.culher.2009.10.007

    CrossRef Google Scholar

    [15] Pozo-Antonio J S, Fiorucci M P, Ramil A, Rivas T, López A J. Hyperspectral imaging as a non destructive technique to control the laser cleaning of graffiti on granite. J Nondestr Eval 35, 44 (2016). doi: 10.1007/s10921-016-0361-9

    CrossRef Google Scholar

    [16] Klemm A J, Sanjeevan P. Application of laser speckle analysis for the assessment of cementitious surfaces subjected to laser cleaning. Appl Surf Sci 254, 2642-2649 (2008). doi: 10.1016/j.apsusc.2007.10.007

    CrossRef Google Scholar

    [17] Bernikola E, Melessanaki K, Hatzigiannakis K, Pouli P, Tornari V. Real-time monitoring of laser assisted removal of shellac from wooden artefacts using Digital Holographic Speckle Pattern Interferometry. In Lasers in the Conservation of Artworks 52-59 (Archetype Publications Ltd, London, 2013).

    Google Scholar

    [18] Márton Z, Kisapáti I, Török Á, Tornari V, Bernikola E et al. Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples. NDT E Int 63, 53-59 (2014). doi: 10.1016/j.ndteint.2014.01.007

    CrossRef Google Scholar

    [19] Iwanicka M, Musiela J, Łukaszewicz J W, Stoksik H, Sylwestrzak M. The potential of OCT for assessing laser assisted removal of deposits from ceramic tiles. In Lasers in the conservation of artworks XI. Proceedings of the International Conference LACONA XI 2016 105-114 (NCU Press, 2017); http://doi.org/10.12775/3875-4.07.

    Google Scholar

    [20] Striova J, Fontana R, Barucci M, Felici A, Marconi E et al. Optical devices provide unprecedented insights into the laser cleaning of calcium oxalate layers. Microchem J 124, 331-337 (2016).

    Google Scholar

    [21] Tserevelakis G J, Siozos P, Papanikolaou A, Melessanaki K, Zacharakis G. Non-invasive photoacoustic detection of hidden underdrawings in paintings using air-coupled transducers. Ultrasonics 98, 94-98 (2019). doi: 10.1016/j.ultras.2019.06.008

    CrossRef Google Scholar

    [22] Cooper M I, Emmony D C, Larson J. Characterization of laser cleaning of limestone. Opt Laser Technol 27, 69-73 (1995). doi: 10.1016/0030-3992(95)93962-Q

    CrossRef Google Scholar

    [23] Lee J M, Watkins K G. In-process monitoring techniques for laser cleaning. Opt Lasers Eng 34, 429-442 (2000). doi: 10.1016/S0143-8166(00)00073-7

    CrossRef Google Scholar

    [24] Bregar V B, Možina J. Optoacoustic analysis of the laser-cleaning process. Appl Surf Sci 185, 277-288 (2002). doi: 10.1016/S0169-4332(01)00981-3

    CrossRef Google Scholar

    [25] Jankowska M, Śliwiński G. Acoustic monitoring for the laser cleaning of sandstone. J Cult Herit 4, 65-71 (2003). doi: 10.1016/S1296-2074(02)01230-X

    CrossRef Google Scholar

    [26] Gómez C, Costela A, García-Moreno I, Sastre R. Comparative study between IR and UV laser radiation applied to the removal of graffitis on urban buildings. Appl Surf Sci 252, 2782-2793 (2006). doi: 10.1016/j.apsusc.2005.04.051

    CrossRef Google Scholar

    [27] Villarreal-Villela A E, Cabrera L P. Monitoring the laser ablation process of paint layers by PILA technique. Open J Appl Sci 6, 626-635 (2016). doi: 10.4236/ojapps.2016.69060

    CrossRef Google Scholar

    [28] Tserevelakis G J, Pozo-Antonio J S, Siozos P, Rivas T, Pouli P et al. On-line photoacoustic monitoring of laser cleaning on stone: Evaluation of cleaning effectiveness and detection of potential damage to the substrate. J Cult Herit 35, 108-115 (2019). doi: 10.1016/j.culher.2018.05.014

    CrossRef Google Scholar

    [29] Maravelaki-Kalaitzaki P. Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and origin. Anal Chim Acta 532, 187-198 (2005). doi: 10.1016/j.aca.2004.10.065

    CrossRef Google Scholar

    [30] Potgieter-Vermaak S S, GodoiR H M, van Grieken R, Potgieter J H, Oujja M et al. Micro-structural characterization of black crust and laser cleaning of building stones by micro-Raman and SEM techniques. Spectrochim Acta Part A: Mol Biomol Spectrosc 61, 2460-2467 (2005). doi: 10.1016/j.saa.2004.09.010

    CrossRef Google Scholar

    [31] Vergès-Belmin V, Dignard C. Laser yellowing: myth or reality? J Cult Herit 4, 238-244 (2003). doi: 10.1016/S1296-2074(02)01203-7

    CrossRef Google Scholar

    [32] Klein S, Fekrsanati F, Hildenhagen J, Dickmann K, Uphoff H et al. Discoloration of marble during laser cleaning by Nd:YAG laser wavelengths. Appl Surf Sci 171, 242-251 (2001). doi: 10.1016/S0169-4332(00)00706-6

    CrossRef Google Scholar

    [33] Gaviño M, Castillejo M, Vergès-Belmin V, Nowik W, Oujja M et al. Black crusts removal: the effect of stone yellowing and clearing strategies. Air Pollution and Cultural Heritage Leiden: AA Balkema, 239-245 (2004).

    Google Scholar

    [34] Zafiropulos V, Pouli P, Kylikoglou V, Maravelaki-Kalaitzaki P, Luk'yanchuk B S et al. Synchronous use of IR and UV laser pulses in the removal of encrustation: mechanistic aspects, discoloration phenomena and benefits. In Lasers in the Conservation of Artworks, 311-318 (Springer, Berlin, Heidelberg, 2005).

    Google Scholar

    [35] Pouli P, Fotakis C, Hermosin B, Saiz-Jimenez C, Domingo C et al. The laser-induced discoloration of stonework; a comparative study on its origins and remedies. Spectrochim Acta Part A: Mol Biomol Spectrosc 71, 932-945 (2008).10.1016/j.saa.2008.02.031

    Google Scholar

    [36] Godet M, Vergès-Belmin V, Gauquelin N, Saheb M, Monnier J et al. Nanoscale investigation by TEM and STEM-EELS of the laser induced yellowing. Micron 115, 25-31 (2018).

    Google Scholar

    [37] Papanikolaou A, Siozos P, Philippidis A, Melessanaki K, Pouli P. Towards the understanding of the two wavelength laser cleaning in avoiding yellowing on stonework: a micro-Raman and LIBS study. In Lasers in the Conservation of Artworks XI, Proceedings of the International Conference LACONA XI 95-104 (NCU Press, 2017); http://doi.org/10.12775/3875-4.06.

    Google Scholar

    [38] Wang L V, Wu H I. Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, USA, 2007).10.1117/1.2976007

    Google Scholar

    [39] Simandoux O, Prost A, Gateau J, Bossy E. Influence of nanoscale temperature rises on photoacoustic generation: discrimination between optical absorbers based on thermal nonlinearity at high frequency. Photoacoustics 3, 20-25 (2015).10.1016/j.pacs.2014.12.002

    Google Scholar

    [40] Marla D, Bhandarkar U V, Joshi S S. A model of laser ablation with temperature-dependent material properties, vaporization, phase explosion and plasma shielding. Appl Phys A 116, 273-285 (2014). doi: 10.1007/s00339-013-8118-0

    CrossRef Google Scholar

    [41] Feng X H, Gao F, Xu C Y, Li G M, Zheng Y J. Self temperature regulation of photothermal therapy by laser-shared photoacoustic feedback. Opt Lett 40, 4492-4495 (2015). doi: 10.1364/OL.40.004492

    CrossRef Google Scholar

    [42] Feng X H, Gao F, Zheng Y J. Photoacoustic-based-close-loop temperature control for nanoparticle hyperthermia. IEEE Trans Biomed Eng 62, 1728-1737 (2015). doi: 10.1109/TBME.2015.2403276

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(10734) PDF downloads(2257) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint