Wang Y T, Wang M J, Wu X H, et al. Review of research on nonreciprocal thermal radiation[J]. Opto-Electron Eng, 2024, 51(9): 240154. doi: 10.12086/oee.2024.240154
Citation: Wang Y T, Wang M J, Wu X H, et al. Review of research on nonreciprocal thermal radiation[J]. Opto-Electron Eng, 2024, 51(9): 240154. doi: 10.12086/oee.2024.240154

Review of research on nonreciprocal thermal radiation

    Fund Project: Project supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China (92052106), the National Natural Science Foundation of China (61771385, 62101313, and 52106099), the Natural Science Foundation of Shandong Province (ZR2022YQ57), and the Taishan Scholars Program
More Information
  • Nonreciprocal thermal radiation is a novel approach to radiative heat transfer that breaks through the symmetric reciprocity of traditional Kirchhoff's law. It overcomes the restriction that the spectrally oriented emissivity and spectrally oriented absorptivity of an object must be equal, allowing independent control of the spectral and angular emissivity and absorptivity of a radiator in both time and space. This paper reviews the progress of research on nonreciprocal thermal radiation in theoretical calculations, experimental verifications, and applications. Starting from the intrinsic connection between Kirchhoff's law and Lorentz reciprocity, it elaborates on the necessary conditions for the generation of nonreciprocal thermal radiation. Using two typical materials, magneto-optical materialsof InAs and Weyl semimetal, as examples, the paper explores how to construct asymmetric structures and utilize external field modulation to generate multi-wavelength and multi-angle nonreciprocal thermal radiation. These advancements have been applied in many fields, such as solar cells and thermophotovoltaic systems, successfully surpassing the blackbody limit of thermal radiation and theoretically reaching the Landsberg limit, thereby improving energy conversion efficiency. In the future, nonreciprocal thermal radiation is expected to provide strong support for efficient energy utilization and emission reduction, promote cutting-edge materials research and technological innovation, and inject new impetus and vitality into sustainable development.
  • 加载中
  • [1] Luo C Y, Narayanaswamy A, Chen G, et al. Thermal radiation from photonic crystals: a direct calculation[J]. Phys Rev Lett, 2004, 93(21): 213905. doi: 10.1103/PhysRevLett.93.213905

    CrossRef Google Scholar

    [2] Francoeur M, Mengüç M P, Vaillon R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green's functions and the scattering matrix method[J]. J Quant Spectrosc Radiat Transfer, 2009, 110(18): 2002−2018. doi: 10.1016/j.jqsrt.2009.05.010

    CrossRef Google Scholar

    [3] Baranov D G, Xiao Y Z, Nechepurenko I A, et al. Nanophotonic engineering of far-field thermal emitters[J]. Nat Mater, 2019, 18(9): 920−930. doi: 10.1038/s41563-019-0363-y

    CrossRef Google Scholar

    [4] Fan S H, Li W. Photonics and thermodynamics concepts in radiative cooling[J]. Nat Photonics, 2022, 16(3): 182−190. doi: 10.1038/s41566-021-00921-9

    CrossRef Google Scholar

    [5] Landsberg P T, Tonge G. Thermodynamic energy conversion efficiencies[J]. J Appl Phys, 1980, 51(7): R1−R20. doi: 10.1063/1.328187

    CrossRef Google Scholar

    [6] Snyder W C, Wan Z M, Li X W. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law[J]. Appl Opt, 1998, 37(16): 3464−3470. doi: 10.1364/AO.37.003464

    CrossRef Google Scholar

    [7] Snyder W C. Structured surface bidirectional reflectance distribution function reciprocity: theory and counterexamples[J]. Appl Opt, 2002, 41(21): 4307−4313. doi: 10.1364/AO.41.004307

    CrossRef Google Scholar

    [8] Baltes H P. I on the validity of Kirchhoff's law of heat radiation for a body in a nonequilibrium environment[J]. Prog Opt, 1976, 13: 1−25. doi: 10.1016/S0079-6638(08)70017-9

    CrossRef Google Scholar

    [9] Greffet J J, Nieto-Vesperinas M. Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law[J]. J Opt Soc Am A, 1998, 15(10): 2735−2744. doi: 10.1364/JOSAA.15.002735

    CrossRef Google Scholar

    [10] Green M A. Third Generation Photovoltaics: Advanced Solar Energy Conversion[M]. Berlin: Springer, 2003. https://doi.org/10.1007/b137807.

    Google Scholar

    [11] Huang G, Wang K, Markides C N. Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems[J]. Light Sci Appl, 2021, 10(1): 28. doi: 10.1038/s41377-021-00465-1

    CrossRef Google Scholar

    [12] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J Appl Phys, 1961, 32(3): 510−519. doi: 10.1063/1.1736034

    CrossRef Google Scholar

    [13] Yu Z F, Raman A, Fan S H. Fundamental limit of nanophotonic light trapping in solar cells[J]. Proc Natl Acad Sci USA, 2010, 107(41): 17491−17496. doi: 10.1073/pnas.1008296107

    CrossRef Google Scholar

    [14] Harder N P, Würfel P. Theoretical limits of thermophotovoltaic solar energy conversion[J]. Semicond Sci Technol, 2003, 18(5): S151−S157. doi: 10.1088/0268-1242/18/5/303

    CrossRef Google Scholar

    [15] Taretto K, Rau U. Modeling extremely thin absorber solar cells for optimized design[J]. Prog Photovolt, 2004, 12(8): 573−591. doi: 10.1002/pip.549

    CrossRef Google Scholar

    [16] Ries H. Complete and reversible absorption of radiation[J]. Appl Phys B, 1983, 32(3): 153−156. doi: 10.1007/BF00688821

    CrossRef Google Scholar

    [17] Hsu P C, Liu C, Song A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Sci Adv, 2017, 3(11): e1700895. doi: 10.1126/sciadv.1700895

    CrossRef Google Scholar

    [18] Shi N N, Tsai C C, Camino F, et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants[J]. Science, 2018, 349(6245): 298−301. doi: 10.1126/science.aab3564

    CrossRef Google Scholar

    [19] Raman A P, Anoma M A, Zhu L X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540−544. doi: 10.1038/nature13883

    CrossRef Google Scholar

    [20] Zhu L X, Raman A P, Fan S H. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody[J]. Proc Natl Acad Sci USA, 2015, 112(40): 12282−12287. doi: 10.1073/pnas.1509453112

    CrossRef Google Scholar

    [21] Ilic O, Bermel P, Chen G, et al. Tailoring high-temperature radiation and the resurrection of the incandescent source[J]. Nat Nanotechnol, 216, 11(4): 320−324. doi: 10.1038/nnano.2015.309

    CrossRef Google Scholar

    [22] Kirchhoff G. I. On the relation between the radiating and absorbing powers of different bodies for light and heat[J]. Phil Mag, 1860, 20(130): 1−21. doi: 10.1080/14786446008642901

    CrossRef Google Scholar

    [23] Howell J R, Mengüç M P, Siegel R. Thermal Radiation Heat Transfer[M]. Boca Raton: CRC Press, 2016.

    Google Scholar

    [24] Modest M F. Radiative Heat Transfer[M]. New York: Academic Press, 2013.

    Google Scholar

    [25] Bergman T L, Lavine A S, Incropera F P, et al. Fundamentals of Heat and Mass Transfer[M]. New York: Wiley, 2011.

    Google Scholar

    [26] Balfour Stewart E. I. -An account of some experiments on radiant heat, involving an extension of Prevost’s theory of exchanges[J]. Earth Environ Sci Trans Royal Soc Edinburgh, 1861, 22(1): 1−20 doi: 10.1017/S0080456800031288

    CrossRef Google Scholar

    [27] Boltzmann L. The second law of thermodynamics[M]//Boltzmann L. Theoretical Physics and Philosophical Problems: Selected Writings. Dordrecht: Springer-Verlag, 1974. https://doi.org/10.1007/978-94-010-2091-6_2.

    Google Scholar

    [28] Planck M. The Theory of Heat Radiation[M]. Masius M, trans. New York: Dover Publications, 1959, 1991.

    Google Scholar

    [29] Rytov S M, Kravtsov Y A, Tatarskii I T. Principles of Statistical Radiophysics 3: Elements of Random Fields[M]. Berlin: Springer-Verlag, 1989.

    Google Scholar

    [30] Zhang Z M. Nano/Microscale Heat Transfer[M]. New York: McGraw-Hill, 2007.

    Google Scholar

    [31] Krüger M, Bimonte G, Emig T, et al. Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects[J]. Phys Rev B, 2012, 86(11): 115423. doi: 10.1103/PhysRevB.86.115423

    CrossRef Google Scholar

    [32] Geist J. Effect of wall roughness on the spectral density of radiation within symmetric closed cavities in good conductors[J]. J Opt Soc Am, 1972, 62(4): 602−604. doi: 10.1364/JOSA.62.000602

    CrossRef Google Scholar

    [33] Robitaille P M. Kirchhoff’s law of thermal emission: 150 years[J]. Prog Phys, 2009, 5(4): 3−13.

    Google Scholar

    [34] Zhu L X, Fan S H. Near complete violation of detailed balance in thermal radiation[J]. Phys Rev B, 2014, 90(22): 220301. doi: 10.1103/PhysRevB.90.220301

    CrossRef Google Scholar

    [35] Zhang Z M, Wu X H, Fu C J. Validity of Kirchhoff’s law for semitransparent films made of anisotropic materials[J]. J Quant Spectrosc Radiat Transfer, 2020, 245: 106904. doi: 10.1016/j.jqsrt.2020.106904

    CrossRef Google Scholar

    [36] Wu X H, Fu C J, Zhang Z M. Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials[J]. Int J Heat Mass Transfer, 2019, 135: 1207−1217. doi: 10.1016/j.ijheatmasstransfer.2019.02.066

    CrossRef Google Scholar

    [37] Wu X H, Fu C J, Zhang Z M. Chiral response of a twisted bilayer of hexagonal boron nitride[J]. Opt Commun, 2019, 452: 124−129. doi: 10.1016/j.optcom.2019.07.015

    CrossRef Google Scholar

    [38] Zhao B, Sakurai A, Zhang Z M. Polarization dependence of the reflectance and transmittance of anisotropic metamaterials[J]. J Thermophys Heat Transfer, 2016, 30(1): 240−246. doi: 10.2514/1.T4587

    CrossRef Google Scholar

    [39] Malone C G, Choi B I, Flik M I, et al. Spectral emissivity of optically anisotropic solid media[J]. J Heat Transfer, 1993, 115(4): 1021−1028. doi: 10.1115/1.2911356

    CrossRef Google Scholar

    [40] Potton R J. Reciprocity in optics[J]. Rep Prog Phys, 2004, 67(5): 717−754. doi: 10.1088/0034-4885/67/5/R03

    CrossRef Google Scholar

    [41] Shu W X, Fu N, Lü X F, et al. Integral equation method for electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials[J]. Commun Theor Phys, 2010, 54(5): 879−885. doi: 10.1088/0253-6102/54/5/21

    CrossRef Google Scholar

    [42] Menzel C, Helgert C, Rockstuhl C, et al. Asymmetric transmission of linearly polarized light at optical metamaterials[J]. Phys Rev Lett, 2010, 104(25): 253902. doi: 10.1103/PhysRevLett.104.253902

    CrossRef Google Scholar

    [43] Li L F. Symmetries of cross-polarization diffraction coefficients of gratings[J]. J Opt Soc Am A, 2000, 17(5): 881−887. doi: 10.1364/JOSAA.17.000881

    CrossRef Google Scholar

    [44] Armelles G, Cebollada A, García-Martín A, et al. Magnetoplasmonics: combining magnetic and plasmonic functionalities[J]. Adv Opt Mater, 2013, 1(1): 10−35. doi: 10.1002/adom.201200011

    CrossRef Google Scholar

    [45] Yang S H, Liu M Q, Zhao C Y, et al. Nonreciprocal thermal photonics[J]. Nat Photonics, 2024, 18(5): 412−424. doi: 10.1038/S41566-024-01409-Y

    CrossRef Google Scholar

    [46] Fan L L, Guo Y, Papadakis G T, et al. Nonreciprocal radiative heat transfer between two planar bodies[J]. Phys Rev B, 2020, 101(8): 085407. doi: 10.1103/PhysRevB.101.085407

    CrossRef Google Scholar

    [47] Wu X H. The promising structure to verify the Kirchhoff’s Law for nonreciprocal materials[J]. ES Energy Environ, 2021, 12: 46−51. doi: 10.30919/esee8c1047

    CrossRef Google Scholar

    [48] Wu J, Wang Z M, Wu B Y, et al. The giant enhancement of nonreciprocal radiation in Thue-morse aperiodic structures[J]. Opt Laser Technol, 2022, 152: 108138. doi: 10.1016/j.optlastec.2022.108138

    CrossRef Google Scholar

    [49] Wu J, Wu F, Zhao T C, et al. Nonreciprocal thermal radiation based on Fibonacci quasi-periodic structures[J]. Eng Sci, 2022, 18: 141−147. doi: 10.30919/es8d575

    CrossRef Google Scholar

    [50] Wu J, Wu F, Zhao T C, et al. Tunable nonreciprocal thermal emitter based on metal grating and graphene[J]. Int J Therm Sci, 2022, 172: 107316. doi: 10.1016/j.ijthermalsci.2021.107316

    CrossRef Google Scholar

    [51] Wu J, Sun Y S, Wu B Y, et al. Strong nonreciprocal mid-infrared radiation at small angles based on the excitation of guided modes[J]. Eng Sci, 2022, 19: 198−204. doi: 10.30919/es8d650

    CrossRef Google Scholar

    [52] Wu X H, Chen Z X, Wu F. Strong nonreciprocal radiation in a InAs film by critical coupling with a dielectric grating[J]. ES Energy Environ, 2021, 13: 8−12. doi: 10.30919/esee8c442

    CrossRef Google Scholar

    [53] Wu J, Wu F, Zhao T C, et al. Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers[J]. Int J Therm Sci, 2022, 175: 107457. doi: 10.1016/j.ijthermalsci.2022.107457

    CrossRef Google Scholar

    [54] Wu J, Wu F, Wu X H. Strong dual-band nonreciprocal radiation based on a four-part periodic metal grating[J]. Opt Mater, 2021, 120: 111476. doi: 10.1016/j.optmat.2021.111476

    CrossRef Google Scholar

    [55] Shi K Z, Xing Y X, Sun Y W, et al. Thermal vertical emitter of ultra-high directionality achieved through nonreciprocal magneto-optical lattice resonances[J]. Adv Opt Mater, 2022, 10(24): 2201732. doi: 10.1002/adom.202201732

    CrossRef Google Scholar

    [56] Chen Z H, Yu S L, Yuan C, et al. Ultra-efficient machine learning design of nonreciprocal thermal absorber for arbitrary directional and spectral radiation[J]. J Appl Phys, 2023, 134(20): 203101. doi: 10.1063/5.0177207

    CrossRef Google Scholar

    [57] Wu X H, Liu R Y, Yu H Y, et al. Strong nonreciprocal radiation in magnetophotonic crystals[J]. J Quant Spectrosc Radiat Transfer, 2021, 272: 107794. doi: 10.1016/j.jqsrt.2021.107794

    CrossRef Google Scholar

    [58] Chen Z H, Yu S L, Yuan C, et al. Near-normal nonreciprocal thermal radiation with a 0.3T magnetic field based on double-layer grating structure[J]. Int J Heat Mass Transfer, 2024, 222: 125202. doi: 10.1016/j.ijheatmasstransfer.2024.125202

    CrossRef Google Scholar

    [59] Wang J S, Shi K Z, Xing X B. Nonreciprocal wide-angle and narrowband thermal emitter[J]. Mater Today Phys, 2024, 46: 101515. doi: 10.1016/j.mtphys.2024.101515

    CrossRef Google Scholar

    [60] Chen Z H, Yu S L, Hu B, et al. Multi-band and wide-angle nonreciprocal thermal radiation[J]. Int J Heat Mass Transfer, 2023, 209: 124149. doi: 10.1016/j.ijheatmasstransfer.2023.124149

    CrossRef Google Scholar

    [61] Chen Z H, Yu S L, Yuan C, et al. Defect-mode and Fabry-Perot resonance induced multi-band nonreciprocal thermal radiation[J]. Sci China Technol Sci, 2024. doi: 10.1007/s11431-023-2555-y

    CrossRef Google Scholar

    [62] Fang J M, Wang M Z, Liu T Y, et al. Dual-polarization strong nonreciprocal thermal radiation with silicon-based nanopore arrays[J]. International Journal of Thermal Sciences, 2024, 195: 108602. doi: 10.1016/j.ijthermalsci.2023.108602

    CrossRef Google Scholar

    [63] Fang J M, Zou J Q, Liu T Y, et al. Dual-polarization near-infrared narrow-band unidirectional nonreciprocal thermal radiator[J]. Int J Heat Mass Transfer, 2024, 223: 125229. doi: 10.1016/j.ijheatmasstransfer.2024.125229

    CrossRef Google Scholar

    [64] Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films[J]. Nat Mater, 2023, 22(10): 1196−1202. doi: 10.1038/s41563-023-01635-9

    CrossRef Google Scholar

    [65] Shayegan K J, Zhao B, Kim Y, et al. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs[J]. Sci Adv, 2022, 8(18): eabm4308. doi: 10.1126/sciadv.abm4308

    CrossRef Google Scholar

    [66] Armitage N P, Mele E J, Vishwanath A. Weyl and dirac semimetals in three-dimensional solids[J]. Rev Mod Phys, 2018, 90(1): 015001. doi: 10.1103/RevModPhys.90.015001

    CrossRef Google Scholar

    [67] Hosur P, Qi X L. Recent developments in transport phenomena in Weyl semimetals[J]. C R Phys, 2013, 14(9-10): 857−870. doi: 10.1016/j.crhy.2013.10.010

    CrossRef Google Scholar

    [68] Hofmann J, Sarma S D. Surface Plasmon polaritons in topological Weyl semimetals[J]. Phys Rev B, 2016, 93(24): 241402(R). doi: 10.1103/PhysRevB.93.241402

    CrossRef Google Scholar

    [69] Zhao B, Guo C, Garcia C A C, et al. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals[J]. Nano Lett, 2020, 20(3): 1923−1927. doi: 10.1021/acs.nanolett.9b05179

    CrossRef Google Scholar

    [70] Wu X H, Yu H Y, Wu F, et al. Enhanced nonreciprocal radiation in Weyl semimetals by attenuated total reflection[J]. AIP Adv, 2021, 11(7): 075106. doi: 10.1063/5.0055418

    CrossRef Google Scholar

    [71] Wu J, Wang Z M, Zhai H, et al. Near-complete violation of Kirchhoff’s law of thermal radiation in ultrathin magnetic Weyl semimetal films[J]. Opt Mater Express, 2021, 11(12): 4058−4066. doi: 10.1364/OME.444308

    CrossRef Google Scholar

    [72] Wu J, Sun Y S, Wu F, et al. Enhancing nonreciprocal thermal radiation in Weyl semimetals based on optical Tamm states by integrating with photonic crystals[J]. Waves Random Complex Media, 2022. doi: 10.1080/17455030.2022.2139426

    CrossRef Google Scholar

    [73] Wu J, Wu B Y, Wang Z M, et al. Strong nonreciprocal thermal radiation in Weyl semimetal-dielectric multilayer structure[J]. Int J Therm Sci, 2022, 181: 107788. doi: 10.1016/j.ijthermalsci.2022.107788

    CrossRef Google Scholar

    [74] Wu J Z, Li H J, Fu C J, et al. High quality factor nonreciprocal thermal radiation in a weyl semimetal film via the strong coupling between Tamm Plasmon and defect mode[J]. Int J Therm Sci, 2023, 184: 107902. doi: 10.1016/j.ijthermalsci.2022.107902

    CrossRef Google Scholar

    [75] Cui F P, Wang Z H, Ye J F, et al. Nonreciprocal thermal radiation with zero-contrast gratings for extreme small incident angle[J]. IEEE Photonics Technol Lett, 2024, 36(2): 131−134. doi: 10.1109/LPT.2023.3336599

    CrossRef Google Scholar

    [76] Wu J, Sun Y S, Wu B Y, et al. Extremely wide-angle nonreciprocal thermal emitters based on Weyl semimetals with dielectric grating structure[J]. Case Stud Therm Eng, 2022, 40: 102566. doi: 10.1016/j.csite.2022.102566

    CrossRef Google Scholar

    [77] Qing Y M, Wu J. Tunable wide-angle dual-channel nonreciprocal radiation in a hybrid graphene–Weyl semimetal structure[J]. Results Phys, 2024, 60: 107657. doi: 10.1016/J.RINP.2024.107657

    CrossRef Google Scholar

    [78] Gu Z H, Zang Q, Zheng G G. Near-unity nonreciprocal thermal radiation in biaxial van der Waals material-Weyl semimetal heterostructures[J]. Int Commun Heat Mass Transfer, 2024, 153: 107346. doi: 10.1016/j.icheatmasstransfer.2024.107346

    CrossRef Google Scholar

    [79] Wu J, Qing Y M. Multichannel nonreciprocal thermal radiation with Weyl semimetal and photonic crystal heterostructure[J]. Case Stud Therm Eng, 2023, 48: 103161. doi: 10.1016/j.csite.2023.103161

    CrossRef Google Scholar

    [80] Wu J, Qing Y M. Strong multi-band nonreciprocal radiation with Fibonacci multilayer involving Weyl semimetal[J]. Results Phys, 2023, 51: 106642. doi: 10.1016/j.rinp.2023.106642

    CrossRef Google Scholar

    [81] Cui F P, Sun M R, Qian L M, et al. Broadband nonreciprocal thermal radiation with Weyl semimetal-based Pattern-Free heterostructure[J]. IEEE Photonics Technol Lett, 2023, 35(13): 717−720. doi: 10.1109/LPT.2023.3274161

    CrossRef Google Scholar

    [82] Shi K Z, Sun Y W, Hu R, et al. Ultra-broadband and wide-angle nonreciprocal thermal emitter based on Weyl semimetal metamaterials[J]. Nanophotonics, 2024, 13(5): 737−747. doi: 10.1515/nanoph-2023-0520

    CrossRef Google Scholar

    [83] Wu J Z, Wu B Y, Shi K Z, et al. Strong nonreciprocal thermal radiation of transverse electric wave in Weyl semimetal[J]. Int J Therm Sci, 2023, 187: 108172. doi: 10.1016/j.ijthermalsci.2023.108172

    CrossRef Google Scholar

    [84] Sun M R, Qian L M, Xian F L, et al. Large nonreciprocity of thermal radiation for transverse electric wave with extremely small incident angle[J]. Opt Laser Technol, 2024, 170: 110308. doi: 10.1016/j.optlastec.2023.110308

    CrossRef Google Scholar

    [85] Wu J, Qing Y M. The enhanced nonreciprocal radiation in a grating structure containing a Weyl semimetal film under conical incidence[J]. Int Commun Heat Mass Transfer, 2024, 151: 107254. doi: 10.1016/j.icheatmasstransfer.2024.107254

    CrossRef Google Scholar

    [86] Li H J, Zheng G G. Polarization-independent nonreciprocal radiation in polar dielectric-Weyl semimetal planar heterostructure[J]. Opt Commun, 2024, 550: 130002. doi: 10.1016/j.optcom.2023.130002

    CrossRef Google Scholar

    [87] Fang J M, Zou J Q, Liu T Y, et al. Dual-polarization small-angle strong nonreciprocal thermal radiator with Weyl semimetal[J]. Appl Phys Lett, 2024, 124(17): 171702. doi: 10.1063/5.0180575

    CrossRef Google Scholar

    [88] Shen Y T, Qian L M, Sun M R, et al. Thermally tunable nonreciprocal radiation in lithography-free vanadium dioxide-dielectric-Weyl semimetal stack[J]. Opt Commun, 2024, 562: 130569. doi: 10.1016/j.optcom.2024.130569

    CrossRef Google Scholar

    [89] Chan W, Huang R, Wang C, et al. Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators[J]. Sol Energy Mater Sol Cells, 2010, 94(3): 509−514. doi: 10.1016/j.solmat.2009.11.015

    CrossRef Google Scholar

    [90] Chan W R, Bermel P, Pilawa-Podgurski R C N, et al. Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics[J]. Proc Natl Acad Sci USA, 2013, 110(14): 5309−5314. doi: 10.1073/pnas.1301004110

    CrossRef Google Scholar

    [91] Datas A, Martí A. Thermophotovoltaic energy in space applications: review and future potential[J]. Sol Energy Mater Sol Cells, 2017, 161: 285−296. doi: 10.1016/j.solmat.2016.12.007

    CrossRef Google Scholar

    [92] Ghalekohneh S J, Zhao B. Nonreciprocal solar thermophotovoltaics[J]. Phys Rev Appl, 2022, 18(3): 034083. doi: 10.1103/PhysRevApplied.18.034083

    CrossRef Google Scholar

    [93] Rinnerbauer V, Lenert A, Bierman D M, et al. Metallic photonic crystal absorber-emitter for efficient spectral control in high-temperature solar thermophotovoltaics[J]. Adv Energy Mater, 2014, 4(12): 1400334. doi: 10.1002/aenm.201400334

    CrossRef Google Scholar

    [94] Wang Y, Zhou L, Zheng Q H, et al. Spectrally selective solar absorber with sharp and temperature dependent cut-off based on semiconductor nanowire arrays[J]. Appl Phys Lett, 2017, 110(20): 201108. doi: 10.1063/1.4983711

    CrossRef Google Scholar

    [95] Wang Y, Liu H Z, Zhu J. Solar thermophotovoltaics: progress, challenges, and opportunities[J]. APL Mater, 2019, 7(8): 080906. doi: 10.1063/1.5114829

    CrossRef Google Scholar

    [96] Amy C, Seyf H R, Steiner M A, et al. Thermal energy grid storage using multi-junction photovoltaics[J]. Energy Environ Sci, 2019, 12(1): 334−343. doi: 10.1039/C8EE02341G

    CrossRef Google Scholar

    [97] Park Y, Zhao B, Fan S H. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell[J]. Nano Lett, 2022, 22(1): 448−452. doi: 10.1021/acs.nanolett.1c04288

    CrossRef Google Scholar

    [98] Li W, Buddhiraju S, Fan S H. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space[J]. Light Sci Appl, 2020, 9: 68. doi: 10.1038/s41377-020-0296-x

    CrossRef Google Scholar

  • Thermal radiation is a natural phenomenon in which an object emits electromagnetic waves as a result of its temperature, and any object with a non-zero temperature has the ability to emit and absorb such radiation. Kirchhoff's law, an important cornerstone of thermal radiation theory, details the intrinsic correlation between the energy emitted and absorbed by an object. However, in certain application scenarios, the limitation inherent in Kirchhoff's law, such as the upper limit of energy conversion efficiency and the limitation of spectral selectivity, becomes a bottleneck for technological advancement. In order to deeply understand and overcome these limitations, this paper first provides an in-depth analysis of the fundamentals of Kirchhoff's law and explores its close connection with Lorentz reciprocity. By analyzing the relationship between Kirchhoff's law and Lorentz reciprocity, we reveal the physical mechanism of the phenomenon of non-reciprocal thermal radiation, that is, an object can exhibit different absorption and emission properties for thermal radiation of specific wavelengths or directions under specific conditions. In order to overcome the limitations of Kirchhoff's law, this paper reviews the progress of research on realizing non-reciprocal thermal radiation using advanced material structures, such as magneto-optical materials InAs and Weyl semimetals. These material structures have successfully realized the phenomenon of non-reciprocal radiation in narrowband, broadband, multi-band, and multi-angle, which not only exhibit excellent performance but also have the ability to actively tune the non-reciprocal radiation, providing a wide scope for experimental fabrication and practical applications. In addition, this paper further explores the application potential of non-reciprocal thermal radiation in the field of energy conversion and radiation control. In solar cells and thermophotovoltaic systems, the application of nonreciprocal thermal radiation not only breaks through the traditional Landsberg limit and significantly improves the energy conversion efficiency, but also provides greater flexibility and freedom for system design and optimization. These innovative applications not only highlight the great potential of non-reciprocal thermal radiation technology, but also open up a completely new direction for future research in the field of energy conversion and radiation control.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint