Citation: |
|
[1] | Garcia-Garcia B, Bouwmans T, Silva A J R. Background subtraction in real applications: challenges, current models and future directions[J]. Comput Sci Rev, 2020, 35: 100204. doi: 10.1016/j.cosrev.2019.100204 |
[2] | Villar S A, Torcida S, Acosta G G. Median filtering: a new insight[J]. J Math Imaging Vis, 2017, 58(1): 130-146. doi: 10.1007/s10851-016-0694-0 |
[3] | Sobral A, Vacavant A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[J]. Comput Vis Image Understand, 2014, 122: 4-21. doi: 10.1016/j.cviu.2013.12.005 |
[4] | Bai X Z, Zhou F G. Infrared small target enhancement and detection based on modified top-hat transformations[J]. Comput Electr Eng, 2010, 36(6): 1193-1201. doi: 10.1016/j.compeleceng.2010.05.008 |
[5] | Goyal K, Singhai J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems[J]. Artif Intell Rev, 2018, 50(2): 241-259. doi: 10.1007/s10462-017-9542-x |
[6] | Dong X B, Huang X S, Zheng Y B, et al. Infrared dim and small target detecting and tracking method inspired by human visual system[J]. Infrared Phys Technol, 2014, 62: 100-109. doi: 10.1016/j.infrared.2013.11.007 |
[7] | Bae T W, Kim Y C, Ahn S H, et al. An efficient two-dimensional least mean square (TDLMS) based on block statistics for small target detection[J]. J Infrared Millim Terahertz Waves, 2009, 30(10): 1092-1101. doi: 10.1007/s10762-009-9530-6 |
[8] | Shao X P, Fan H, Lu G, et al. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system[J]. Infrared Phys Technol, 2012, 55(5): 403-408. doi: 10.1016/j.infrared.2012.06.001 |
[9] | Kim S. Min-local-LoG filter for detecting small targets in cluttered background[J]. Electron Lett, 2011, 47(2): 105-106. doi: 10.1049/el.2010.2066 |
[10] | Kim S, Lee J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track[J]. Pattern Recogn, 2012, 45(1): 393-406. doi: 10.1016/j.patcog.2011.06.009 |
[11] | Wang X, Ning C, Xu L Z. Spatiotemporal difference-of-Gaussians filters for robust infrared small target tracking in various complex scenes[J]. Appl Opt, 2015, 54(7): 1573-1586. doi: 10.1364/AO.54.001573 |
[12] | Xia T, Tang Y Y. Biologically inspired small infrared target detection using local contrast mechanisms[J]. Int J Wavelets Multiresolut Inf Process, 2015, 13(4): 1550025. doi: 10.1142/S0219691315500253 |
[13] | Wang B, Dong L L, Zhao M, et al. Fast infrared maritime target detection: Binarization via histogram curve transformation[J]. Infrared Phys Technol, 2017, 83: 32-44. doi: 10.1016/j.infrared.2017.03.009 |
[14] | Chen C L P, Li H, Wei Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Trans Geosci Remote Sens, 2014, 52(1): 574-581. doi: 10.1109/TGRS.2013.2242477 |
[15] | Wei Y T, You X G, Li H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recogn, 2016, 58: 216-226. doi: 10.1016/j.patcog.2016.04.002 |
[16] | Liu J, He Z Q, Chen Z L, et al. Tiny and dim infrared target detection based on weighted local contrast[J]. IEEE Geosci Remote Sens Lett, 2018, 15(11): 1780-1784. doi: 10.1109/LGRS.2018.2856762 |
[17] | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587. |
[18] | 赵春梅, 陈忠碧, 张建林. 基于深度学习的飞机目标跟踪应用研究[J]. 光电工程, 2019, 46(9): 180261. doi: 10.12086/oee.2019.180261 Zhao C M, Chen Z B, Zhang J L. Application of aircraft target tracking based on deep learning[J]. Opto-Electron Eng, 2019, 46(9): 180261. doi: 10.12086/oee.2019.180261 |
[19] | 赵春梅, 陈忠碧, 张建林. 基于卷积网络的目标跟踪应用研究[J]. 光电工程, 2020, 47(1): 180668. doi: 10.12086/oee.2020.180668 Zhao C M, Chen Z B, Zhang J L. Research on target tracking based on convolutional networks[J]. Opto-Electron Eng, 2020, 47(1): 180668. doi: 10.12086/oee.2020.180668 |
[20] | 张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10): 200314. doi: 10.12086/oee.2020.200314 Zhang R Z, Zhang J L, Qi X P, et al. Infrared target detection and recognition in complex scene[J]. Opto-Electron Eng, 2020, 47(10): 200314. doi: 10.12086/oee.2020.200314 |
[21] | Zuo H R, Xu Z Y, Zhang J L, et al. Visual tracking based on transfer learning of deep salience information[J]. Opto-Electron Adv, 2020, 3(9): 190018. |
[22] | Candès E J, Li X D, Ma Y, et al. Robust principal component analysis?[J]. J ACM, 2011, 58(3): Article No. : 11. |
[23] | Gao C Q, Meng D Y, Yang Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Trans Image Process, 2013, 22(12): 4996-5009. doi: 10.1109/TIP.2013.2281420 |
[24] | Dai Y M, Wu Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10(8): 3752-3767. doi: 10.1109/JSTARS.2017.2700023 |
[25] | Wang X Y, Peng Z M, Kong D H, et al. Infrared dim target detection based on total variation regularization and principal component pursuit[J]. Image Vis Comput, 2017, 63: 1-9. doi: 10.1016/j.imavis.2017.04.002 |
[26] | Zhang L D, Peng Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sens, 2019, 11(4): 382. doi: 10.3390/rs11040382 |
[27] | 李吉成, 沈振康. 红外起伏背景下运动点目标的检测方法[J]. 红外与激光工程, 1997, 26(6): 8-13. Li J C, Shen Z K. Small moving target detection in clutter infrared background[J]. Infrared Laser Eng, 1997, 26(6): 8-13. |
[28] | 李正周, 董能力, 金钢, 等. 基于自适应滤波的强起伏背景下弱小目标检测[J]. 仪器仪表学报, 2004, 25(S1): 663-665. Li Z Z, Dong N L, Jin G, et al. Dim small Target detection in strong undulant clutter background based on adaptive filter[J]. Chin J Sci Instrum, 2004, 25(S1): 663-665. |
[29] | 樊香所, 徐智勇, 张建林. 改进梯度倒数加权滤波红外弱小目标背景抑制[J]. 光电工程, 2017, 44(7): 719-724. doi: 10.3969/j.issn.1003-501X.2017.07.008 Fan X S, Xu Z Y, Zhang J L. Infrared dim and small target background suppression based on improved gradient inverse weighting filter[J]. Opto-Electron Eng, 2017, 44(7): 719-724. doi: 10.3969/j.issn.1003-501X.2017.07.008 |
Overview: Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).
Compared with the traditional gradient reciprocal filtering algorithm, the AGRF algorithm has the following characteristics: 1) The parameters are fully adaptive. The AGRF algorithm provides a new threshold determination method for the inter-pixel correlation, which realizes the adaptive determination of the threshold with the statistical features of the neighborhood pixels. A new correlation coefficient function is defined to improve the gating performance of the filter by its value nonlinear adaptive change with the correlation coefficient. 2) Compared with the traditional reciprocal gradient filtering algorithm, the AGRF algorithm can effectively suppress the background with better texture suppression. Compared with the traditional reciprocal gradient filtering algorithm, the parameters of the AGRF algorithm can be adjusted completely adaptively according to the statistical characteristics of image components with different distribution characteristics, so it can achieve better texture suppression performance.
The trajectories of the targets
The visual effect of background suppression of the ten algorithms for scene A
The visual effect of background suppression of the ten algorithms for scene B
The visual effect of background suppression of the ten algorithms for scene C