Liu Y H, Gu X, Deng D X, et al. Research progress of double-sided laser shock peening technology[J]. Opto-Electron Eng, 2023, 50(4): 220186. doi: 10.12086/oee.2023.220186
Citation: Liu Y H, Gu X, Deng D X, et al. Research progress of double-sided laser shock peening technology[J]. Opto-Electron Eng, 2023, 50(4): 220186. doi: 10.12086/oee.2023.220186

Research progress of double-sided laser shock peening technology

    Fund Project: Basic Research Projects of Shenzhen Research & Development Fund (JCYJ20200109112808109)
More Information
  • Laser shock peening uses the force effect of the laser to strengthen the surface. The traditional laser shock peening technology is a single-sided shock. When applied to thin-walled parts with complex profiles, it is difficult to achieve shape control and fatigue performance control coordination. The new double-sided laser shock peening technology is ideal for solving the surface strengthening challenges of thin-walled parts with complex profiles. On the basis of introducing the characteristics and deficiencies of single-sided laser shock peening technology, the principle and technical characteristics of two double-sided laser shock peening technologies are summarized. The application of simulation research in analyzing the physical mechanism of stress wave propagation and stress field distribution of double-sided laser shock peening is expounded. The mechanism and application of double-sided laser shock peening in the application of shape control and fatigue performance control are introduced, and the future development of double-sided laser shock peening is prospected.
  • 加载中
  • [1] 吴嘉俊, 赵吉宾, 乔红超, 等. 激光冲击强化技术的应用现状与发展[J]. 光电工程, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    CrossRef Google Scholar

    Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electron Eng, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    CrossRef Google Scholar

    [2] 朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20): 35−45. doi: 10.3901/JME.2014.20.035

    CrossRef Google Scholar

    Zhu Y L, Wang Y L, Bian F L, et al. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. J Mech Eng, 2014, 50(20): 35−45. doi: 10.3901/JME.2014.20.035

    CrossRef Google Scholar

    [3] 丛家慧, 王磊. 超声喷丸表面强化技术的研究现状与应用进展[J]. 机械工程材料, 2019, 43(5): 1−5. doi: 10.11973/jxgccl201905001

    CrossRef Google Scholar

    Cong J H, Wang L. Research status and application progress of ultrasonic shot peening surface strengthening technology[J]. Mater Mech Eng, 2019, 43(5): 1−5. doi: 10.11973/jxgccl201905001

    CrossRef Google Scholar

    [4] Tang C B, Liu D X, Tang B, et al. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy[J]. Appl Surf Sci, 2016, 390: 946−958. doi: 10.1016/j.apsusc.2016.08.146

    CrossRef Google Scholar

    [5] 黄潇, 曹子文, 常明, 等. 激光冲击强化对TC4钛合金单面修饰激光焊接接头疲劳性能的影响[J]. 中国机械工程, 2018, 29(1): 104−109. doi: 10.3969/j.issn.1004-132X.2018.01.016

    CrossRef Google Scholar

    Huang X, Cao Z W, Chang M, et al. Effects of laser shock processing on fatigue performances of TC4 titanium alloy single-side laser modification welding joints[J]. China Mech Eng, 2018, 29(1): 104−109. doi: 10.3969/j.issn.1004-132X.2018.01.016

    CrossRef Google Scholar

    [6] Li J, Feng A X, Zhou J Z, et al. Enhancement of fatigue properties of 2024-T351 aluminum alloy processed by cryogenic laser peening[J]. Vacuum, 2019, 164: 41−45. doi: 10.1016/j.vacuum.2019.02.030

    CrossRef Google Scholar

    [7] Siddaiah A, Mao B, Kasar A K, et al. Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy[J]. Wear, 2020, 462–463: 203490. doi: 10.1016/j.wear.2020.203490

    CrossRef Google Scholar

    [8] King A, Evans A D, Preuss M, et, al. Study of residual stresses introduced by laser shock peening in wide chord fan blades by neutron and synchrotron diffraction[J]. J Neutron Res, 2004, 12(1–3): 207−211. doi: 10.1080/10238160410001734694

    CrossRef Google Scholar

    [9] Mannava S R, Risbeck J D, Jacobs L G. Distortion control for laser shock peened gas turbine engine compressor blade edges: US5531570A[P]. 1996-07-02

    Google Scholar

    [10] Ding K. FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy[J]. Surf Eng, 2003, 19(2): 127−133. doi: 10.1179/026708403225002568

    CrossRef Google Scholar

    [11] Fang Y W, Li Y H, He W F, et al. Effects of laser shock processing with different parameters and ways on residual stresses fields of a TC4 alloy blade[J]. Mater Sci Eng A, 2013, 559: 683−692. doi: 10.1016/j.msea.2012.09.009

    CrossRef Google Scholar

    [12] Ren X D, Yang X Q, Zhou W F, et al. Thermal stability of surface nano-crystallization layer in AZ91D magnesium alloy induced by laser shock peening[J]. Surf Coat Technol, 2018, 334: 182−188. doi: 10.1016/j.surfcoat.2017.09.037

    CrossRef Google Scholar

    [13] Wu J J, Zhao J B, Qiao H C, et al. Evaluating methods for quality of laser shock processing[J]. Optik, 2020, 200: 162940. doi: 10.1016/j.ijleo.2019.162940

    CrossRef Google Scholar

    [14] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Mater Sci Eng A, 1996, 210(1–2): 102–113. doi: 10.1016/0921-5093(95)10084-9.

    Google Scholar

    [15] Peyre P, Berthe L, Fabbro R, et al. Corrosion reactivity of laser-peened steel surfaces[J]. J Mater Eng Perform, 2000, 9(6): 656−662. doi: 10.1361/105994900770345520

    CrossRef Google Scholar

    [16] Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 2006, 260(7–8): 847–854. doi: 10.1016/j.wear.2005.04.014.

    Google Scholar

    [17] Hu Y X, Xu X X, Yao Z Q, et al. Laser peen forming induced two way bending of thin sheet metals and its mechanisms[J]. J Appl Phys, 2010, 108(7): 073117. doi: 10.1063/1.3486218

    CrossRef Google Scholar

    [18] Graham M E, Jackson J D. Dual laser shock peening: 6479790[P]. 2002-11-12.

    Google Scholar

    [19] Mannava S, Wright III P K, Azad F H, et al. Single sided laser shock peening: 6559415[P]. 2003-05-06.

    Google Scholar

    [20] Ge M Z, Xiang J Y, Yang L, et al. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surf Coat Technol, 2017, 310: 157−165. doi: 10.1016/j.surfcoat.2016.12.093

    CrossRef Google Scholar

    [21] Luo M S, Hu Y X, Hu L, et al. Efficient process planning of laser peen forming for complex shaping with distributed Eigen-moment[J]. J Mater Process Technol, 2020, 279: 116588. doi: 10.1016/j.jmatprotec.2020.116588

    CrossRef Google Scholar

    [22] Hu Y X, Yang R Y, Wang D Y, et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component[J]. J Mater Process Technol, 2018, 251: 197−204. doi: 10.1016/j.jmatprotec.2017.08.033

    CrossRef Google Scholar

    [23] Ivetic G. Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets[J]. Surf Eng, 2011, 27(6): 445−453. doi: 10.1179/026708409X12490360425846

    CrossRef Google Scholar

    [24] Hu Y X, Xie Y F, Wu D, et al. Quantitative evaluation of specimen geometry effect on bending deformation of laser peen forming[J]. Int J Mech Sci, 2019, 150: 404−410. doi: 10.1016/j.ijmecsci.2018.10.040

    CrossRef Google Scholar

    [25] Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. Int J Fatigue, 1999, 21(7): 719−724. doi: 10.1016/S0142-1123(99)00035-3

    CrossRef Google Scholar

    [26] Fan Y J, Wang Y N, Vukelic S, et al. Numerical Investigation of opposing dual sided micro scale laser shock peening[J]. J Manuf Sci Eng, 2007, 129(2): 256−264. doi: 10.1115/1.2540771

    CrossRef Google Scholar

    [27] Zhang X Q, Li H, Duan S W, et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surf Coat Technol, 2015, 280: 163−173. doi: 10.1016/j.surfcoat.2015.09.004

    CrossRef Google Scholar

    [28] Ouyang P X, He L J, Li P J, et al. Effect of dual-sided laser peening modes on residual stress distribution of aero-engine titanium blades[M]//Han Y F. Advances in Materials Processing. Singapore: Springer, 2017: 29–45. https://doi.org/10.1007/978-981-13-0107-0_4.

    Google Scholar

    [29] Zhang X Q, Chen T, Zhang Y, et al. Investigation on failure mechanism of the absorption film subjected to double-sided laser shock processing[J]. Optik, 2022, 251: 168363. doi: 10.1016/j.ijleo.2021.168363

    CrossRef Google Scholar

    [30] Xiang Y F, Mei R L, Zhao L Z, et al. Effects of processing parameters on residual stress fields of 2024-T351 alloy blade subjected to massive double-sided laser peening treatment[J]. J Laser Appl, 2022, 34(2): 022015. doi: 10.2351/7.0000672

    CrossRef Google Scholar

    [31] Nam T. Finite element analysis of residual stress field induced by laser shock peening[D]. Columbus: The Ohio State University, 2002.

    Google Scholar

    [32] Ayeb M, Frija M, Fathallah R. Influence of multiple laser impacts on thin leading edges of turbine blade[J]. Proc Inst Mech Eng L J Mater Des Appl, 2020, 234(1): 130−143. doi: 10.1177/1464420719873936

    CrossRef Google Scholar

    [33] Ling X, Peng W W, Ma G. Influence of laser peening parameters on residual stress field of 304 stainless steel[J]. J Pressure Vessel Technol, 2008, 130(2): 1030−1036. doi: 10.1115/1.2891914

    CrossRef Google Scholar

    [34] Correa C, De Lara L R, Díaz M, et al. Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J]. Int J Fatigue, 2015, 79: 1−9. doi: 10.1016/j.ijfatigue.2015.04.018

    CrossRef Google Scholar

    [35] Zhao M H, Duan C H, Li J Y, et al. Deformation and residual stress characteristics of TC17 alloy subjected to laser shock peening with single and double sides[J]. IOP Conf Ser Mater Sci Eng, 2019, 493: 012001. doi: 10.1088/1757-899X/493/1/012001

    CrossRef Google Scholar

    [36] Trdan U, Skarba M, Grum J. Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy[J]. Mater Charact, 2014, 97: 57−68. doi: 10.1016/j.matchar.2014.08.020

    CrossRef Google Scholar

    [37] Chen L, Ren X D, Zhou W F, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Mater Sci Eng A, 2018, 728: 20−29. doi: 10.1016/j.msea.2018.04.105

    CrossRef Google Scholar

    [38] Meng X K, Wang H, Tan W S, et al. Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening[J]. Surf Coat Technol, 2020, 391: 125698. doi: 10.1016/j.surfcoat.2020.125698

    CrossRef Google Scholar

    [39] Pantelakis S G, Petroyiannis P V, Bouzakis K D, et al. Surface hardness increase of 2024 aluminum alloy subjected to cyclic loading[J]. Theor Appl Fract Mech, 2007, 48(1): 68−81. doi: 10.1016/j.tafmec.2007.04.002

    CrossRef Google Scholar

    [40] Ren X D, Chen B Q, Jiao J F, et al. Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage[J]. Opt Laser Technol, 2020, 121: 105784. doi: 10.1016/j.optlastec.2019.105784

    CrossRef Google Scholar

    [41] Zhang L, Lu J Z, Zhang Y K, et al. Effects of processing parameters on fatigue properties of LY2 Al alloy subjected to laser shock processing[J]. Chin Opt Lett, 2011, 9(6): 061406. doi: 10.3788/COL201109.061406

    CrossRef Google Scholar

    [42] Bhamare S, Ramakrishnan G, Mannava S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surf Coat Technol, 2013, 232: 464−474. doi: 10.1016/j.surfcoat.2013.06.003

    CrossRef Google Scholar

    [43] Nie X, Li Y, He W, et al. Optimization and fracture mechanism analysis of TC17 titanium alloy simulated-blade with two-sided laser shock processing[M]//Ye L. Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress. Amsterdam: Elsevier, 2014: 2–6. https://doi.org/10.1533/9780081002254.2.

    Google Scholar

    [44] 王长雨, 罗开玉, 鲁金忠. 双面激光喷丸条件下冲击前进方向对AM50镁合金试样残余应力场的影响[J]. 中国激光, 2016, 43(3): 0303002. doi: 10.3788/CJL201643.0303002

    CrossRef Google Scholar

    Wang C Y, Luo K Y, Lu J Z. Effect of advancing direction on residual stress fields of AM50 Mg alloy specimens treated by double-sided laser shock peening[J]. Chin J Lasers, 2016, 43(3): 0303002. doi: 10.3788/CJL201643.0303002

    CrossRef Google Scholar

    [45] Zhang L, Lu J Z, Zhang Y K, et al. Effects of different shocked paths on fatigue property of 7050-T7451 aluminum alloy during two-sided laser shock processing[J]. Mater Des, 2011, 32(2): 480−486. doi: 10.1016/j.matdes.2010.08.039

    CrossRef Google Scholar

    [46] Correa C, Ruiz de Lara L, Díaz M, et al. Influence of pulse sequence and edge material effect on fatigue life of Al2024-T351 specimens treated by laser shock processing[J]. Int J Fatigue, 2015, 70: 196−204. doi: 10.1016/j.ijfatigue.2014.09.015

    CrossRef Google Scholar

    [47] Sun R J, Che Z G, Cao Z W, et al. Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response[J]. Surf Coat Technol, 2020, 383: 125284. doi: 10.1016/j.surfcoat.2019.125284

    CrossRef Google Scholar

    [48] Yang Y, Zhou W F, Chen B Q, et al. Fatigue behaviors of foreign object damaged Ti-6Al-4V alloys under laser shock peening[J]. Int J Fatigue, 2020, 136: 105596. doi: 10.1016/j.ijfatigue.2020.105596

    CrossRef Google Scholar

    [49] Luo K Y, Liu B, Wu L J, et al. Tensile properties, residual stress distribution and grain arrangement as a function of sheet thickness of Mg-Al-Mn alloy subjected to two-sided and simultaneous LSP impacts[J]. Appl Surf Sci, 2016, 369: 366−376. doi: 10.1016/j.apsusc.2016.02.045

    CrossRef Google Scholar

    [50] Correa C, Peral D, Porro J A, et al. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: a solution to reduce residual stress anisotropy[J]. Opt Laser Technol, 2015, 73: 179−187. doi: 10.1016/j.optlastec.2015.04.027

    CrossRef Google Scholar

    [51] Jiménez C A V, Rosas G G, González C R, et al. Effect of laser shock processing on fatigue life of 2205 duplex stainless steel notched specimens[J]. Opt Laser Technol, 2017, 97: 308−315. doi: 10.1016/j.optlastec.2017.07.020

    CrossRef Google Scholar

    [52] Zhang X Q, Huang Z W, Chen B, et al. Investigation on residual stress distribution in thin plate subjected to two sided laser shock processing[J]. Opt Laser Technol, 2019, 111: 146−155. doi: 10.1016/j.optlastec.2018.09.035

    CrossRef Google Scholar

    [53] 罗开玉, 陈起, 吕刺, 等. 双面激光同时冲击AM50镁合金板料的厚度分析[J]. 中国激光, 2014, 41(1): 0103003. doi: 10.3788/cjl201441.0103003

    CrossRef Google Scholar

    Luo K Y, Chen Q, Lv C, et al. Thickness analysis of two-sided simultaneous laser shock processing on AM50 Mg alloy[J]. Chin J Lasers, 2014, 41(1): 0103003. doi: 10.3788/cjl201441.0103003

    CrossRef Google Scholar

    [54] Zhang Z F, Qin R, Li G, et al. Deep learning-based monitoring of surface residual stress and efficient sensing of AE for laser shock peening[J]. J Mater Process Technol, 2022, 303: 117515. doi: 10.1016/j.jmatprotec.2022.117515

    CrossRef Google Scholar

  • Thin-wall structures servicing under some extreme conditions may risk fatigue failure and lead to undesirable disasters. The service life of components will be prolonged if their fatigue performance can be enhanced. Since fatigue failure mainly emerges from the surface of the component, it can be delayed if the surface property can be improved with some surface treatment methods, such as heat treatment, chemical treatment, and strain-strengthening treatment. Strain strengthening methods can modify the residual stress field and micro-structure by inducing inelastic deformation to enhance fatigue performance. Compared with other surface treatment methods, strain-strengthening methods have attracted much attention in the past several years due to their low costs, high efficiency, and flexibility. Among the strain-strengthing methods, laser shock peening (LSP) shows an excellent strengthening effect because it can bring deeper compressive residual stress and finer grains with less sacrifice on the surface integrity. Besides, LSP can be applied to process complex and convert surfaces that are hard to be touched by traditional surface treatment methods. Therefore, LSP is viewed as the most promising method for the fatigue life extension of key components in aerospace, vehicles, and ships.

    The traditional single-sided laser shock peening (SLSP) is generally used to treat thick-wall components with significant stiffness because the distortion induced by SLSP can be inhibited. However, for the thin-walled structures with low stiffness, the geometry shape can be changed due to the laser-induced local deformation. More seriously, the impact inertia induced by the laser-induced shock wave leads to the fracture of thin-walled structures. Therefore, shape accuracy should be taken into account carefully when the LSP is used to treat thin-wall structures.

    The double-sided laser shock peening (DSLSP) is proposed to overcome the surface treatment problem related to thin-walled parts with complex surfaces. DSLSP can induce symmetric local deformation on both sides of the workpiece. The symmetric deformation can ensure shape accuracy by forcing local deformation on two sides to eliminate each other. Besides, DSLSP induces compressive residual stress and refined grains on both sides of the workpiece, which contributes to excellent fatigue performance. Recently, DSLSP has attracted great research attention and plays an increasingly critical role in the fatigue life extension of thin-walled components. However, few summaries on DSLSP have been reported in the past several years. For a better understanding of DNLSP, this article summarizes its technical principle, physical mechanism, application, and other aspects, and prospects of its existing problems and development prospects.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint