Jin C, He Y, Tang Y, et al. Spatial mismatch calibration method for simultaneous slightly off-axis digital holographic microscopy system[J]. Opto-Electron Eng, 2022, 49(9): 220047. doi: 10.12086/oee.2022.220047
Citation: Jin C, He Y, Tang Y, et al. Spatial mismatch calibration method for simultaneous slightly off-axis digital holographic microscopy system[J]. Opto-Electron Eng, 2022, 49(9): 220047. doi: 10.12086/oee.2022.220047

Spatial mismatch calibration method for simultaneous slightly off-axis digital holographic microscopy system

    Fund Project: National Natural Science Foundation of China (61875201, 61975211, 62005287,61604154), Sichuan Provincial Central Government Guides Local Science and Technology Development Projects (2020ZYD020), and Outstanding Youth Science and Technology Talents Program of Sichuan (2020JDJQ0005)
More Information
  • The existing spatial mismatch calibration methods can only achieve pixel-level calibration accuracy due to the limitation of principle, and are easily disturbed by the environmental noise. In this paper, a spatial mismatch calibration method for a sub-pixel-level simultaneous slightly off-axis digital holographic microscope system is proposed. In the modeling, the method not only analyzes the lateral position error caused by the image segmentation, but also further considers the longitudinal position error caused by the sensor tilt, and summarizes the calibration process as a nonlinear multi-variable optimization problem. In this paper, the particle swarm optimization algorithm is used to solve this optimization problem because of its simple structure, high convergence efficiency, and strong global search ability. In the calibration process, a phase-only wavefront based on the phase aberration is established, and the root mean square error of the phase-only wavefront is used as the target function to remove the influence of noise on the calibration accuracy. Simulation results show that the proposed method has sub-pixel accuracy, and experiment demonstrates the effectiveness of the method in the practical systems.
  • 加载中
  • [1] 田鹏, 严伟, 李凡星, 等. 均匀球面波数字同轴全息生物显微方法[J]. 光电工程, 2019, 46(1): 180110. doi: 10.12086/oee.2019.180110

    CrossRef Google Scholar

    Tian P, Yan W, Li F X, et al. Biology microscopy using well-distributed sphere digital in-line holography[J]. Opto-Electron Eng, 2019, 46(1): 180110. doi: 10.12086/oee.2019.180110

    CrossRef Google Scholar

    [2] 李光勇, 杨岩. 数字全息粒子图像测速技术应用于旋转流场测量的研究[J]. 中国激光, 2012, 39(6): 0609001. doi: 10.3788/CJL201239.0609001

    CrossRef Google Scholar

    Li G Y, Yang Y. Digital holography particle image velocimetry applied for measurement of the rotating flow fields[J]. Chin J Lasers, 2012, 39(6): 0609001. doi: 10.3788/CJL201239.0609001

    CrossRef Google Scholar

    [3] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Appl Opt, 1999, 38(34): 6994−7001. doi: 10.1364/AO.38.006994

    CrossRef Google Scholar

    [4] 史晓玉, 王大勇, 戎路, 等. 连续太赫兹波数字全息相衬成像[J]. 光电工程, 2020, 47(5): 190543. doi: 10.12086/oee.2020.190543

    CrossRef Google Scholar

    Shi X Y, Wang D Y, Rong L, et al. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electron Eng, 2020, 47(5): 190543. doi: 10.12086/oee.2020.190543

    CrossRef Google Scholar

    [5] Vijayakumar A, Katkus T, Lundgaard S, et al. Fresnel incoherent correlation holography with single camera shot[J]. Opto-Electron Adv, 2020, 3(8): 200004. doi: 10.29026/oea.2020.200004

    CrossRef Google Scholar

    [6] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Opt Lett, 1997, 22(16): 1268−1270. doi: 10.1364/OL.22.001268

    CrossRef Google Scholar

    [7] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Appl Opt, 2000, 39(23): 4070−4075. doi: 10.1364/AO.39.004070

    CrossRef Google Scholar

    [8] Shaked N T, Zhu Y Z, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Opt Express, 2009, 17(18): 15585−15591. doi: 10.1364/OE.17.015585

    CrossRef Google Scholar

    [9] Gao P, Yao B L, Harder I, et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. J Opt Soc Am A, 2011, 28(3): 434−440. doi: 10.1364/JOSAA.28.000434

    CrossRef Google Scholar

    [10] Picazo-Bueno J A, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube[J]. Opt Express, 2019, 27(4): 5655−5669. doi: 10.1364/OE.27.005655

    CrossRef Google Scholar

    [11] Shaked N T, Rinehart M T, Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics[J]. Opt Lett, 2009, 34(6): 767−769. doi: 10.1364/OL.34.000767

    CrossRef Google Scholar

    [12] Kiire T, Nakadate S, Shibuya M. Phase-shifting interferometer based on changing the direction of linear polarization orthogonally[J]. Appl Opt, 2008, 47(21): 3784−3788. doi: 10.1364/AO.47.003784

    CrossRef Google Scholar

    [13] Millerd J E, Brock N J, Denneau L Jr. Calibration and error correction in multi-channel imaging: 20050083531[P]. 2005-04-21.

    Google Scholar

    [14] Hahn J, Kim H, Lim Y, et al. Spatial phase-shifting interferometry with compensation of geometric errors based on genetic algorithm[J]. Chin Opt Lett, 2009, 7(12): 1113−1116. doi: 10.3788/COL20090712.1113

    CrossRef Google Scholar

    [15] Li B, Chen L, Zhao B, et al. Spatial mismatch calibration using circular carrier technique in the simultaneous phase shifting interferometry[J]. Appl Opt, 2012, 51(8): 1037−1044. doi: 10.1364/AO.51.001037

    CrossRef Google Scholar

    [16] Zheng D H, Chen L, Yang Y, et al. Spatial mismatch calibration based on fast partial phase correlation for interferograms in dynamic Fizeau interferometer[J]. Opt Eng, 2020, 59(3): 034104. doi: 10.1117/1.OE.59.3.034104

    CrossRef Google Scholar

    [17] Bai H Y, Shan M G, Zhong Z, et al. Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter[J]. Appl Opt, 2015, 54(32): 9513−9517. doi: 10.1364/AO.54.009513

    CrossRef Google Scholar

    [18] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwood Village, USA: Roberts and Company Publishers, 2005.

    Google Scholar

    [19] Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings[J]. Stud Comput Math, 2001, 8: 473−504. doi: 10.1016/S1570-579X(01)80028-8

    CrossRef Google Scholar

    [20] Yuan K, Ling Q, Yin W T. On the convergence of decentralized gradient descent[J]. SIAM J Optim, 2013, 26(3): 1835−1854. doi: 10.1137/130943170

    CrossRef Google Scholar

    [21] Dai Y H, Li L Z, Li D. On restart procedures for the conjugate gradient method[J]. Numer Algorithms, 2004, 35(2-4): 249−260. doi: 10.1023/B:NUMA.0000021761.10993.6e

    CrossRef Google Scholar

    [22] Jamrus T, Chien C F, Gen M, et al. Hybrid particle swarm optimization combined with genetic operators for flexible job-shop scheduling under uncertain processing time for semiconductor manufacturing[J]. IEEE Trans Semicond Manufact, 2018, 31(1): 32−41. doi: 10.1109/TSM.2017.2758380

    CrossRef Google Scholar

    [23] Liu J, Qiu X H. A novel hybrid PSO-BP algorithm for neural network training[C]//International Joint Conference on Computational Sciences and Optimization. Sanya, 2009.

    Google Scholar

    [24] Li M Q, Lin D, Kou J S. A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization[J]. Appl Soft Compu, 2012, 12(3): 975−987. doi: 10.1016/j.asoc.2011.11.032

    CrossRef Google Scholar

    [25] Bansal J C, Singh P K, Saraswat M, et al. Inertia weight strategies in particle swarm optimization[C]//Third World Congress on Nature and Biologically Inspired Computing. Salamanca, Spain, 2011.

    Google Scholar

  • With the development of computer and sensor technology, digital holography technology inherited from the traditional optical holography has entered the practical stage. The photo-electric sensor is used to record the hologram formed by the interference of the reference wave and the object wave, and then the complex amplitude of the object wave is recovered in the computer. The advantages of fast, large field of view, non-contact, and high-precision make it a powerful tool in microbial detection, micro-component measurement, particle tracking, and vibration monitoring.

    In recent years, slightly off-axis digital holography which combines the advantages of off-axis and on-axis has been vigorously developed. In order to further improve its real-time performance, a synchronous slightly off-axis system based on the field of view (FOV) multiplexing technique has been applied. However, the spatial position of the holograms collected by this technology is unknown, which causes a spatial mismatch problem. In order to ensure the accuracy of the subsequent holographic reconstruction, it is necessary to perform a spatial mismatch calibration. The existing calibration methods can be roughly divided into: intensity-based calibration methods and phase-based calibration methods. Intensity-based calibration methods are susceptible to environmental noise, and phase-based calibration methods only have pixel-level accuracy. At the same time, none of the existing methods take into account the longitudinal position error caused by the sensor tilt.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint