Li C L, Liu J C, Zhang F M, et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Eng, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438
Citation: Li C L, Liu J C, Zhang F M, et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Eng, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438

Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology

    Fund Project: National Key Research and Development Program of China (2018YFB2003501)
More Information
  • In modern measurement technology, frequency modulation continuous wave LiDAR combines the advantages of traditional radar and laser interferometry and plays an important role in the fields of the large-size space precision measurement, micro-distance measurement, and three-dimensional imaging with its characteristics such as non-contact, large measurement range, high resolution, and strong anti-jamming capability. However, in practical application, the frequency modulation of the laser light source can’t be completely linear, which greatly reduces the measurement accuracy of the frequency modulation continuous wave LiDAR technology. Therefore, how to suppress the effects of the laser frequency modulation nonlinearity has become a hot research topic in the field of frequency modulation continuous wave LiDAR measurement. This paper introduces the basic principle of the frequency modulation continuous wave LiDAR, and introduces four widely used nonlinear correction methods and some special nonlinear correction methods according to the different nonlinear correction schemes of the frequency modulation, and makes summaries and prospects.
  • 加载中
  • [1] 宦克为, 郑峰, 石晓光, 等. 基于调频连续波原理的三维成像激光雷达系统[J]. 长春理工大学学报(自然科学版), 2008, 31(4): 61−64.

    Google Scholar

    Huan K W, Zheng F, Shi X G, et al. The system of 3D LADAR base on FM/CW principles[J]. J Changchun Univ Sci Technol (Nat Sci Ed), 2008, 31(4): 61−64.

    Google Scholar

    [2] Lee J, Kim Y J, Lee K, et al. Time-of-flight measurement with femtosecond light pulses[J]. Nat Photonics, 2010, 4(10): 716−720. doi: 10.1038/nphoton.2010.175

    CrossRef Google Scholar

    [3] Whyte R, Streeter L, Cree M J, et al. Application of lidar techniques to time-of-flight range imaging[J]. Appl Opt, 2015, 54(33): 9654−9664. doi: 10.1364/AO.54.009654

    CrossRef Google Scholar

    [4] Jang I G, Lee S H, Park Y H. A parallel-phase demodulation-based distance-measurement method using dual-frequency modulation[J]. Appl Sci, 2019, 10(1): 293. doi: 10.3390/app10010293

    CrossRef Google Scholar

    [5] Jang Y S, Park J, Jin J H. Sub-100-nm precision distance measurement by means of all-fiber photonic microwave mixing[J]. Opt Express, 2021, 29(8): 12229−12239. doi: 10.1364/OE.421719

    CrossRef Google Scholar

    [6] Nicolaescu R, Rogers C, Piggott A Y, et al. 3D imaging via silicon-photonics-based LIDAR[J]. Proc SPIE, 2021, 11691: 116910G.

    Google Scholar

    [7] Zhang X B Q, Kong M, Guo T T, et al. Frequency modulation nonlinear correction and range-extension method based on laser frequency scanning interference[J]. Appl Opt, 2021, 60(12): 3446−3451. doi: 10.1364/AO.420663

    CrossRef Google Scholar

    [8] Zhang F M, Yi L P, Qu X H. Simultaneous measurements of velocity and distance via a dual-path FMCW lidar system[J]. Opt Commun, 2020, 474: 126066. doi: 10.1016/j.optcom.2020.126066

    CrossRef Google Scholar

    [9] Piracha M U, Nguyen D, Ozdur I, et al. Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser[J]. Opt Express, 2011, 19(12): 11213−11219. doi: 10.1364/OE.19.011213

    CrossRef Google Scholar

    [10] Kakuma S. Frequency-modulated continuous-wave laser radar using dual vertical-cavity surface-emitting laser diodes for real-time measurements of distance and radial velocity[J]. Opt Rev, 2017, 24(1): 39−46. doi: 10.1007/s10043-016-0294-7

    CrossRef Google Scholar

    [11] Cheng X R, Liu J C, Jia L H, et al. Precision and repeatability improvement in frequency-modulated continuous-wave velocity measurement based on the splitting of beat frequency signals[J]. Opt Express, 2021, 29(18): 28582−28596. doi: 10.1364/OE.433637

    CrossRef Google Scholar

    [12] DiLazaro T, Nehmetallah G. Large-volume, low-cost, high-precision FMCW tomography using stitched DFBs[J]. Opt Express, 2018, 26(3): 2891−2904. doi: 10.1364/OE.26.002891

    CrossRef Google Scholar

    [13] Hariyama T, Sandborn P A M, Watanabe M, et al. High-accuracy range-sensing system based on FMCW using low-cost VCSEL[J]. Opt Express, 2018, 26(7): 9285−9297. doi: 10.1364/OE.26.009285

    CrossRef Google Scholar

    [14] Hillger P, Grzyb J, Jain R, et al. Terahertz imaging and sensing applications with silicon-based technologies[J]. IEEE Trans Terahertz Sci Technol, 2019, 9(1): 1−19. doi: 10.1109/TTHZ.2018.2884852

    CrossRef Google Scholar

    [15] Jia L H, Wang Y, Wang X Y, et al. Nonlinear calibration of frequency modulated continuous wave LIDAR based on a microresonator soliton comb[J]. Opt Lett, 2021, 46(5): 1025−1028. doi: 10.1364/OL.415524

    CrossRef Google Scholar

    [16] Iiyama K, Wang L T, Hayashi K I. Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry[J]. J Lightwave Technol, 1996, 14(2): 173−178. doi: 10.1109/50.482260

    CrossRef Google Scholar

    [17] Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications[J]. Opt Lett, 2009, 34(23): 3692−3694. doi: 10.1364/OL.34.003692

    CrossRef Google Scholar

    [18] Satyan N, Vasilyev A, Rakuljic G, et al. Precise control of broadband frequency chirps using optoelectronic feedback[J]. Opt Express, 2009, 17(18): 15991−15999. doi: 10.1364/OE.17.015991

    CrossRef Google Scholar

    [19] Satyan N, Vasilyev A, Rakuljic G, et al. Phase-locking and coherent power combining of broadband linearly chirped optical waves[J]. Opt Express, 2012, 20(23): 25213−25227. doi: 10.1364/OE.20.025213

    CrossRef Google Scholar

    [20] Behroozpour B, Sandborn P A M, Quack N, et al. Electronic-photonic integrated circuit for 3D microimaging[J]. IEEE J Solid-State Circuits, 2017, 52(1): 161−172. doi: 10.1109/JSSC.2016.2621755

    CrossRef Google Scholar

    [21] Qin J, Zhou Q, Xie W L, et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop[J]. Opt Lett, 2015, 40(19): 4500−4503. doi: 10.1364/OL.40.004500

    CrossRef Google Scholar

    [22] Qin J, Zhang L, Xie W L, et al. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source[J]. Opt Express, 2019, 27(14): 19359−19368. doi: 10.1364/OE.27.019359

    CrossRef Google Scholar

    [23] Meng Y X, Xie W L, Feng Y X, et al. Dynamic range enhanced optical frequency domain reflectometry using dual-loop composite optical phase-locking[J]. IEEE Photon J, 2021, 13(4): 7100307.

    Google Scholar

    [24] 卢炤宇, 葛春风, 王肇颖, 等. 频率调制连续波激光雷达技术基础与研究进展[J]. 光电工程, 2019, 46(7): 190038.

    Google Scholar

    Lu Z Y, Ge C F, Wang Z Y, et al. Basics and developments of frequency modulation continuous wave LiDAR[J]. Opto-Electron Eng, 2019, 46(7): 190038.

    Google Scholar

    [25] Barber Z W, Babbitt W R, Kaylor B, et al. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar[J]. Appl Opt, 2010, 49(2): 213−219. doi: 10.1364/AO.49.000213

    CrossRef Google Scholar

    [26] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. J Lightwave Technol, 1993, 11(8): 1377−1384. doi: 10.1109/50.254098

    CrossRef Google Scholar

    [27] Rosenfeldt H, Knothe C, Cierullies J, et al. Evolution of amplitude and dispersion spectra during fiber Bragg grating fabrication[C]//Proceedings of the Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2001, Stresa, 2001: BWA4.

    Google Scholar

    [28] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Appl Opt, 2005, 44(35): 7630−7634. doi: 10.1364/AO.44.007630

    CrossRef Google Scholar

    [29] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Appl Opt, 2007, 46(13): 2394−2400. doi: 10.1364/AO.46.002394

    CrossRef Google Scholar

    [30] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry[J]. Opt Express, 2008, 16(17): 13139−13149. doi: 10.1364/OE.16.013139

    CrossRef Google Scholar

    [31] Shi G, Zhang F M, Qu X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications[J]. Opt Eng, 2014, 53(12): 122402. doi: 10.1117/1.OE.53.12.122402

    CrossRef Google Scholar

    [32] Pan H, Zhang F M, Shi C Z, et al. High-precision frequency estimation for frequency modulated continuous wave laser ranging using the multiple signal classification method[J]. Appl Opt, 2017, 56(24): 6956−6961. doi: 10.1364/AO.56.006956

    CrossRef Google Scholar

    [33] Shi G, Wang W, Zhang F M. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers[J]. Opt Commun, 2018, 411: 152−157. doi: 10.1016/j.optcom.2017.11.062

    CrossRef Google Scholar

    [34] 曲兴华, 职广涛, 张福民, 等. 利用信号拼接提高调频连续波激光测距系统的分辨力[J]. 光学 精密工程, 2015, 23(1): 40−47. doi: 10.3788/OPE.20152301.0040

    CrossRef Google Scholar

    Qu X H, Zhi G T, Zhang F M, et al. Improvement of resolution of frequency modulated continuous wave laser ranging system by signal splicing[J]. Opt Precis Eng, 2015, 23(1): 40−47. doi: 10.3788/OPE.20152301.0040

    CrossRef Google Scholar

    [35] Xiong X T, Qu X H, Zhang F M. Error correction for FSI-based system without cooperative target using an adaptive filtering method and a phase-matching mosaic algorithm[J]. Appl Sci, 2018, 8(10): 1954. doi: 10.3390/app8101954

    CrossRef Google Scholar

    [36] Zhang F M, Li Y T, Pan H, et al. Vibration compensation of the frequency-scanning-interferometry-based absolute ranging system[J]. Appl Sci, 2019, 9(1): 147. doi: 10.3390/app9010147

    CrossRef Google Scholar

    [37] Pan H, Qu X H, Zhang F M. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Opt Express, 2018, 26(12): 15186−15198. doi: 10.1364/OE.26.015186

    CrossRef Google Scholar

    [38] Badar M, Lu P, Buric M, et al. Integrated auxiliary interferometer for self-correction of nonlinear tuning in optical frequency domain reflectometry[J]. J Lightwave Technol, 2020, 38(21): 6097−6103. doi: 10.1109/JLT.2020.3007703

    CrossRef Google Scholar

    [39] Yüksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer[J]. Opt Express, 2009, 17(7): 5845−5851. doi: 10.1364/OE.17.005845

    CrossRef Google Scholar

    [40] 包为政, 张福民, 曲兴华. 基于等光频细分重采样的调频干涉测距方法[J]. 激光技术, 2020, 44(1): 1−6. doi: 10.7510/jgjs.issn.1001-3806.2020.01.001

    CrossRef Google Scholar

    Bao W Z, Zhang F M, Qu X H. Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling[J]. Laser Technol, 2020, 44(1): 1−6. doi: 10.7510/jgjs.issn.1001-3806.2020.01.001

    CrossRef Google Scholar

    [41] Jiang S, Liu B, Wang H C. FMCW laser ranging method based on a frequency multiplier[J]. Appl Opt, 2021, 60(4): 918−922. doi: 10.1364/AO.412633

    CrossRef Google Scholar

    [42] Adler D C, Chen Y, Huber R, et al. Three-dimensional endomicroscopy using optical coherence tomography[J]. Nat Photonics, 2007, 1(12): 709−716. doi: 10.1038/nphoton.2007.228

    CrossRef Google Scholar

    [43] 姚艳南, 张福民, 曲兴华. 基于硬件的等光频间隔采样及频谱分析方法[J]. 光学学报, 2016, 36(12): 1212003. doi: 10.3788/AOS201636.1212003

    CrossRef Google Scholar

    Yao Y N, Zhang F M, Qu X H. Hardware-based equispaced-phase resampling nonlinearity correction algorithm and spectral analysis method[J]. Acta Opt Sin, 2016, 36(12): 1212003. doi: 10.3788/AOS201636.1212003

    CrossRef Google Scholar

    [44] Barber Z W, Giorgetta F R, Roos P A, et al. Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb[J]. Opt Lett, 2011, 36(7): 1152−1154. doi: 10.1364/OL.36.001152

    CrossRef Google Scholar

    [45] Baumann E, Giorgetta F R, Coddington I, et al. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements[J]. Opt Lett, 2013, 38(12): 2026−2028. doi: 10.1364/OL.38.002026

    CrossRef Google Scholar

    [46] Baumann E, Giorgetta F R, Deschênes J D, et al. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance[J]. Opt Express, 2014, 22(21): 24914−24928. doi: 10.1364/OE.22.024914

    CrossRef Google Scholar

    [47] Yu W H, Pfeiffer P, Morsali A, et al. Comb-calibrated frequency sweeping interferometry for absolute distance and vibration measurement[J]. Opt Lett, 2019, 44(20): 5069−5072. doi: 10.1364/OL.44.005069

    CrossRef Google Scholar

    [48] Xie W L, Meng Y X, Feng Y X, et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Opt Express, 2021, 29(2): 604−614. doi: 10.1364/OE.410405

    CrossRef Google Scholar

    [49] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 2018, 361(6402): eaan8083. doi: 10.1126/science.aan8083

    CrossRef Google Scholar

    [50] Twayana K, Ye Z C, Helgason Ó B, et al. Frequency-comb-calibrated swept-wavelength interferometry[J]. Opt Express, 2021, 29(15): 24363−24372. doi: 10.1364/OE.430818

    CrossRef Google Scholar

    [51] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 2020, 369(6501): eaay3676. doi: 10.1126/science.aay3676

    CrossRef Google Scholar

    [52] Dale J, Hughes B, Lancaster A J, et al. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells[J]. Opt Express, 2014, 22(20): 24869−24893. doi: 10.1364/OE.22.024869

    CrossRef Google Scholar

    [53] Ito F, Fan X Y, Koshikiya Y. Long-range coherent OFDR with light source phase noise compensation[J]. J Lightwave Technol, 2012, 30(8): 1015−1024. doi: 10.1109/JLT.2011.2167598

    CrossRef Google Scholar

    [54] Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50 m[J]. Meas Sci Technol, 2015, 26(8): 084003. doi: 10.1088/0957-0233/26/8/084003

    CrossRef Google Scholar

    [55] Prellinger G, Meiners-Hagen K, Pollinger F. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry[J]. Surf Topogr:Metrol Prop, 2016, 4(2): 024012. doi: 10.1088/2051-672X/4/2/024012

    CrossRef Google Scholar

    [56] Zhang T, Qu X H, Zhang F M. Nonlinear error correction for FMCW ladar by the amplitude modulation method[J]. Opt Express, 2018, 26(9): 11519−11528. doi: 10.1364/OE.26.011519

    CrossRef Google Scholar

    [57] Liu Z, Liu Z G, Deng Z W, et al. Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter[J]. Appl Opt, 2016, 55(11): 2985−2992. doi: 10.1364/AO.55.002985

    CrossRef Google Scholar

    [58] Zhang X S, Pouls J, Wu M C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR[J]. Opt Express, 2019, 27(7): 9965−9974. doi: 10.1364/OE.27.009965

    CrossRef Google Scholar

    [59] Dong Y K, Zhu Z D, Tian X N, et al. Frequency-modulated continuous-wave LIDAR and 3D imaging by using linear frequency modulation based on injection locking[J]. J Lightwave Technol, 2021, 39(8): 2275−2280. doi: 10.1109/JLT.2021.3050772

    CrossRef Google Scholar

    [60] Cole D B, Sorace-Agaskar C, Moresco M, et al. Integrated heterodyne interferometer with on-chip modulators and detectors[J]. Opt Lett, 2015, 40(13): 3097−3100. doi: 10.1364/OL.40.003097

    CrossRef Google Scholar

    [61] Aflatouni F, Abiri B, Rekhi A, et al. Nanophotonic coherent imager[J]. Opt Express, 2015, 23(4): 5117−5125. doi: 10.1364/OE.23.005117

    CrossRef Google Scholar

    [62] Lippok N, Coen S, Nielsen P, et al. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform[J]. Opt Express, 2012, 20(21): 23398−23413. doi: 10.1364/OE.20.023398

    CrossRef Google Scholar

    [63] Bradu A, Israelsen N M, Maria M, et al. Recovering distance information in spectral domain interferometry[J]. Sci Rep, 2018, 8(1): 15445. doi: 10.1038/s41598-018-33821-0

    CrossRef Google Scholar

    [64] 许新科, 刘国栋, 刘炳国, 等. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究[J]. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501

    CrossRef Google Scholar

    Xu X K, Liu G D, Liu B G, et al. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation[J]. Acta Phys Sin, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501

    CrossRef Google Scholar

    [65] Lu C, Liu G D, Liu B G, et al. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry[J]. Opt Express, 2015, 23(25): 31662−31671. doi: 10.1364/OE.23.031662

    CrossRef Google Scholar

    [66] Liu G D, Xu X K, Liu B G, et al. Dispersion compensation method based on focus definition evaluation functions for high-resolution laser frequency scanning interference measurement[J]. Opt Commun, 2017, 386: 57−64. doi: 10.1016/j.optcom.2016.10.052

    CrossRef Google Scholar

    [67] Pan H, Qu X H, Shi C Z, et al. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry[J]. Opt Commun, 2018, 416: 214−220. doi: 10.1016/j.optcom.2018.02.006

    CrossRef Google Scholar

    [68] Swinkels B L, Bhattacharya N, Braat J J M. Correcting movement errors in frequency-sweeping interferometry[J]. Opt Lett, 2005, 30(17): 2242−2244. doi: 10.1364/OL.30.002242

    CrossRef Google Scholar

    [69] Krause B W, Tiemann B G, Gatt P. Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture[J]. Appl Opt, 2012, 51(36): 8745−8761. doi: 10.1364/AO.51.008745

    CrossRef Google Scholar

    [70] Lu C, Liu G D, Liu B G, et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration[J]. Opt Express, 2016, 24(26): 30215−30224. doi: 10.1364/OE.24.030215

    CrossRef Google Scholar

    [71] Wang R R, Wang B N, Xiang M S, et al. Vibration compensation method based on instantaneous ranging model for triangular FMCW ladar signals[J]. Opt Express, 2021, 29(11): 15918−15939. doi: 10.1364/OE.423289

    CrossRef Google Scholar

    [72] Wang R R, Wang B N, Wang Y C, et al. Time-varying vibration compensation based on segmented interference for triangular FMCW LiDAR signals[J]. Remote Sens, 2021, 13(19): 3803. doi: 10.3390/rs13193803

    CrossRef Google Scholar

    [73] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb[J]. Nature, 2020, 581(7807): 164−170. doi: 10.1038/s41586-020-2239-3

    CrossRef Google Scholar

    [74] Fitch C R, Baltušis A, Marko I P, et al. Carrier recombination properties of low-threshold 1.3 μm quantum dot lasers on silicon[J]. IEEE J Sel Top Quantum Electron, 2022, 28(1): 1900210.

    Google Scholar

    [75] Komljenovic T, Huang D N, Pintus P, et al. Photonic integrated circuits using heterogeneous integration on silicon[J]. Proc IEEE, 2018, 106(12): 2246−2257. doi: 10.1109/JPROC.2018.2864668

    CrossRef Google Scholar

    [76] Kaur P, Boes A, Ren G H, et al. Hybrid and heterogeneous photonic integration[J]. APL Photon, 2021, 6(6): 061102. doi: 10.1063/5.0052700

    CrossRef Google Scholar

    [77] Komljenovic T, Liang L J, Chao R L, et al. Widely-tunable ring-resonator semiconductor lasers[J]. Appl Sci, 2017, 7(7): 732. doi: 10.3390/app7070732

    CrossRef Google Scholar

    [78] Huang D N, Tran M A, Guo J, et al. High-power sub-kHz linewidth lasers fully integrated on silicon[J]. Optica, 2019, 6(6): 745−752. doi: 10.1364/OPTICA.6.000745

    CrossRef Google Scholar

    [79] Jones R, Doussiere P, Driscoll J B, et al. Heterogeneously integrated InP\/silicon photonics: fabricating fully functional transceivers[J]. IEEE Nanotechnol Mag, 2019, 13(2): 17−26. doi: 10.1109/MNANO.2019.2891369

    CrossRef Google Scholar

    [80] Thomas S, Bredendiek C, Jaeschke T, et al. A compact, energy-efficient 240 GHz FMCW radar sensor with high modulation bandwidth[C]//Proceedings of 2016 German Microwave Conference (GeMiC), Bochum, Germany, 2016: 397–400.

    Google Scholar

    [81] Su Y P, Huang C Y, Chen S J. A 24-GHz fully integrated CMOS transceiver for FMCW radar applications[J]. IEEE J Solid-State Circuits, 2021, 56(11): 3307−3317. doi: 10.1109/JSSC.2021.3095137

    CrossRef Google Scholar

    [82] Isaac B J, Song B W, Pinna S, et al. Indium phosphide photonic integrated circuit transceiver for FMCW LiDAR[J]. IEEE J Sel Top Quantum Electron, 2019, 25(6): 8000107.

    Google Scholar

    [83] Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 2018, 557(7703): 81−85. doi: 10.1038/s41586-018-0065-7

    CrossRef Google Scholar

    [84] Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195−199. doi: 10.1038/nature11727

    CrossRef Google Scholar

    [85] Hulme J C, Doylend J K, Heck M J R, et al. Fully integrated hybrid silicon two dimensional beam scanner[J]. Opt Express, 2015, 23(5): 5861−5874. doi: 10.1364/OE.23.005861

    CrossRef Google Scholar

    [86] Hutchison D N, Sun J, Doylend J K, et al. High-resolution aliasing-free optical beam steering[J]. Optica, 2016, 3(8): 887−890. doi: 10.1364/OPTICA.3.000887

    CrossRef Google Scholar

    [87] Li Z Y, Chen B S, Na Q X, et al. Wide-steering-angle high-resolution optical phased array[J]. Photon Res, 2021, 9(12): 2511−2518. doi: 10.1364/PRJ.437846

    CrossRef Google Scholar

  • In the 1980s, Skolnik from Switzerland proposed a theoretical model of frequency modulation continuous wave (FMCW), and single-mode semiconductor lasers were also gradually used by researchers, which led to the formation of the frequency modulated continuous wave (FMCW) LiDAR. Frequency modulation continuous wave LiDAR is a kind of laser detection and ranging, which belongs to coherent detection. FMCW LiDAR combines the advantages of traditional radar and laser interferometry and has the advantages of large measurement range, high precision, high sensitivity, fast speed, high resolution, no distance blind zone, low transmission power, strong anti-interference ability, and no need to cooperate with targets. It is widely used in various fields such as large-scale and precision equipment manufacturing, atmospheric exploration, aerospace, and the 3D imaging because of these advantages.

    In principle, the FMCW LiDAR ranging system uses the interference of the frequency linearly modulated laser emission signal and echo signal to form a stable beat signal, then calculate the target’s distance based on the frequency or phase of the beat signal. Therefore, the FMCW LiDAR ranging system has very strict requirements on the linearity of frequency modulation. However, the frequency modulation of laser light source can’t be completely linear in practical application, seriously affecting the ranging accuracy, and resolution. This makes the nonlinearity correction of the FM become the research focus of the FMCW LiDAR ranging systems. According to the different correction schemes, we can summarize the methods of frequency modulation nonlinear correction into frequency sweep active linearization based on the phase-locked loop feedback, equal optical frequency interval resampling, optical frequency comb correction method, phase ratio method, and some other special correction methods, such as on-chip modulator-based approaches. These nonlinear correction methods have their advantages and disadvantages. And this paper introduces and analyzes the principles and research progress of these methods.

    Although the FMCW LiDAR measurement technology has gradually matured, further exploration and research is still needed. At present, most of the nonlinear correction methods focus on the optical system and signal processing, but we hope to solve the problem from the design of the laser itself, and make further improvements in its mechanical structure, circuit design, and temperature control to avoid subsequent complicated work. In order to achieve true intelligence, on the one hand, we need to improve the efficiency of measurement (especially three-dimensional imaging). On the other hand, we must strive to miniaturize and integrate the FMCW LiDAR measurement system to bring more convenience and wider application scenarios.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(31)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint