Cao W H, Li Z, Shi C K, et al. Overview of research and development of Pr3+ doped solid-state lasers[J]. Opto-Electron Eng, 2022, 49(4): 210364. doi: 10.12086/oee.2022.210364
Citation: Cao W H, Li Z, Shi C K, et al. Overview of research and development of Pr3+ doped solid-state lasers[J]. Opto-Electron Eng, 2022, 49(4): 210364. doi: 10.12086/oee.2022.210364

Overview of research and development of Pr3+ doped solid-state lasers

    Fund Project: National Natural Science Foundation of China (61975168)
More Information
  • Visible lasers are used extensively in laser color display, laser medical treatment, quantum information, optical communication, and other applications. Trivalent Pr-ion (Pr3+) has attracted much attention because of its rich transitions in the visible band. Especially in recent years, the emergence of commercial pump sources such as laser diode (LD) and optically pumped semiconductor laser (OPSL) has made great progress in the research of Pr3+ doped solid-state lasers. According to the three output types of Pr3+ doped solid-state lasers: continuous-wave output, pulse output and single longitudinal mode output, this paper introduces the typical work of each output type in a specific band. The research history and current status of Pr3+ doped solid-state lasers are summarized with time as the main line, and the future prospects of Pr3+ doped solid-state lasers are projected.
  • 加载中
  • [1] Binun P W, Boyd T L, Pessot M A, et al. Pr: YLF, intracavity-pumped, room-temperature upconversion laser[J]. Opt Lett, 1996, 21(23): 1915−1917. doi: 10.1364/OL.21.001915

    CrossRef Google Scholar

    [2] Hashimoto K, Kannari F. Stimulated emission at an orange wavelength from cryogenically cooled Pr3+-doped LiYF4 and Y3Al5O12[J]. Jpn J Appl Phys, 2014, 46(2): 589−592.

    Google Scholar

    [3] Calmano T, Siebenmorgen J, Reichert F, et al. Crystalline Pr: SrAl12O19 waveguide laser in the visible spectral region[J]. Opt Lett, 2011, 36(23): 4620−4622. doi: 10.1364/OL.36.004620

    CrossRef Google Scholar

    [4] Fibrich M, Jelínková H, Šulc J, et al. Pr: YAlO3 and Pr: LiYF4 laser emission comparison under GaN laser diode pumping[J]. Proc SPIE, 2010, 7578: 757828. doi: 10.1117/12.840008

    CrossRef Google Scholar

    [5] Paboeuf D, Mhibik O, Bretenaker F, et al. Continuous-wave diode-pumped Pr3+: BaY2F8 orange laser[C]//Proceedings of 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, 2011.

    Google Scholar

    [6] Dong Y, Li S T, Zhang X H. All-solid-state blue laser pumped Pr: KY3F10-BBO ultraviolet laser at 305 nm[J]. Laser Phys Lett, 2011, 9(2): 116−119.

    Google Scholar

    [7] 李纳, 刘斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573−589. doi: 10.15541/jim20180403

    CrossRef Google Scholar

    Li N, Liu B, Shi J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. J Inorg Mater, 2019, 34(6): 573−589. doi: 10.15541/jim20180403

    CrossRef Google Scholar

    [8] 贾玉磊, 张凯云, 焦志勇. 新型掺杂稀土离子的可调谐激光晶体特性及应用[J]. 青岛大学学报(自然科学版), 2008, 21(3): 53−59.

    Google Scholar

    Jia Y L, Zhang K Y, Jiao Z Y. Overview of novel tunable transition metal ion doped laser crystals characteristics and application[J]. J Qingdao Univ (Nat Sci Ed), 2008, 21(3): 53−59.

    Google Scholar

    [9] 孙敦陆, 张庆礼, 王召兵, 等. Nd: GSGG激光晶体的光谱性能研究[J]. 量子电子学报, 2005, 22(4): 570−573. doi: 10.3969/j.issn.1007-5461.2005.04.017

    CrossRef Google Scholar

    Sun D L, Zhang Q L, Wang Z B, et al. Study on the spectral characteristics of Nd: GSGG laser crystal[J]. Chin J Quantum Electron, 2005, 22(4): 570−573. doi: 10.3969/j.issn.1007-5461.2005.04.017

    CrossRef Google Scholar

    [10] Noginov M A, Loutts G B, Bonner C E, et al. Crystal growth and characterization of a new laser material, Nd: Ba5(PO4)3Cl[J]. J Opt Soc Am B, 2000, 17(8): 1329−1334. doi: 10.1364/JOSAB.17.001329

    CrossRef Google Scholar

    [11] 刘哲. Pr: YLF晶体光谱特性与激光性能研究[D]. 厦门: 厦门大学, 2013.

    Google Scholar

    Liu Z. Research on spectroscopic properties and laser performance of Pr: YLF crystal[D]. Xiamen: Xiamen University, 2013.

    Google Scholar

    [12] Adam J L, Sibley W A, Gabbe D R. Optical absorption and emission of LiYF4: Pr3+[J]. J Lumin, 1985, 33(4): 391−407. doi: 10.1016/0022-2313(85)90109-7

    CrossRef Google Scholar

    [13] Caspers H H, Rast H E. Electronic and vibronic spectra of Pr3+ in LiYF4[J]. J Lumin, 1975, 10(6): 347−369. doi: 10.1016/0022-2313(75)90001-0

    CrossRef Google Scholar

    [14] Esterowitz L, Bartoli F J, Allen R E. Spectroscopic determination of ground configuration energy levels in LiYF4: Pr3+[J]. J Lumin, 1979, 21(1): 1−16. doi: 10.1016/0022-2313(79)90030-9

    CrossRef Google Scholar

    [15] Renfro G M, Windscheif J C, Sibley W A, et al. Optical transitions of Pr3+ and Er3+ ions in LiYF4[J]. J Lumin, 1980, 22(1): 51−68. doi: 10.1016/0022-2313(80)90045-9

    CrossRef Google Scholar

    [16] Esterowitz L, Bartoli F J, Allen R E, et al. Energy levels and line intensities of Pr3+ in LiYF4[J]. Phys Rev B, 1979, 19(12): 6442−6455. doi: 10.1103/PhysRevB.19.6442

    CrossRef Google Scholar

    [17] Reid M F, Richardson F S. Electric dipole intensity parameters for Pr3+ in LiYF4[J]. J Lumin, 1984, 31–32: 207−209.

    Google Scholar

    [18] Lakshman S V J, Buddhudu S. Racah and Judd-Ofelt parameters for Pr3+, Nd3+, and Er3+ ions in a laser liquid[J]. J Quant Spectrosc Radiat Transf, 1980, 24(3): 251−257. doi: 10.1016/0022-4073(80)90067-9

    CrossRef Google Scholar

    [19] Esterowitz L, Allen R, Kruer M, et al. Blue light emission by a Pr: LiYF4 laser operated at room temperature[J]. J Appl Phys, 1977, 48(2): 650−652. doi: 10.1063/1.323648

    CrossRef Google Scholar

    [20] German K R, Kiel A, Guggenheim H. Stimulated emission from PrCl3[J]. Appl Phys Lett, 1973, 22(3): 87−89. doi: 10.1063/1.1654573

    CrossRef Google Scholar

    [21] Eichler H J, Liu B, Lu Z K, et al. Orange, red and deep-red flashlamp-pumped Pr3+: LiYF4 laser with improved output energy and efficiency[J]. Appl Phys B, 1994, 58(5): 421−424. doi: 10.1007/BF01081884

    CrossRef Google Scholar

    [22] Knowles D S, Zhang Z, Gabbe D, et al. Laser action of Pr3+ in LiYF4 and spectroscopy of Eu2+- sensitized Pr in BaY2FR3[J]. IEEE J Quantum Electron, 1988, 24(6): 1118−1123. doi: 10.1109/3.235

    CrossRef Google Scholar

    [23] Kaminskii A A. Visible lasing on five intermultiplet transitions of the ion Pr3+ in LiYF4[J]. Sov Phys Dokl, 1983, 28: 668.

    Google Scholar

    [24] Sandrock T, Danger T, Heumann E, et al. Efficient continuous wave-laser emission of Pr3+-doped fluorides at room temperature[J]. Appl Phys B, 1994, 58(2): 149−151. doi: 10.1007/BF01082350

    CrossRef Google Scholar

    [25] Danger T, Bleckmann A, Huber G. Stimulated emission and laser action of Pr3+-doped YAlO3[J]. Appl Phys B, 1994, 58(5): 413−420. doi: 10.1007/BF01081883

    CrossRef Google Scholar

    [26] Richter A, Heumann E, Osiac E, et al. Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser[J]. Opt Lett, 2004, 29(22): 2638−2640. doi: 10.1364/OL.29.002638

    CrossRef Google Scholar

    [27] Richter A, Heumann E, Osiac E, et al. Semiconductor laser pumping of a continuous-wave Pr3+: LiYF4 laser emitting at several wavelengths[C]//Proceedings of 2005 Conference on Lasers and Electro-Optics, 2005.

    Google Scholar

    [28] Richter A, Heumann E, Huber G, et al. Power scaling of semiconductor laser pumped Praseodymium-lasers[J]. Opt Express, 2007, 15(8): 5172−5178. doi: 10.1364/OE.15.005172

    CrossRef Google Scholar

    [29] Ostroumov V, Seelert W, Hunziker L, et al. 522/261 nm cw generation of Pr: YLF laser pumped by OPS laser[J]. Proc SPIE, 2007, 6451: 645104. doi: 10.1117/12.705521

    CrossRef Google Scholar

    [30] Ostroumov V, Seelert W. 1 W of 261 nm cw generation in a Pr3+: LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm[J]. Proc SPIE, 2008, 6871: 68711K. doi: 10.1117/12.767511

    CrossRef Google Scholar

    [31] Fibrich M, Jelínková H, Šulc J, et al. Visible cw laser emission of GaN-diode pumped Pr: YAlO3 crystal[J]. Appl Phys B, 2009, 97(2): 363−367. doi: 10.1007/s00340-009-3679-5

    CrossRef Google Scholar

    [32] Fibrich M, Šulc J, Jelínková H, et al. Two wavelength generation of Pr: YAlO3 laser by Lyot filter tuning[J]. Laser Phys Lett, 2010, 7(4): 290−293. doi: 10.1002/lapl.200910149

    CrossRef Google Scholar

    [33] Strotkamp M, Schwarz T, Jungbluth B, et al. Efficient, green laser based on a blue-diode pumped rare-earth-doped fluoride crystal in an extremely short resonator[J]. Proc SPIE, 2010, 7578: 75780O.

    Google Scholar

    [34] Fibrich M, Šulc J, Jelínková H, et al. Continuous-wave blue generation of intracavity frequency-doubled Pr: YAP laser[J]. Opt Lett, 2010, 35(2): 214−216. doi: 10.1364/OL.35.000214

    CrossRef Google Scholar

    [35] Xu B, Camy P, Doualan J L, et al. Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser[J]. Opt Express, 2011, 19(2): 1191−1197. doi: 10.1364/OE.19.001191

    CrossRef Google Scholar

    [36] Gün T, Metz P, Huber G. Efficient continuous wave deep ultraviolet Pr3+: LiYF4 laser at 261.3nm[J]. Appl Phys Lett, 2011, 99(18): 181103. doi: 10.1063/1.3657150

    CrossRef Google Scholar

    [37] 王凤娟, 刘哲, 徐斌, 等. 蓝光激光二极管抽运Pr3+: YLF红绿可见光激光器[J]. 中国激光, 2013, 40(12): 1202002. doi: 10.3788/CJL201340.1202002

    CrossRef Google Scholar

    Wang F J, Liu Z, Xu B, et al. Blue laser diode pumped Pr3+: YLF visible lasers[J]. Chin J Lasers, 2013, 40(12): 1202002. doi: 10.3788/CJL201340.1202002

    CrossRef Google Scholar

    [38] Fibrich M, Jelínková H. Power-scaled Pr: YAlO3 laser at 747 and 720 nm wavelengths[J]. Laser Phys Lett, 2013, 10(3): 035801. doi: 10.1088/1612-2011/10/3/035801

    CrossRef Google Scholar

    [39] Cornacchia F, Lieto A D, Tonelli M, et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals[J]. Opt Express, 2008, 16(20): 15932−15941. doi: 10.1364/OE.16.015932

    CrossRef Google Scholar

    [40] Weichmann U, Mackens U, Moench H. 47.2: Solid-state lasers emitting at red, green and orange wavelengths for projection applications[J]. SID Symp Dig Tech Papers, 2011, 42(1): 681−684. doi: 10.1889/1.3621415

    CrossRef Google Scholar

    [41] Hansen N O, Bellancourt A R, Weichmann U, et al. Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4[J]. Appl Opt, 2010, 49(20): 3864−3868. doi: 10.1364/AO.49.003864

    CrossRef Google Scholar

    [42] Weichmann U, Bellancourt A R, Mackens U, et al. Solid-state lasers for projection[J]. J Soc Inf Dis, 2010, 18(10): 813−820. doi: 10.1889/JSID18.10.813

    CrossRef Google Scholar

    [43] Gün T, Metz P, Huber G. Power scaling of laser diode pumped Pr3+: LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm[J]. Opt Lett, 2011, 36(6): 1002−1004. doi: 10.1364/OL.36.001002

    CrossRef Google Scholar

    [44] Metz P W, Reichert F, Moglia F, et al. High-power red, orange, and green Pr3+: LiYF4 lasers[J]. Opt Lett, 2014, 39(11): 3193−3196. doi: 10.1364/OL.39.003193

    CrossRef Google Scholar

    [45] Iijima K, Kariyama R, Tanaka H, et al. Power scaling and Q-switched operation of a Pr3+ doped YLF laser pumped by four high power InGaN-Blue-LDs[C]//Proceedings of 2015 Conference on Lasers and Electro-Optics Pacific Rim, 2015.

    Google Scholar

    [46] Tanaka H, Kannari F. Power scaling of continuous-wave visible Pr3+: YLF laser end-pumped by high power blue laser diodes[C]//Proceedings of the Advanced Solid State Lasers 2017, 2017.

    Google Scholar

    [47] Tanaka H, Fujita S, Kannari F. High-power visibly emitting Pr3+: YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes[J]. Appl Opt, 2018, 57(21): 5923−5928. doi: 10.1364/AO.57.005923

    CrossRef Google Scholar

    [48] Liu Z, Cai Z P, Huang S L, et al. Diode-pumped Pr3+: LiYF4 continuous-wave deep red laser at 698 nm[J]. J Opt Soc Am B, 2013, 30(2): 302−305. doi: 10.1364/JOSAB.30.000302

    CrossRef Google Scholar

    [49] Luo S Y, Yan X G, Cui Q, et al. Power scaling of blue-diode-pumped Pr: YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9nm[J]. Opt Commun, 2016, 380: 357−360. doi: 10.1016/j.optcom.2016.06.026

    CrossRef Google Scholar

    [50] Lin X J, Zhu Y, Ji S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+: YLF lasers[J]. Opt Laser Technol, 2020, 129: 106281. doi: 10.1016/j.optlastec.2020.106281

    CrossRef Google Scholar

    [51] Lin X J, Cui S W, Ji S H, et al. LD-pumped high-power high-efficiency orange vortex Pr3+: YLF4 lasers[J]. Opt Laser Technol, 2021, 133: 106571. doi: 10.1016/j.optlastec.2020.106571

    CrossRef Google Scholar

    [52] Lin X J, Chen M P, Feng Q C, et al. LD-pumped high-power CW Pr3+: YLF Laguerre-Gaussian lasers at 639 nm[J]. Opt Laser Technol, 2021, 142: 107273. doi: 10.1016/j.optlastec.2021.107273

    CrossRef Google Scholar

    [53] Ruan S C, Sutherland J M, French P M W, et al. Dual wavelength Pr: YLF laser[J]. Chin J Lasers B, 1995, 4(3): 207.

    Google Scholar

    [54] 杨晗, 徐斌, 蔡志平, 等. 蓝光LD抽运Pr3+: LiYF4 604nm橙光激光器和红橙多波长激射[J]. 光学学报, 2014, 34(10): 1014003. doi: 10.3788/AOS201434.1014003

    CrossRef Google Scholar

    Yang H, Xu B, Cai Z P, et al. Orange laser at 604 nm and multi-wavelength emissions of orange and red laser of Pr3+: LiYF4 pumped by blue LD[J]. Acta Opt Sin, 2014, 34(10): 1014003. doi: 10.3788/AOS201434.1014003

    CrossRef Google Scholar

    [55] Luo S Y, Xu B, Cui S W, et al. Diode-pumped continuous-wave dual-wavelength c-cut Pr3+: LiYF4 laser at 696 and 719nm[J]. Appl Opt, 2015, 54(34): 10051−10054. doi: 10.1364/AO.54.010051

    CrossRef Google Scholar

    [56] Lin X J, Huang X X, Liu B, et al. Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr: YAlO3 crystal[J]. Opt Mater, 2018, 76: 16−20. doi: 10.1016/j.optmat.2017.12.016

    CrossRef Google Scholar

    [57] Lin X J, Feng Q C, Zhu Y, et al. Diode-pumped wavelength-switchable visible Pr3+: YLF4 laser and vortex laser around 670 nm[J]. Opto-Electron Adv, 2021, 4(4): 210006.

    Google Scholar

    [58] 陈家璧, 彭润玲. 激光原理及应用[M]. 第3版. 电子工业出版社, 2013: 94−95.

    Google Scholar

    [59] Kaminskii A A, Lyashenko A I, Isaev N P, et al. Quasi-cw Pr3+: LiYF4 laser with λ= 0.6395 μm and an average output power of 2.3 W[J]. Quantum Electron, 1998, 28(3): 187−188. doi: 10.1070/QE1998v028n03ABEH001192

    CrossRef Google Scholar

    [60] Fibrich M, Jelínková H, Šulc J, et al. Radiation at the wavelength of 747 nm generated by flash-lamp pumped Pr: YAP laser[J]. Proc SPIE, 2008, 7138: 71380B.

    Google Scholar

    [61] Jelínková H, Fibrich M, Čech M, et al. Blue generation of flash-lamp pumped Pr: YAP laser by intracavity frequency doubling[J]. Laser Phys Lett, 2010, 7(1): 34−37. doi: 10.1002/lapl.200910110

    CrossRef Google Scholar

    [62] Kojou J, Watanbe Y, Kannari F. High-power GaN diode pumped Q-switch Pr3+-doped LiYF4 laser[C]//Proceedings of 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009: 1–2.

    Google Scholar

    [63] Jelínková H, Fibrich M, Čech M, et al. Electro-optically Q-switched Pr: YAP laser generating at 747 nm[J]. Laser Phys Lett, 2009, 6(7): 517−520. doi: 10.1002/lapl.200910028

    CrossRef Google Scholar

    [64] Fibrich M, Jelínková H, Cech M, et al. Pr: YAP generation in blue spectral region[J]. Proc SPIE, 2009, 7354: 735415. doi: 10.1117/12.821946

    CrossRef Google Scholar

    [65] Fibrich M, Jelínková H, Šulc J, et al. Flash-lamp pumped Pr: YAP laser operated at wavelengths of 747 nm and 662 nm[J]. Proc SPIE, 2009, 7193: 71932N. doi: 10.1117/12.808907

    CrossRef Google Scholar

    [66] Kojou J, Watanabe Y, Kojima Y, et al. Q-switching of Pr3+-doped LiYF4 visible lasers pumped by a high-power GaN diode laser[C]//CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, 2010: 1–2.

    Google Scholar

    [67] Savitski V G, Ranieri I M, Krysa A B, et al. Passively Q-switched Pr:YLF laser[C]//Proceedings of the CLEO: Science and Innovations 2011, 2011.

    Google Scholar

    [68] Kojou J, Watanabe Y, Kojima Y, et al. Intracavity second-harmonic generation at 320 nm of an actively Q-switched Pr: LiYF4 laser[J]. Appl Opt, 2012, 51(9): 1382−1386. doi: 10.1364/AO.51.001382

    CrossRef Google Scholar

    [69] Kojou J, Abe R, Kariyama R, et al. InGaN diode pumped actively Q-switched intracavity frequency doubling Pr: LiYF4 261 nm laser[J]. Appl Opt, 2014, 53(10): 2030−2036. doi: 10.1364/AO.53.002030

    CrossRef Google Scholar

    [70] Cheng Y J, Peng J, Xu B, et al. Passive Q-switching of Pr: LiYF4 orange laser at 604 nm using topological insulators Bi2Se3 as saturable absorber[J]. Opt Laser Technol, 2017, 88: 275−279. doi: 10.1016/j.optlastec.2016.09.026

    CrossRef Google Scholar

    [71] Demesh M, Marzahl D T, Yasukevich A, et al. Passively Q-switched Pr: YLF laser with a Co2+: MgAl2O4 saturable absorber[J]. Opt Lett, 2017, 42(22): 4687−4690. doi: 10.1364/OL.42.004687

    CrossRef Google Scholar

    [72] Fibrich M, Doroshenko M, Šulc J, et al. InGaN diode pumped Pr: SrF2 laser at 639 nm wavelength[J]. Proc SPIE, 2017, 10082: 1008220.

    Google Scholar

    [73] Luo S Y, Yan X G, Xu B, et al. Few-layer Bi2Se3-based passively Q-switched Pr: YLF visible lasers[J]. Opt Commun, 2018, 406: 61−65. doi: 10.1016/j.optcom.2017.05.068

    CrossRef Google Scholar

    [74] Tian Q Y, Xu B, Li N, et al. Direct generation of orthogonally polarized dual-wavelength continuous-wave and passively Q-switched vortex beam in diode-pumped Pr: YLF lasers[J]. Opt Lett, 2019, 44(22): 5586−5589. doi: 10.1364/OL.44.005586

    CrossRef Google Scholar

    [75] Wang P C, Yang Q, Wang X Y. Gold nanostars as the saturable absorber for a Q-switched visible solid-state laser[J]. Appl Opt, 2019, 58(25): 6733−6736. doi: 10.1364/AO.58.006733

    CrossRef Google Scholar

    [76] Xu B, Luo S Y, Yan X G, et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers[J]. IEEE J Select Top Quant Electron, 2017, 23(5): 1900507. doi: 10.1109/JSTQE.2016.2630277

    CrossRef Google Scholar

    [77] Yang Q, Cao Y P, Liu X Q, et al. Passive Q-switching of Pr: LiYF4 visible laser using SnS2 as a saturable absorber[J]. Opt Laser Technol, 2019, 112: 183−187. doi: 10.1016/j.optlastec.2018.11.023

    CrossRef Google Scholar

    [78] Li N, Xu B, Cui S W, et al. High-order vortex generation from CW and passively Q-switched Pr: YLF visible lasers[J]. IEEE Photon Technol Lett, 2019, 31(17): 1457−1460. doi: 10.1109/LPT.2019.2931907

    CrossRef Google Scholar

    [79] Li Y, Jin L, Dai W C, et al. Study of an acousto-optic Q-switched double pulse output Pr: YLF all solid-state laser[J]. Laser Phys, 2020, 30(12): 125002. doi: 10.1088/1555-6611/abc473

    CrossRef Google Scholar

    [80] Hara Y, Fujita S, Shioya Y, et al. 640-nm Pr: YLF regenerative amplifier seeded by gain-switched laser diode pulses[J]. Appl Opt, 2020, 59(17): 5098−5101. doi: 10.1364/AO.395801

    CrossRef Google Scholar

    [81] Wu H, Xu J L, Zhang C, et al. Nonlinear saturable absorption in antimonene quantum dots for passively Q-switching Pr: YLF laser[J]. Nano Sel, 2021, 2(9): 1741−1749. doi: 10.1002/nano.202000101

    CrossRef Google Scholar

    [82] Qi Y Y, Huo X W, Bai Z X, et al. High-energy, nanosecond orange laser at 604 nm based on Pr: YLF crystal at room temperature[J]. Results Phys, 2021, 26: 104382. doi: 10.1016/j.rinp.2021.104382

    CrossRef Google Scholar

    [83] Quan C, Sun D L, Zhang H L, et al. Performance of a 968-nm laser-diode side-pumped, electro-optical Q-switched Er, Pr: YAP laser with emission at 2.7 µm[J]. Opt Eng, 2021, 60(6): 066112.

    Google Scholar

    [84] Han L L, Yang Z X, Yang Q, et al. Visible nonlinear optical properties of tellurium and application as saturable absorber[J]. Opt Laser Technol, 2021, 137: 106817. doi: 10.1016/j.optlastec.2020.106817

    CrossRef Google Scholar

    [85] Ruan S, Sutherland J M, French P M W, et al. Kerr lens modelocked solid state laser in the red (639 nm)[J]. Electron Lett, 1994, 30(19): 1601−1602. doi: 10.1049/el:19941058

    CrossRef Google Scholar

    [86] Tong Y P, Sutherland J M, French P M W, et al. Self-starting Kerr-lens mode-locked femtosecond Cr4+: YAG and picosecond Pr3+: YLF solid-state lasers[J]. Opt Lett, 1996, 21(9): 644−646. doi: 10.1364/OL.21.000644

    CrossRef Google Scholar

    [87] Sutherland J M, French P M W, Taylor J R, et al. Visible continuous-wave laser transitions in Pr3+: YLF and femtosecond pulse generation[J]. Opt Lett, 1996, 21(11): 797−799. doi: 10.1364/OL.21.000797

    CrossRef Google Scholar

    [88] Gaponenko M, Metz P W, Härkönen A, et al. SESAM mode-locked red praseodymium laser[J]. Opt Lett, 2014, 39(24): 6939−6941. doi: 10.1364/OL.39.006939

    CrossRef Google Scholar

    [89] Zhang Y X, Yu H H, Zhang H J, et al. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate[J]. Opt Lett, 2016, 41(12): 2692−2695. doi: 10.1364/OL.41.002692

    CrossRef Google Scholar

    [90] Iijima K, Kariyama R, Tanaka H, et al. Pr3+: YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers[J]. Appl Opt, 2016, 55(28): 7782−7787. doi: 10.1364/AO.55.007782

    CrossRef Google Scholar

    [91] Luo S Y, Xu B, Xu H Y, et al. High-power self-mode-locked Pr: YLF visible lasers[J]. Appl Opt, 2017, 56(34): 9552−9555. doi: 10.1364/AO.56.009552

    CrossRef Google Scholar

    [92] Fibrich M, Šulc J, Zavadilová A, et al. Nonlinear mirror mode-locked Pr: YAlO3 laser[J]. Laser Phys, 2017, 27(5): 055801. doi: 10.1088/1555-6611/aa66f5

    CrossRef Google Scholar

    [93] Tanaka H, Iijima K, Sawada R, et al. Solid-state lasers directly pumped by InGaN-based green and blue laser diodes[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim, 2017: 1–4.

    Google Scholar

    [94] Luo S Y, Cai Z P, Xu H Y, et al. Diode-pumped 915-nm Pr: YLF laser passively mode-locked with a SESAM[J]. Opt Express, 2018, 26(19): 24695−24701. doi: 10.1364/OE.26.024695

    CrossRef Google Scholar

    [95] Li N, Huang J J, Xu B, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr: LiYF4 visible laser[J]. Photonics Res, 2019, 7(11): 1209−1213. doi: 10.1364/PRJ.7.001209

    CrossRef Google Scholar

    [96] Sugiyama N, Fujita S, Hara Y, et al. Diode-pumped 640 nm Pr: YLF regenerative laser pulse amplifier[J]. Opt Lett, 2019, 44(13): 3370−3373. doi: 10.1364/OL.44.003370

    CrossRef Google Scholar

    [97] Zhang Y X, Miao R L, Lu D Z, et al. Kerr-lens mode-locked Pr3+: LuLiF4 laser[J]. Opt Lett, 2019, 44(15): 3665−3668. doi: 10.1364/OL.44.003665

    CrossRef Google Scholar

    [98] Jin L, Dai W C, Yu Y J, et al. Single longitudinal mode Q-switched operation of Pr: YLF laser with pre-lase and Fabry–Perot etalon technology[J]. Opt Laser Technol, 2020, 129: 106294. doi: 10.1016/j.optlastec.2020.106294

    CrossRef Google Scholar

    [99] Li Q S, Zhu L X, Zhang X H, et al. The effect of the depth of single longitudinal mode modulation in Q-switching pre-Pr3+: YLF laser[J]. Opt Commun, 2016, 372: 250−254. doi: 10.1016/j.optcom.2016.04.006

    CrossRef Google Scholar

    [100] Luo S Y, Cai Z P, Xu H Y, et al. Direct oscillation at 640-nm in single longitudinal mode with a diode-pumped Pr: YLF solid-state laser[J]. Opt Laser Technol, 2019, 116: 112−116. doi: 10.1016/j.optlastec.2019.03.025

    CrossRef Google Scholar

    [101] Dai W C, Jin L, Dong Y, et al. The effect of injected energy on low energy single longitudinal mode pre-lase Q-switched Pr: YLF laser[J]. J Appl Math Phys, 2019, 7(12): 2968−2978. doi: 10.4236/jamp.2019.712207

    CrossRef Google Scholar

    [102] Zhang Y S, Zhou L B, Zhang T, et al. Blue diode-pumped single-longitudinal-mode Pr: YLF lasers in orange spectral region[J]. Opt Laser Technol, 2020, 130: 106373. doi: 10.1016/j.optlastec.2020.106373

    CrossRef Google Scholar

    [103] 窦微, 浦双双, 牛娜, 等. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器[J]. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018

    CrossRef Google Scholar

    Wei D, Pu S S, Niu N, et al. Combined dual-wavelength laser diode beam end-pumped single longitudinal mode Pr3+: LiYF4 360 nm ultraviolet laser[J]. Acta Phys Sin, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018

    CrossRef Google Scholar

  • Visible lasers are used extensively in laser color display, laser medical treatment, quantum information, optical communication, and other applications. Trivalent Pr-ion (Pr3+) has attracted much attention due to its rich transitions in the visible band. As early as the 1960s, praseodymium-doped (Pr3+) crystals were investigated as gain mediums for laser production. Compared with the way of obtaining visible laser by optical nonlinear processes such as frequency doubling and mixing, the way of directly down converting the laser energy level by using Pr3+ doped crystal to obtain visible laser avoids the use of the nonlinear optical crystal, which makes the laser have high conversion efficiency, compact structure, good quality of laser beam, and no requirement of strict temperature control. Especially in recent years, the emergence of commercial pump sources such as laser diode (LD) and optically pumped semiconductor laser (OPSL) has made great progress in the research of Pr3+ doped solid-state lasers. In this paper, Pr3+ solid-state lasers are divided into three types: continuous-wave output type, pulse output type and single longitudinal mode output type. Among them, the continuous-wave laser is typical in green, orange and red laser bands. The laser output power can exceed the watt level. The maximum output power at 522 nm green laser is more than 4 W, and the maximum power at 607 nm orange laser is 4.88 W. The maximum power at 639 nm red laser is up to 8.14 W. For pulse laser, the laser output with a pulse width of tens to hundreds of nanoseconds can be obtained in Q-switching, and the pulse width in mode-locking is narrower. The mode-locked pulse widths of 8 ps, 400 fs and 1.1 ps are obtained at red 639 nm, orange 613 nm and 604 nm respectively. The mode-locked pulse widths of other visible optical bands have been reported to range from more than ten picoseconds to hundreds of picoseconds. In the aspect of single longitudinal mode, the research work of realizing single-frequency laser output by using Pr3+ doped crystal mainly focuses on 360 nm UV, 604 nm, 607 nm orange laser and 639 nm, 640 nm red laser. At the same time, taking time as the mainline, this paper summarizes the research history and current status of Pr3+ doped solid-state lasers, and looks forward to the future of Pr3+ doped solid-state lasers.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(6844) PDF downloads(1562) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint