Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
Citation: Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

Research progress on hybrid vector beam implementation by metasurfaces

    Fund Project: Project supported by National Natural Science Foundation of China (62175224), and Natural Science Foundation of Zhejiang Province (LZ21A040003, LY22F050001)
More Information
  • As an artificial micro-nano device, metasurfaces can precisely manipulate the propagation and phase of light beams. Vortex beams with different polarization vector properties possess unique optical field distribution characteristics, and the use of metasurfaces to generate complex vector vortex fields has increasingly broad research prospects. This article classifies materials for producing vector vortex beams with metasurfaces and introduces the research progress of metal metasurfaces, all-dielectric metasurfaces, and intelligent metasurfaces in vector vortex beam generation and control. We elaborate on the principles of modulating incident wavefronts using different phase theories and the characteristics of different vector vortex beams generated by metasurfaces, and explore the relationship between the two. Additionally, we summarize the advantages of using metasurfaces instead of traditional optical devices to generate vector vortex beams, and look forward to the challenges and possibilities of vector field control research using metasurfaces with different materials in the future.
  • 加载中
  • [1] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas Propag Mag, 2012, 54(2): 10−35. doi: 10.1109/MAP.2012.6230714

    CrossRef Google Scholar

    [2] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): e1232009. doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [3] Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Phys Commun, 2014, 12: 16−32. doi: 10.1016/j.phycom.2014.01.006

    CrossRef Google Scholar

    [4] Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 2016, 3(10): 1600156. doi: 10.1002/advs.201600156

    CrossRef Google Scholar

    [5] Li F Y, Tang T T, Li J, et al. Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves[J]. J Alloys Compd, 2020, 826: 154174. doi: 10.1016/j.jallcom.2020.154174

    CrossRef Google Scholar

    [6] Zhang L, Wang Z X, Shao R W, et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(4): 2984−2992. doi: 10.1109/TAP.2019.2955219

    CrossRef Google Scholar

    [7] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [8] Shabanpour J. Full manipulation of the power intensity pattern in a large space-time digital metasurface: from arbitrary multibeam generation to harmonic beam steering scheme[J]. Ann Phys, 2020, 532(10): 2000321. doi: 10.1002/andp.202000321

    CrossRef Google Scholar

    [9] Zhang X L, Deng R Y, Yang F, et al. Metasurface-based ultrathin beam splitter with variable split angle and power distribution[J]. ACS Photonics, 2018, 5(8): 2997−3002. doi: 10.1021/acsphotonics.8b00626

    CrossRef Google Scholar

    [10] Gao X, Tang L G, Wu X B, et al. Broadband and high-efficiency ultrathin Pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam[J]. J Phys D Appl Phys, 2021, 54(7): 075104. doi: 10.1088/1361-6463/abc5ea

    CrossRef Google Scholar

    [11] Xu H X, Liu H W, Ling X H, et al. Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface[J]. IEEE Trans Antennas Propag, 2017, 65(12): 7378−7382. doi: 10.1109/TAP.2017.2761548

    CrossRef Google Scholar

    [12] Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Adv Mater, 2015, 27(7): 1195−1200. doi: 10.1002/adma.201405047

    CrossRef Google Scholar

    [13] Kang M, Chen J, Wang X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 2012, 29(4): 572−576. doi: 10.1364/JOSAB.29.000572

    CrossRef Google Scholar

    [14] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [15] Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 2014, 14(1): 225−230. doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [16] Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [17] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [18] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. J Lightwave Technol, 2018, 36(2): 292−301. doi: 10.1109/JLT.2017.2766760

    CrossRef Google Scholar

    [19] Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light Sci Appl, 2018, 7(3): 17146. doi: 10.1038/lsa.2017.146

    CrossRef Google Scholar

    [20] Moreau P A, Toninelli E, Gregory T, et al. Ghost imaging using optical correlations[J]. Laser Photon Rev, 2018, 12(1): 1700143. doi: 10.1002/lpor.201700143

    CrossRef Google Scholar

    [21] Nassiri M G, Brasselet E. Multispectral management of the photon orbital angular momentum[J]. Phys Rev Lett, 2018, 121(21): 213901. doi: 10.1103/PhysRevLett.121.213901

    CrossRef Google Scholar

    [22] Endo K, Sekiya M, Kim J, et al. Resonant tunneling diode integrated with metalens for high-directivity terahertz waves[J]. Appl Phys Express, 2021, 14(8): 082001. doi: 10.35848/1882-0786/ac0678

    CrossRef Google Scholar

    [23] Lu X Q, Zeng X Y, Lv H R, et al. Polarization controllable plasmonic focusing based on nanometer holes[J]. Nanotechnology, 2020, 31(13): 135201. doi: 10.1088/1361-6528/ab62d0

    CrossRef Google Scholar

    [24] Qu S W, Wu W W, Chen B J, et al. Controlling dispersion characteristics of terahertz metasurface[J]. Sci Rep, 2015, 5: 9367. doi: 10.1038/srep09367

    CrossRef Google Scholar

    [25] Taravati S, Eleftheriades G V. Pure and linear frequency-conversion temporal metasurface[J]. Phys Rev Appl, 2021, 15(6): 064011. doi: 10.1103/PHYSREVAPPLIED.15.064011

    CrossRef Google Scholar

    [26] Li Z Y, Zhu Y B, Hao Y F, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein[J]. ACS Photonics, 2019, 6(2): 501−509. doi: 10.1021/acsphotonics.8b01470

    CrossRef Google Scholar

    [27] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 2018, 20(12): 123001. doi: 10.1088/2040-8986/aaeb7d

    CrossRef Google Scholar

    [28] Otte E, Alpmann C, Denz C. Polarization singularity explosions in tailored light fields[J]. Laser Photon Rev, 2018, 12(6): 1700200. doi: 10.1002/lpor.201700200

    CrossRef Google Scholar

    [29] Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533−1556. doi: 10.1515/nanoph-2018-0072

    CrossRef Google Scholar

    [30] Forbes A. Structured light from lasers[J]. Laser Photon Rev, 2019, 13(11): 1900140. doi: 10.1002/lpor.201900140

    CrossRef Google Scholar

    [31] Maguid E, Chriki R, Yannai M, et al. Topologically controlled intracavity laser modes based on Pancharatnam-Berry phase[J]. ACS Photonics, 2018, 5(5): 1817−1821. doi: 10.1021/acsphotonics.7b01525

    CrossRef Google Scholar

    [32] Zambon N C, St-Jean P, Milićević M, et al. Optically controlling the emission chirality of microlasers[J]. Nat Photonics, 2019, 13(4): 283−288. doi: 10.1038/s41566-019-0380-z

    CrossRef Google Scholar

    [33] Hayenga W E, Parto M, Ren J, et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points[J]. ACS Photonics, 2019, 6(8): 1895−1901. doi: 10.1021/acsphotonics.9b00779

    CrossRef Google Scholar

    [34] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [35] Luo W J, Xiao S Y, He Q, et al. Photonic spin hall effect with nearly 100% efficiency[J]. Adv Opt Mater, 2015, 3(8): 1102−1108. doi: 10.1002/adom.201500068

    CrossRef Google Scholar

    [36] Zheng G X, Muhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [37] Sievenpiper D, Zhang L J, Broas R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Trans Microw Theory Tech, 1999, 47(11): 2059−2074. doi: 10.1109/22.798001

    CrossRef Google Scholar

    [38] Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380−479. doi: 10.1364/AOP.11.000380

    CrossRef Google Scholar

    [39] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [40] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [41] Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 2013, 38(22): 4919−4922. doi: 10.1364/OL.38.004919

    CrossRef Google Scholar

    [42] Luo X G, Pu M B, Zhang F, et al. Vector optical field manipulation via structural functional materials: tutorial[J]. J Appl Phys, 2022, 131(18): 181101. doi: 10.1063/5.0089859

    CrossRef Google Scholar

    [43] Zhang F, Pu M B, Guo Y H, et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 2022, 65(5): 254211. doi: 10.1007/s11433-021-1851-0

    CrossRef Google Scholar

    [44] Zhang F, Guo Y H, Pu M B, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 2023, 14(1): 1946. doi: 10.1038/S41467-023-37510-Z

    CrossRef Google Scholar

    [45] Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 2019, 8: 95. doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [46] Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064

    CrossRef Google Scholar

    [47] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [48] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [49] Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558−1563. doi: 10.1021/acsphotonics.6b00392

    CrossRef Google Scholar

    [50] Yu Y F, Zhu A Y, Paniagua-Domínguez R, et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser Photon Rev, 2015, 9(4): 412−418. doi: 10.1002/lpor.201500041

    CrossRef Google Scholar

    [51] Evlyukhin A B, Novikov S M, Zywietz U, et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region[J]. Nano Lett, 2012, 12(7): 3749−3755. doi: 10.1021/nl301594s

    CrossRef Google Scholar

    [52] Wang Z, Yao Y, Pan W K, et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 2023, 10(4): 2205499. doi: 10.1002/advs.202205499

    CrossRef Google Scholar

    [53] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [54] Fan Z B, Qiu H Y, Zhang H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light Sci Appl, 2019, 8: 67. doi: 10.1038/s41377-019-0178-2

    CrossRef Google Scholar

    [55] Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Adv Funct Mater, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [56] Zhou Y, Zheng H Y, Kravchenko I I, et al. Flat optics for image differentiation[J]. Nat Photonics, 2020, 14(5): 316−323. doi: 10.1038/s41566-020-0591-3

    CrossRef Google Scholar

    [57] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Opt Lett, 2013, 38(4): 534−536. doi: 10.1364/OL.38.000534

    CrossRef Google Scholar

    [58] Koshelev K, Tang Y T, Li K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639−1644. doi: 10.1021/acsphotonics.9b00700

    CrossRef Google Scholar

    [59] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 2020, 14(2): 102−108. doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [60] Yuan Y Y, Sun S, Chen Y, et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Adv Sci, 2020, 7(18): 2001437. doi: 10.1002/advs.202001437

    CrossRef Google Scholar

    [61] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Adv Mater, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659

    CrossRef Google Scholar

    [62] Zheng C L, Li J, Yue Z, et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser Photon Rev, 2022, 16(7): 2200051. doi: 10.1002/LPOR.202200051

    CrossRef Google Scholar

    [63] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [64] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [65] Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020, 14(8): 498−503. doi: 10.1038/s41566-020-0623-z

    CrossRef Google Scholar

    [66] Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    CrossRef Google Scholar

    [67] Davis J A, Moreno I, Badham K, et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Opt Lett, 2016, 41(10): 2270−2273. doi: 10.1364/OL.41.002270

    CrossRef Google Scholar

    [68] Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    CrossRef Google Scholar

    [69] Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/OPTICA.4.000139

    CrossRef Google Scholar

    [70] Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2

    CrossRef Google Scholar

    [71] Xie X, Pu M B, Jin J J, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PHYSREVLETT.126.183902

    CrossRef Google Scholar

    [72] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light Sci Appl, 2014, 3(5): e167. doi: 10.1038/lsa.2014.48

    CrossRef Google Scholar

    [73] Chen W T, Khorasaninejad M, Zhu A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light Sci Appl, 2017, 6(5): e16259. doi: 10.1038/lsa.2016.259

    CrossRef Google Scholar

    [74] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202−1206. doi: 10.1126/science.aaf3417

    CrossRef Google Scholar

    [75] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640−643. doi: 10.1126/science.1227193

    CrossRef Google Scholar

    [76] Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3): 267−270. doi: 10.1364/OPTICA.2.000267

    CrossRef Google Scholar

    [77] Huang L L, Chen X Z, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Lett, 2012, 12(11): 5750−5755. doi: 10.1021/nl303031j

    CrossRef Google Scholar

    [78] Yu S X, Li L, Shi G M, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Appl Phys Lett, 2016, 108(24): 241901. doi: 10.1063/1.4953786

    CrossRef Google Scholar

    [79] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4: 2808. doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [80] Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Opt Lett, 2014, 39(2): 197−200. doi: 10.1364/OL.39.000197

    CrossRef Google Scholar

    [81] Milione G, Lavery M P J, Huang H, et al. 4 x 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Opt Lett, 2015, 40(9): 1980−1983. doi: 10.1364/OL.40.001980

    CrossRef Google Scholar

    [82] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Adv Opt Photonics, 2016, 8(2): 200−227. doi: 10.1364/AOP.8.000200

    CrossRef Google Scholar

    [83] Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101. doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [84] Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light Sci Appl, 2015, 4(3): e257. doi: 10.1038/lsa.2015.30

    CrossRef Google Scholar

    [85] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Adv Photonics, 2019, 1(2): 024002. doi: 10.1117/1.AP.1.2.024002

    CrossRef Google Scholar

    [86] Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect poincaré beams via dielectric spin-multiplexed metasurface[J]. Nat Commun, 2021, 12(1): 2230. doi: 10.1038/S41467-021-22462-Z

    CrossRef Google Scholar

    [87] Dorrah A H, Rubin N A, Tamagnone M, et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nat Commun, 2021, 12(1): 6249. doi: 10.1038/s41467-021-26253-4

    CrossRef Google Scholar

    [88] Dorrah A H, Rubin N A, Zaidi A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nat Photonics, 2021, 15(4): 287−296. doi: 10.1038/s41566-020-00750-2

    CrossRef Google Scholar

    [89] Zheng C L, Li J, Liu J Y, et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photon Rev, 2022, 16(10): 2200236. doi: 10.1002/LPOR.202200236

    CrossRef Google Scholar

    [90] Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/S41377-021-00497-7

    CrossRef Google Scholar

    [91] Wang D Y, Liu T, Zhou Y J, et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields[J]. Nanophotonics, 2021, 10(1): 685−695. doi: 10.1515/NANOPH-2020-0465

    CrossRef Google Scholar

    [92] Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67. doi: 10.1038/S41377-021-00504-X

    CrossRef Google Scholar

    [93] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Phys Rev Appl, 2014, 2(4): 044012. doi: 10.1103/PhysRevApplied.2.044012

    CrossRef Google Scholar

    [94] 王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008

    CrossRef Google Scholar

    Wang P F, He F Y, Liu J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008

    CrossRef Google Scholar

    [95] Parigi V, D'Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 2015, 6: 7706. doi: 10.1038/ncomms8706

    CrossRef Google Scholar

    [96] Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nat Commun, 2014, 5: 3069. doi: 10.1038/ncomms4069

    CrossRef Google Scholar

    [97] Hu G W, Hong X M, Wang K, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nat Photonics, 2019, 13(7): 467−472. doi: 10.1038/s41566-019-0399-1

    CrossRef Google Scholar

    [98] D'Ambrosio V, Nagali E, Walborn S P, et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 2012, 3: 961. doi: 10.1038/ncomms1951

    CrossRef Google Scholar

    [99] Chow P K, Jacobs-Gedrim R B, Gao J, et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J]. ACS Nano, 2015, 9(2): 1520−1527. doi: 10.1021/nn5073495

    CrossRef Google Scholar

    [100] Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    CrossRef Google Scholar

    [101] Zhang Y X, Pu M B, Jin J J, et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 2022, 5(11): 220058. doi: 10.29026/oea.2022.220058

    CrossRef Google Scholar

    [102] Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nat Mater, 2015, 14(6): 607−612. doi: 10.1038/nmat4267

    CrossRef Google Scholar

    [103] Genevet P, Lin J, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nat Commun, 2012, 3: 1278. doi: 10.1038/ncomms2293

    CrossRef Google Scholar

    [104] Janisch C, Wang Y X, Ma D, et al. Extraordinary second harmonic generation in tungsten disulfide monolayers[J]. Sci Rep, 2014, 4: 5530. doi: 10.1038/srep05530

    CrossRef Google Scholar

    [105] Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [106] Hu G W, Ou Q D, Si G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209−213. doi: 10.1038/s41586-020-2359-9

    CrossRef Google Scholar

    [107] Zhang Y C, Liu W W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Adv Opt Mater, 2018, 6(4): 1701228. doi: 10.1002/adom.201701228

    CrossRef Google Scholar

    [108] Chen S Q, Xie Z Q, Ye H P, et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. Light Sci Appl, 2021, 10(1): 222. doi: 10.1038/S41377-021-00667-7

    CrossRef Google Scholar

    [109] 夏小兰, 曾宪智, 宋世超, 等. 基于柱矢量光调控的纵向超分辨率准球形多焦点阵列[J]. 光电工程, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    CrossRef Google Scholar

    [110] Lu Y D, Xu Y, Ouyang X, et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state[J]. Opto-Electron Adv, 2022, 5(4): 210014. doi: 10.29026/oea.2022.210014

    CrossRef Google Scholar

    [111] Genevet P, Yu N F, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Appl Phys Lett, 2012, 100(1): 013101. doi: 10.1063/1.3673334

    CrossRef Google Scholar

    [112] Zhao W C, Wang K, Hong X M, et al. Large second-harmonic vortex beam generation with quasi-nonlinear spin-orbit interaction[J]. Sci Bull, 2021, 66(5): 449−456. doi: 10.1016/j.scib.2020.08.043

    CrossRef Google Scholar

    [113] Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    CrossRef Google Scholar

    [114] He Q, Sun S L, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1849272. doi: 10.34133/2019/1849272

    CrossRef Google Scholar

    [115] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 2016, 10(1): 60−65. doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [116] Mou N L, Liu X L, Wei T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374−5379. doi: 10.1039/C9NR07602F

    CrossRef Google Scholar

    [117] Mehmood M Q, Mei S T, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Adv Mater, 2016, 28(13): 2533−2539. doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [118] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99

    CrossRef Google Scholar

    [119] Liu S, Noor A, Du L L, et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 2016, 3(10): 1968−1977. doi: 10.1021/acsphotonics.6b00515

    CrossRef Google Scholar

    [120] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [121] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6: 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [122] Yan C, Li X, Pu M B, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 2019, 6(3): 628−633. doi: 10.1021/acsphotonics.8b01119

    CrossRef Google Scholar

    [123] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys Rev Lett, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401

    CrossRef Google Scholar

    [124] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [125] Wang D C, Zhang L C, Gu Y H, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 2015, 5: 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [126] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304−1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [127] Shuang Y, Zhao H T, Ji W, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE J Emerging Sel Top Circuits Syst, 2020, 10(1): 29−37. doi: 10.1109/JETCAS.2020.2973391

    CrossRef Google Scholar

    [128] Li S J, Li Y B, Zhang L, et al. Programmable controls to scattering properties of a radiation array[J]. Laser Photon Rev, 2021, 15(2): 2000449. doi: 10.1002/lpor.202000449

    CrossRef Google Scholar

    [129] Liu G Y, Li L, Han J Q, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Appl Mater Interfaces, 2020, 12(20): 23554−23564. doi: 10.1021/acsami.0c02467

    CrossRef Google Scholar

    [130] Liu B Y, Du J C, Jiang X N, et al. All-in-one integrated multifunctional broadband metasurface for analogue signal processing, polarization conversion, beam manipulation, and near-field sensing[J]. Adv Opt Mater, 2022, 10(20): 2201217. doi: 10.1002/ADOM.202201217

    CrossRef Google Scholar

    [131] Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 2020, 3(3): 165−171. doi: 10.1038/s41928-020-0380-5

    CrossRef Google Scholar

    [132] Chen D B, Yang J B, He X, et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 2023, 11(14): 2300182. doi: 10.1002/adom.202300182

    CrossRef Google Scholar

  • Metasurface refers to two-dimensional materials composed of micro or nano-scale structures. Due to the precise design of its microstructures, metasurfaces can be used to control light beam propagation and phase with high accuracy. Vector beams refer to light beams whose polarization state changes along the direction of propagation and thus require a vector field description. Unlike traditional beams, vector beams can interact with various degrees of freedom including spin angular momentum, orbital angular momentum, transverse, and radial, and exhibit more complex and diverse transmission characteristics. Therefore, the generation of complex vector vortex fields using metasurfaces has broad prospects in optical communication, computation, and processing. This article mainly categorizes metasurfaces for generating vector beams based on their materials, including metal metasurfaces, all-dielectric metasurfaces, and intelligent metasurfaces. We demonstrate the progress made in generating vector beams using different metasurfaces and their applications in various backgrounds. Meanwhile, we elaborate on the principles of how different metasurfaces modulate incident wavefronts using different phase theories and the characteristics of the generated vector beams. We explore the relationship between the two and provide important guidance and theoretical support for researchers. In addition, we summarize the advantages of using metasurfaces instead of traditional optical devices to generate vector beams. Compared to traditional devices, metasurfaces have smaller size, higher control precision, and more convenient preparation and regulation techniques. Finally, we also discuss the challenges and possibilities of using metasurfaces of different materials for vector field control in the future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint