Citation: | Xiao W Z, Cheng J, Zhang D W, et al. High stability PGC demodulation technique for fiber-optic interferometric sensor[J]. Opto-Electron Eng, 2022, 49(3): 210368. doi: 10.12086/oee.2022.210368 |
[1] | Muanenda Y, Faralli S, Oton C J, et al. Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection[J]. Opt Express, 2018, 26(2): 687−701. doi: 10.1364/OE.26.000687 |
[2] | Peng F, Wu H, Jia X H, et al. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Opt Express, 2014, 22(11): 13804−13810. doi: 10.1364/OE.22.013804 |
[3] | 况洋, 吴昊庭, 张敬栋, 等. 分布式多参数光纤传感技术研究进展[J]. 光电工程, 2018, 45(9): 170678. Kuang Y, Wu H T, Zhang J D, et al. Advances of key technologies on distributed fiber system for multi-parameter sensing[J]. Opto-Electron Eng, 2018, 45(9): 170678. |
[4] | Zhong X, Gui D L, Zhang B F, et al. Performance enhancement of phase-demodulation Φ-OTDR using improved two-path DCM algorithm[J]. Opt Commun, 2021, 482: 126616. |
[5] | Chen D, Liu Q W, Wang Y F, et al. Fiber-optic distributed acoustic sensor based on a chirped pulse and a non-matched filter[J]. Opt Express, 2019, 27(20): 29415−29424. doi: 10.1364/OE.27.029415 |
[6] | Lu Y L, Zhu T, Chen L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. J Lightwave Technol, 2010, 28(22): 3243−3249. |
[7] | Qian X L, Kong Y, Du T Y, et al. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber[J]. Opt Commun, 2020, 457: 124595. doi: 10.1016/j.optcom.2019.124595 |
[8] | Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. J Lightwave Technol, 2005, 23(6): 2081−2087. doi: 10.1109/JLT.2005.849924 |
[9] | 王欢, 郑刚, 陈海滨, 等. 调频连续波激光干涉光纤温度传感器[J]. 光电工程, 2019, 46(5): 180506. Wang H, Zheng G, Chen H B, et al. Frequency-modulated continuous-wave laser interferometric optical fiber temperature sensor[J]. Opto-Electron Eng, 2019, 46(5): 180506. |
[10] | Peng F, Duan N, Rao Y J, et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technol Lett, 2014, 26(20): 2055−2057. doi: 10.1109/LPT.2014.2346760 |
[11] | Lindsey N J, Yuan S Y, Lellouch A, et al. City-scale dark fiber DAS measurements of infrastructure use during the covid-19 pandemic[J]. Geophys Res Lett, 2020, 47(16): e2020GL089931. |
[12] | 朱程辉, 瞿永中, 王建平. 基于时频特征的光纤周界振动信号识别[J]. 光电工程, 2014, 41(1): 16−22. Zhu C H, Qu Y Z, Wang J P. The vibration signal recognition of optical fiber perimeter based on time-frequency features[J]. Opto-Electron Eng, 2014, 41(1): 16−22. |
[13] | Jousset P, Reinsch T, Ryberg T, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nat Commun, 2018, 9(1): 2509. doi: 10.1038/s41467-018-04860-y |
[14] | Wu H J, Liu X R, Xiao Y, et al. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR[J]. J Lightwave Technol, 2019, 37(19): 4991−5000. doi: 10.1109/JLT.2019.2926745 |
[15] | 刘张云, 周黎明, 刘伟民, 等. BOTDR中散射谱中心频率的ESPRIT估计算法研究[J]. 光电工程, 2018, 45(6): 180007. Liu Z Y, Zhou L M, Liu W M, et al. Research on ESPRIT estimation algorithm for the central frequency of gain spectrum in Brillouin optical time-domain reflectrometry[J]. Opto-Electron Eng, 2018, 45(6): 180007. |
[16] | Fernández-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. APL Photonics, 2020, 5: 030901. doi: 10.1063/1.5139602 |
[17] | Wang C, Shang Y, Zhao W A, et al. Distributed acoustic sensor using broadband weak FBG array for large temperature tolerance[J]. IEEE Sens J, 2018, 18(7): 2796−2800. doi: 10.1109/JSEN.2018.2803750 |
[18] | Wang C, Wang C, Shang Y, et al. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry[J]. Opt Commun, 2015, 346: 172−177. doi: 10.1016/j.optcom.2015.02.044 |
[19] | Martins H F, Shi K, Thomsen B C, et al. Real time dynamic strain monitoring of optical links using the backreflection of live PSK data[J]. Opt Express, 2016, 24(19): 22303−22318. doi: 10.1364/OE.24.022303 |
[20] | Ma P F, Sun Z S, Liu K, et al. Distributed fiber optic vibration sensing with wide dynamic range, high frequency response, and multi-points accurate location[J]. Opt Laser Technol, 2020, 124: 105966. doi: 10.1016/j.optlastec.2019.105966 |
[21] | Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Opt Express, 2016, 24(2): 853−858. doi: 10.1364/OE.24.000853 |
[22] | Shang Y, Yang Y H, Wang C, et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering[J]. Measurement, 2016, 79: 222−227. doi: 10.1016/j.measurement.2015.09.042 |
[23] | Qian H, Luo B, He H J, et al. Phase demodulation based on DCM algorithm in Φ-OTDR with self-interference balance detection[J]. IEEE Photonics Technol Lett, 2020, 32(8): 473−476. doi: 10.1109/LPT.2020.2979030 |
[24] | Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. J Lightwave Technol, 2015, 33(13): 2811−2816. doi: 10.1109/JLT.2015.2414416 |
[25] | Zhang S H, Chen Y P, Chen B Y, et al. A PGC-DCDM demodulation scheme insensitive to phase modulation depth and carrier phase delay in an EOM-based SPM interferometer[J]. Opt Commun, 2020, 474: 126183. doi: 10.1016/j.optcom.2020.126183 |
[26] | He J, Wang L, Li F, et al. An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability[J]. J Lightwave Technol, 2010, 28(22): 3258−3265. |
[27] | Zhang A L, Zhang S. High stability fiber-optics sensors with an improved PGC demodulation algorithm[J]. IEEE Sens J, 2016, 16(21): 7681−7684. |
[28] | Nikitenko A N, Plotnikov M Y, Volkov A V, et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors[J]. IEEE Sens J, 2018, 18(5): 1985−1992. doi: 10.1109/JSEN.2018.2792540 |
[29] | Yu Z H, Zhang Q, Zhang M Y, et al. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm[J]. Appl Phys B, 2018, 124(5): 84. doi: 10.1007/s00340-018-6956-3 |
[30] | Yu Z H, Dai H L, Zhang M Y, et al. High stability and low harmonic distortion PGC demodulation technique for interferometric optical fiber sensors[J]. Opt Laser Technol, 2019, 109: 8−13. doi: 10.1016/j.optlastec.2018.07.055 |
[31] | Yu Z H, Dahir A K A, Dai H L, et al. Distributed optical fiber vibration sensors based on unbalanced Michelson interferometer and PGC demodulation[J]. J Opt, 2021, 50: 1−6. doi: 10.1007/s12596-020-00622-6 |
[32] | Qu Z Y, Guo S, Hou C B, et al. Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors[J]. Opt Express, 2019, 27(16): 23593−23609. doi: 10.1364/OE.27.023593 |
[33] | Volkov A V, Plotnikov M Y, Mekhrengin M V, et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sens J, 2017, 17(13): 4143−4150. doi: 10.1109/JSEN.2017.2704287 |
[34] | Dong Y S, Hu P C, Ran M, et al. Phase modulation depth setting technique of a phase-generated-carrier under aoim in fiber-optic interferometer with laser frequency modulation[J]. Opt Express, 2020, 28(21): 31700−31713. doi: 10.1364/OE.403448 |
[35] | Dandridge A, Tveten A, Giallorenzi T. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier[J]. IEEE J Quant Electron, 1982, 18(10): 1647−1653. doi: 10.1109/JQE.1982.1071416 |
Phase generated carrier demodulation is widely used in distributed fiber-optic interferometric sensors. Traditional PGC demodulation methods include the PGC-DCM (differential-cross-multiplying), the PGC-Arctan (PGC Arctangent) demodulation methods, and the PGC-SDD (single-path differential divide) demodulation scheme proposed by previous researchers. While the demodulation results of those demodulation algorithms are influenced by light intensity disturbance or phase modulation depth, which affects the stability of the demodulation system. Here, high stability and low harmonic distortion PGC demodulation technique with single-path differential divide and differential-self-multiplication (PGC-SDD-DSM) is proposed, and the demodulation result of which is not affected by light intensity and C value shift of the phase modulation depth. The simulation results show that when the C value is 1.5 rad, 2.0 rad, 2.5 rad, 3.0 rad, and 3.5 rad, the amplitude of PGC-DCM, PGC-Arctan, and PGC-SDD demodulation algorithm changes obviously, while the result of PGC-SDD-DSM demodulation algorithm hardly changes. The improved PGC demodulation algorithm is applied to the experiment system, the system composed of two Mach-Zehnder fiber-optic interference sensors verifies the performance of the proposed PGC demodulation algorithm. The first Mach-Zehnder sensor is used to generate light intensity interference, and the second one is used to generate PGC modulation signals and test signals. When the modulation depth C value is 1.5 rad, the time domain and frequency domain demodulation result show the improved PGC demodulation algorithm can suppress the interference of light intensity, and its demodulation result is better than the other three algorithms. The signal to noise and disturbance ratio (SINAD) of the demodulation signal using the proposed PGC algorithm is 35.56 dB, which is 10.87 dB, 24.19 dB, and 6.38 dB, higher than those of the PGC-DCM, PGC-Arctan, and PGC-SDD algorithms, respectively. For the improved PGC demodulation algorithm, when the phase modulation depth C changes from 1.5 rad to 3.5 rad, the total harmonic distortion (THD) varies from 0.02% to 0.05%, and the SINAD varies from 35 dB to 37 dB. Compared with the other three demodulation algorithms, the SINAD and THD of demodulation signal using the improved PGC demodulation algorithm are better than others and hardly change with the change of C value, which indicates that the PGC-SDD-DSM demodulation algorithm has higher stability and lower harmonic distortion. At the same time, the improved PGC demodulation algorithm can also demodulate aperiodic signals with better frequency response and amplitude response. It is believed that the proposed PGC demodulation algorithm can be further developed in the field of optical fiber sensors.
Schematics of the PGC demodulation algorithm.
Demodulation signals of different PGC demodulation algorithms with C=1.5 rad, 2.0 rad, 2.5 rad, 3.0 rad and 3.5 rad.
Schematic of experimental setup
Original signal
Demodulation time domain results of different PGC algorithms when C=1.5 rad.
Frequency spectrums of the demodulation results of different PGC algorithms when C=1.5 rad.
THD of the proposed PGC algorithm with modulation depth C
SINAD of the proposed PGC algorithm with modulation depth C
Demodulated signal waveform (red) and original signal (blue)
Demodulated signal waveform (green) and original signal (blue)
Dynamic range of the demodulation system based on the PGC-SDD-DSM algorithm