Citation: | Zhang W X, Luo Y H, Liu Y Q, et al. Image super-resolution reconstruction based on active displacement imaging[J]. Opto-Electron Eng, 2024, 51(1): 230290. doi: 10.12086/oee.2024.230290 |
[1] | Dong C, Loy C C, He K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, 2014: 184–199. https://doi.org/10.1007/978-3-319-10593-2_13. |
[2] | Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, 2016: 391–407. https://doi.org/10.1007/978-3-319-46475-6_25. |
[3] | Lai W S, Huang J B, Ahuja N, et al. Fast and accurate image super-resolution with deep laplacian pyramid networks[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(11): 2599−2613. doi: 10.1109/TPAMI.2018.2865304 |
[4] | Basak H, Kundu R, Agarwal A, et al. Single image super-resolution using residual channel attention network[C]//2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, 2020: 219–224. https://doi.org/10.1109/ICIIS51140.2020.9342688. |
[5] | Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 1646–1654. https://doi.org/10.1109/CVPR.2016.182. |
[6] | Tian C W, Xu Y, Zuo W M, et al. Asymmetric CNN for image superresolution[J]. IEEE Trans Syst, Man, Cybern:Syst, 2022, 52(6): 3718−3730. doi: 10.1109/TSMC.2021.3069265 |
[7] | Tai Y, Yang J, Liu X M. Image super-resolution via deep recursive residual network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 2790–2798. https://doi.org/10.1109/CVPR.2017.298. |
[8] | Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2017: 105–114. https://doi.org/10.1109/CVPR.2017.19. |
[9] | Talab M A, Awang S, Najim S A D M. Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (ESPCN) and convolutional neural network (CNN)[C]//2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, 2019: 331–335. https://doi.org/10.1109/I2CACIS.2019.8825083. |
[10] | Tsai R Y, Huang T S. Multiframe image restoration and registration[J]. Adv Comput Vis Image Process, 1984, 1: 317−339. |
[11] | Irani M, Peleg S. Motion analysis for image enhancement: resolution, occlusion, and transparency[J]. J Vis Commun Image Represent, 1993, 4(4): 324−335. doi: 10.1006/jvci.1993.1030 |
[12] | Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. IEEE Trans Image Process, 1996, 5(6): 996−1011. doi: 10.1109/83.503915 |
[13] | Patti A J, Altunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants[J]. IEEE Trans Image Process, 2001, 10(1): 179−186. doi: 10.1109/83.892456 |
[14] | 杜玉萍, 刘严严. 基于POCS的微扫描超分辨率图像重建算法研究[J]. 光电技术应用, 2019, 34(6): 25−28,44. doi: 10.3969/j.issn.1673-1255.2019.06.006 Du Y P, Liu Y Y. Research on micro-scanning super-resolution image reconstruction algorithm based on POCS[J]. Electro-Opt Technol Appl, 2019, 34(6): 25−28,44. doi: 10.3969/j.issn.1673-1255.2019.06.006 |
[15] | Yao D, Liang H G, Campos J, et al. Calculation and restoration of lost spatial information in division-of-focal-plane polarization remote sensing using polarization super-resolution technology[J]. Int J Appl Earth Obs Geoinf, 2023, 116: 103155. doi: 10.1016/j.jag.2022.103155 |
[16] | 赵浩光, 曲涵石, 王鑫, 等. 高速微扫描图像超分辨重建[J]. 光学 精密工程, 2021, 29(10): 2456−2464. doi: 10.37188/OPE.20212910.2456 Zhao H G, Qu H S, Wang X, et al. Super-resolution reconstruction of micro-scanning images[J]. Opt Precis Eng, 2021, 29(10): 2456−2464. doi: 10.37188/OPE.20212910.2456 |
[17] | 于快快, 郝克, 刘严严, 等. 红外微扫描超分辨率仿真分析与实验研究[J]. 光电技术应用, 2023, 38(1): 46−51. doi: 10.3969/j.issn.1673-1255.2023.01.008 Yu K K, Hao K, Liu Y Y, et al. Simulation analysis and experimental study of infrared micro-scanning super-resolution[J]. Electro-Opt Technol Appl, 2023, 38(1): 46−51. doi: 10.3969/j.issn.1673-1255.2023.01.008 |
[18] | Zhang Y, Sun J Y, Qiu R D, et al. Spatial scale effect of a typical polarized remote sensor on detecting ground objects[J]. Sensors, 2021, 21(13): 4418. doi: 10.3390/s21134418 |
[19] | Zhang X F, Huang W, Xu M F, et al. Super-resolution imaging for infrared micro-scanning optical system[J]. Opt Express, 2019, 27(5): 7719−7737. doi: 10.1364/OE.27.007719 |
[20] | 白旭, 卜丽静, 赵国忱, 等. 多特征的POCS图像超分辨率重建方法[J]. 测绘科学, 2022, 47(12): 174−183. doi: 10.16251/j.cnki.1009-2307.2022.12.022 Bai X, Bu L J, Zhao G C, et al. POCS image super-resolution reconstruction method based on multi-feature[J]. Sci Surv Mapp, 2022, 47(12): 174−183. doi: 10.16251/j.cnki.1009-2307.2022.12.022 |
[21] | 金伟其, 陈翼男, 王霞, 等. 考虑探测器填充率及微扫描对位偏差的扫描型亚像元热成像算法[J]. 红外与毫米波学报, 2008, 27(4): 308−312. doi: 10.3321/j.issn:1001-9014.2008.04.015 Jin W Q, Chen Y N, Wang X, et al. Scanning type sub-pixel thermal imaging algorithm taking account of detector filling rate and micro-scanning contraposition bias[J]. J Infrared Millim Waves, 2008, 27(4): 308−312. doi: 10.3321/j.issn:1001-9014.2008.04.015 |
[22] | Sanders J G, Wan W H, Harris V, et al. Compact airborne staring FPA sensor with microscanning[J]. Proc SPIE, 1996, 2743: 158−168. doi: 10.1117/12.241958 |
[23] | 邹晶, 耿星杰, 廖可梁, 等. 基于亚像素扫描的超分辨技术在高分辨X射线显微镜中的应用[J]. 光子学报, 2017, 46(12): 1211001. doi: 10.3788/gzxb20174612.1211001 Zou J, Geng X J, Liao K L, et al. Application of super-resolution technique based on sub-pixel scanning in high-resolution X-ray microscopy[J]. Acta Photonica Sin, 2017, 46(12): 1211001. doi: 10.3788/gzxb20174612.1211001 |
[24] | Sun M J, Edgar M P, Phillips D B, et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Opt Express, 2016, 24(10): 10476−10485. doi: 10.1364/OE.24.010476 |
[25] | Gui C, Wang D T, Huang X W, et al. Super-resolution and wide-field-of-view imaging based on large-angle deflection with risley prisms[J]. Sensors, 2023, 23(4): 1793. doi: 10.3390/s23041793 |
[26] | Cui H, Cao J, Hao Q, et al. Improving the quality of panoramic ghost imaging via rotation and scaling invariances[J]. Opt Laser Technol, 2023, 160: 109102. doi: 10.1016/j.optlastec.2022.109102 |
[27] | Chen J, Li Y, Cao L H. Research on region selection super resolution restoration algorithm based on infrared micro-scanning optical imaging model[J]. Sci Rep, 2021, 11(1): 2852. doi: 10.1038/s41598-021-82119-1 |
[28] | Liang K Y, Wang B W, Zuo C. Super-resolution-imaging based on circular coded aperture[J]. Proc SPIE, 2023, 12523: 95−99. doi: 10.1117/12.2664916 |
[29] | Ameer S, Basir O. Objective image quality measure based on Weber-weighted mean absolute error[C]//2008 9th International Conference on Signal Processing, Beijing, 2008: 728–732. https://doi.org/10.1109/ICOSP.2008.4697233. |
[30] | Cheng D Q, Chen L L, Lv C, et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(12): 8436−8449. doi: 10.1109/TCSVT.2022.3194169 |
[31] | Chen L L, Guo L, Cheng D Q, et al. Structure-preserving and color-restoring up-sampling for single low-light image[J]. IEEE Trans Circuits Syst Video Technol, 2022, 32(4): 1889−1902. doi: 10.1109/TCSVT.2021.3086598 |
The super-resolution reconstruction algorithm is an algorithm that restores low-resolution images to high-resolution images. It finds wide applications in the fields of medicine, remote sensing, military security, and face recognition. Multiple frames provide more information than a single image. Moreover, multiple frames super-resolution reconstruction yields better result images than single-image super-resolution reconstruction. Micro-scanning is one of the most effective imaging ways of obtaining multiple frames for super-resolution reconstruction. However, the scanning pattern of micro-scanning imaging technology is fixed. Additionally, it requires high precision of the device, including position accuracy and control in time accuracy. Regarding the reconstruction algorithm, traditional interpolate algorithms can only resize images without improving image quality. Reconstruction algorithms based on deep learning perform well in resizing and improving quality. They perform well in many scenarios. However, when they are applied in some specific scenarios that are hard to construct datasets, their performances are reduced. To degrade the precision requirement of the device and achieve good performance without datasets, we propose an image super-resolution reconstruction algorithm based on active displacement imaging. This algorithm is inspired by micro-scanning imaging and POCS (Projection Onto Convex Set). Specifically, we control the camera to move randomly while recording the displacement at the sampling moment. Then, we reconstruct the high-resolution images by solving, mapping, selecting zones, matching multiple frames in sub-pixel precisions (below 0.01 pixel), obtaining the sub-pixel information between multiple frames, and iteratively updating the reconstruction. Finally, we generate super-resolution reconstruction results.
Our present algorithm removes fixed scanning patterns and doesn’t require constructing new datasets. We compare the reconstruction results of our method, recent POCS (tradition), and SRCNN (deep learning). The experimental results show that our algorithm outperforms the latest multi-featured super-resolution reconstruction algorithms of POCS and SRCNN methods in terms of PSNR, SSIM, and mean gradient. Results indicate that this algorithm reduces the requirement of the micro-scanning technique on the device in place accuracy and can be applied in those scenarios without datasets.
The image degradation process
Schematic diagram of up-sampling based on micro-scanning
Three ways of micro-scanning
Schematic diagram of reconstruction based on micro-scanning imaging
Flow chart of our algorithm
Schematic diagram of the experimental setup
Schematic diagram of selection module. Left: Image sequence; Right: An image grid with complete sub-pixel information
Four cases of displacement. (a) Four possible cases of pixel shift; (b) Four modes of integer pixel shift
Schematic diagrams of information extraction in four integer pixel shift cases
Schematic diagram of denoise module. (a) Schematic of matching same pixel of multiple images; (b) Pixel value and noise points (red circle) of same pixels
Experiment sets of the active displacement imaging method
Camera position (red point)
Comparison result between ground truth and calculation. (a) Comparison result at 25 points; (b) Comparison of error at 25 points
Super-resolution reconstruct results of different algorithms at scale of 4. (a) MFPOCS[20]; (b) ACNet[6]; (c) Ours
MTF curves of different algorithms at different scales
Original pictures and their ROI (red rectangle). (a) Simple image; (b) Complex image; (c) Panda image
Comparison of the traditional interpolation and our interpolation at 4 times. (a) Ground truth; (b) Ours; (c) Linear; (d) Bicubic
Super-resolution reconstruction results of simple image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
Super-resolution reconstruction results of ROI of simple image at different scales using the algorithm of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
Super-resolution results of the complex image using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
Super-resolution reconstruction results of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6](green rectangle) and ours (red rectangle)
Super-resolution reconstruction results of the complex image at different scales using the algorithms of MFPOCS[20] (yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)
Super-resolution reconstruction results of ROI of panda image at different scales using the algorithms of MFPOCS[20](yellow rectangle), ACNet[6] (green rectangle) and ours (red rectangle)