Yan Z H, Zhou Z Y, Li Y, et al. Study on the charge driven displacement behavior of the actuator of the point ahead angle mechanism of a space gravitational wave telescope[J]. Opto-Electron Eng, 2023, 50(11): 230223. doi: 10.12086/oee.2023.230223
Citation: Yan Z H, Zhou Z Y, Li Y, et al. Study on the charge driven displacement behavior of the actuator of the point ahead angle mechanism of a space gravitational wave telescope[J]. Opto-Electron Eng, 2023, 50(11): 230223. doi: 10.12086/oee.2023.230223

Study on the charge driven displacement behavior of the actuator of the point ahead angle mechanism of a space gravitational wave telescope

    Fund Project: Project supported by National Key Research and Development Program of China (2021YFC2202200, 2021YFC2202204), and Excellent Member of Chinese Academy of Sciences Youth Promotion Association (Y2022097)
More Information
  • The point ahead angle mechanism (PAAM) is a key component of the space gravitational wave detection telescope. It can control the displacement of the telescope precisely by inputting voltage or charge to the piezoelectric actuator. Therefore, the displacement response of the piezoelectric ceramic actuator directly affects the pointing control performance of the PAAM. In this paper, the equivalent capacitance calculation method is proposed to quantitatively analyze the displacement response characteristics of piezoelectric actuators driven by charge, and the accuracy and feasibility of the calculation method are verified by numerical simulation and experimental verification. The results show that when a charge amplifier controlled by 5 V, 0.05 Hz~5 Hz sine wave signal is used to drive a certain type of piezoelectric actuator, the maximum deviation of displacement response between the analysis results and the experimental results is within 1.35%, which provides a possible analysis method and realization way for the high-precision pointing control of the PAAM of the space gravitational wave detection telescope.
  • 加载中
  • [1] Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Phys Rev Lett, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102

    CrossRef Google Scholar

    [2] Wanner G. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D]. Hannover: Gottfried Wilhelm Leibniz Universität, 2010: 1–106.

    Google Scholar

    [3] Danzmann K. LISA mission overview[J]. Adv Space Res, 2000, 25(6): 1129−1136. doi: 10.1016/S0273-1177(99)00973-4

    CrossRef Google Scholar

    [4] 罗俊, 艾凌皓, 艾艳丽, 等. 天琴计划简介[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 1−19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    CrossRef Google Scholar

    Luo J, Ai L H, Ai Y L, et al. A brief introduction to the TianQin project[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1-2): 1−19. doi: 10.13471/j.cnki.acta.snus.2020.12.23.2020B154

    CrossRef Google Scholar

    [5] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3−10. doi: 10.15982/j.issn.2095-7777.2020.20191230001

    CrossRef Google Scholar

    Luo Z R, Zhang M, Jin G, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. J Deep Space Explor, 2020, 7(1): 3−10. doi: 10.15982/j.issn.2095-7777.2020.20191230001

    CrossRef Google Scholar

    [6] Park I H. Detection of low-frequency gravitational waves[J]. J Korean Phys Soc, 2021, 78(10): 886−891. doi: 10.1007/s40042-021-00118-x

    CrossRef Google Scholar

    [7] 朱伟舟, 谢永, 贾建军, 等. 空间引力波探测超前瞄准机构研制与测试[J]. 红外与激光工程, 2023, 52(4): 20220423. doi: 10.3788/IRLA20220423

    CrossRef Google Scholar

    Zhu W Z, Xie Y, Jia J J, et al. Development and test of the Point Ahead Angle Mechanism for space gravitational wave detection[J]. Infrared Laser Eng, 2023, 52(4): 20220423. doi: 10.3788/IRLA20220423

    CrossRef Google Scholar

    [8] Henein S, Spanoudakis P, Schwab P, et al. Design and development of the point-ahead angle mechanism for the laser interferometer space antenna (LISA)[C]//Proceedings of the 13th European Space Mechanisms & Tribology Symposium, 2009.

    Google Scholar

    [9] Rijnveld N, Pijnenburg J A C M. Picometer stable scan mechanism for gravitational wave detection in space[J]. Proc SPIE, 2010, 7734: 77341R. doi: 10.1117/12.857040

    CrossRef Google Scholar

    [10] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Boston, MA: Kluwer Academic, 1996.

    Google Scholar

    [11] 杨圣, 江兵, 周波. 大驱动力高刚度纳米致动新原理研究[J]. 微细加工技术, 2003(1): 65−68,72.

    Google Scholar

    Yang S, Jiang B, Zhou B. Research on new mechanism of nanometer actuating with large driving force and high rigidity[J]. Microfabr Technol, 2003(1): 65−68,72.

    Google Scholar

    [12] 周淼磊, 杨志刚, 田彦涛, 等. 压电执行器非线性控制方法研究进展[J]. 压电与声光, 2007, 29(6): 656−659,662. doi: 10.3969/j.issn.1004-2474.2007.06.010

    CrossRef Google Scholar

    Zhou M L, Yang Z G, Tian Y T, et al. The development on the nonlinear control method of piezoelectric actuator[J]. Piezoelectr Acoustoopt, 2007, 29(6): 656−659,662. doi: 10.3969/j.issn.1004-2474.2007.06.010

    CrossRef Google Scholar

    [13] Fleming A J. Position sensor performance in nanometer resolution feedback systems[J]. IFAC Proc Vol, 2013, 46(5): 1−6. doi: 10.3182/20130410-3-CN-2034.00010

    CrossRef Google Scholar

    [14] Clayton G M, Tien S, Leang K K, et al. A review of feedforward control approaches in nanopositioning for high-speed SPM[J]. J Dyn Syst Meas Control, 2009, 131(6): 061101. doi: 10.1115/1.4000158

    CrossRef Google Scholar

    [15] Bruno L, Maletta C. Real-time calibration of open-loop piezoelectric actuators for interferometric applications[J]. Int J Mech Mater Des, 2008, 4(2): 97−103. doi: 10.1007/s10999-008-9055-5

    CrossRef Google Scholar

    [16] 高源蓬, 张泉, 李清灵, 等. 压电陶瓷执行器迟滞非线性补偿与最优控制[J]. 仪器仪表学报, 2022, 43(8): 163−172. doi: 10.19650/j.cnki.cjsi.J2209519

    CrossRef Google Scholar

    Gao Y P, Zhang Q, Li Q L, et al. Hysteresis nonlinear compensation and optimal control of piezoelectric actuators[J]. Chin J Sci Instrum, 2022, 43(8): 163−172. doi: 10.19650/j.cnki.cjsi.J2209519

    CrossRef Google Scholar

    [17] Iyer R V, Tan X B. Control of hysteretic systems through inverse compensation[J]. IEEE Control Syst, 2009, 29(1): 83−99. doi: 10.1109/MCS.2008.930924

    CrossRef Google Scholar

    [18] Main J A, Garcia E, Newton D V. Precision position-control of piezoelectric actuators using charge feedback[J]. Proc SPIE, 1995, 2441: 243−254. doi: 10.1117/12.209814

    CrossRef Google Scholar

    [19] 范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020b111

    CrossRef Google Scholar

    Fan W T, Zhao H C, Fan L, et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1-2): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020b111

    CrossRef Google Scholar

    [20] Weise D, Marenaci P, Weimer P, et al. Opto-mechanical architecture of the LISA instrument[J]. Proc SPIE, 2017, 10566: 1056611. doi: 10.1117/12.2308192

    CrossRef Google Scholar

    [21] Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    CrossRef Google Scholar

    [22] Guo Y M, Chen K L, Zhou J H, et al. High-resolution visible imaging with piezoelectric deformable secondary mirror: experimental results at the 1.8-m adaptive telescope[J]. Opto-Electron Adv, 2023, 6(12): 230039. doi: 10.29026/oea.2023.230039

    CrossRef Google Scholar

    [23] Li Z L , Jun Y U , Li Z W ,et al. Physical Modeling of Ferroelectric Capacitors[J]. Piezoelectrics & Acoustooptics, 2001.

    Google Scholar

  • In the space gravitational wave telescope, the Point Ahead Angle Mechanism (PAAM) is the essential core device to realize ultra-long beam distance measurement and nrad/Hz1/2 level ultra-high precision pointing control. The Piezoelectric Actuator (PZA) is the core component of the PAAM, which mainly controls the displacement through the external input voltage or charge, and drives the PAAM to make the laser beam produce a small inclination Angle to realize the high precision Angle control of the spaceborne telescope. Therefore, the displacement response of piezoelectric ceramic actuators directly affects the pointing control performance of the PAAM. However, the inherent hysteresis of piezoelectric materials causes the linearity of the displacement response of PZA to deteriorate, which makes it difficult to control the direction of the PAAM. In order to realize the high linearity drive of PZA, the charge drive method is worth trying. This paper studies the response behavior of PZA driven by charge. In order to verify the advantage of the charge-driven method in improving the linearity of the displacement response of PZA, the comparison of the charge-driven method with the voltage-driven method is made. The experimental results show that although the charge-driven method has an advantage in improving the linearity of the displacement response compared with the voltage-driven method, there is still poor linearity at low frequency. In this paper, it is pointed out that the main cause of linearity variation under low-frequency signal is the mismatch of circuit components caused by the change of equivalent capacitance of PZA with the signal. In order to accurately describe the displacement response behavior of PZA under low-frequency signals, this paper proposes a calculation method for the equivalent capacitance of PZA. By fitting the equivalent capacitance, a mathematical model of the displacement response of the PZA under charge driving is established, and the displacement response characteristics of the PZA under charge driving are quantitatively analyzed. The accuracy and feasibility of the calculation method are verified by numerical simulation and experimental verification. The results show that when a charge amplifier controlled by 5 V, 0.05 Hz~5 Hz sine wave signal is used to drive a certain type of piezoelectric actuator, the maximum deviation of displacement response between the analysis results and the experimental results is within 1.35%. Which provides a possible analysis method and realization way for the high-precision pointing control of the Point Ahead Angle Mechanism of the space gravitational wave detection telescope.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint