Li B, Xu Z Y, Wang C, et al. Background suppression for infrared dim small target scene based on adaptive gradient reciprocal filtering[J]. Opto-Electron Eng, 2021, 48(8): 210122. doi: 10.12086/oee.2021.210122
Citation: Li B, Xu Z Y, Wang C, et al. Background suppression for infrared dim small target scene based on adaptive gradient reciprocal filtering[J]. Opto-Electron Eng, 2021, 48(8): 210122. doi: 10.12086/oee.2021.210122

Background suppression for infrared dim small target scene based on adaptive gradient reciprocal filtering

    Fund Project: National Natural Science Foundation of China (62001129), the West Light Foundation of the Chinese Academy of Sciences (ya18k001), and the Guangxi Science and Technology Base and Talent Project (2019AC20147)
More Information
  • Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).
  • 加载中
  • [1] Garcia-Garcia B, Bouwmans T, Silva A J R. Background subtraction in real applications: challenges, current models and future directions[J]. Comput Sci Rev, 2020, 35: 100204. doi: 10.1016/j.cosrev.2019.100204

    CrossRef Google Scholar

    [2] Villar S A, Torcida S, Acosta G G. Median filtering: a new insight[J]. J Math Imaging Vis, 2017, 58(1): 130-146. doi: 10.1007/s10851-016-0694-0

    CrossRef Google Scholar

    [3] Sobral A, Vacavant A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[J]. Comput Vis Image Understand, 2014, 122: 4-21. doi: 10.1016/j.cviu.2013.12.005

    CrossRef Google Scholar

    [4] Bai X Z, Zhou F G. Infrared small target enhancement and detection based on modified top-hat transformations[J]. Comput Electr Eng, 2010, 36(6): 1193-1201. doi: 10.1016/j.compeleceng.2010.05.008

    CrossRef Google Scholar

    [5] Goyal K, Singhai J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems[J]. Artif Intell Rev, 2018, 50(2): 241-259. doi: 10.1007/s10462-017-9542-x

    CrossRef Google Scholar

    [6] Dong X B, Huang X S, Zheng Y B, et al. Infrared dim and small target detecting and tracking method inspired by human visual system[J]. Infrared Phys Technol, 2014, 62: 100-109. doi: 10.1016/j.infrared.2013.11.007

    CrossRef Google Scholar

    [7] Bae T W, Kim Y C, Ahn S H, et al. An efficient two-dimensional least mean square (TDLMS) based on block statistics for small target detection[J]. J Infrared Millim Terahertz Waves, 2009, 30(10): 1092-1101. doi: 10.1007/s10762-009-9530-6

    CrossRef Google Scholar

    [8] Shao X P, Fan H, Lu G, et al. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system[J]. Infrared Phys Technol, 2012, 55(5): 403-408. doi: 10.1016/j.infrared.2012.06.001

    CrossRef Google Scholar

    [9] Kim S. Min-local-LoG filter for detecting small targets in cluttered background[J]. Electron Lett, 2011, 47(2): 105-106. doi: 10.1049/el.2010.2066

    CrossRef Google Scholar

    [10] Kim S, Lee J. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous background for infrared search and track[J]. Pattern Recogn, 2012, 45(1): 393-406. doi: 10.1016/j.patcog.2011.06.009

    CrossRef Google Scholar

    [11] Wang X, Ning C, Xu L Z. Spatiotemporal difference-of-Gaussians filters for robust infrared small target tracking in various complex scenes[J]. Appl Opt, 2015, 54(7): 1573-1586. doi: 10.1364/AO.54.001573

    CrossRef Google Scholar

    [12] Xia T, Tang Y Y. Biologically inspired small infrared target detection using local contrast mechanisms[J]. Int J Wavelets Multiresolut Inf Process, 2015, 13(4): 1550025. doi: 10.1142/S0219691315500253

    CrossRef Google Scholar

    [13] Wang B, Dong L L, Zhao M, et al. Fast infrared maritime target detection: Binarization via histogram curve transformation[J]. Infrared Phys Technol, 2017, 83: 32-44. doi: 10.1016/j.infrared.2017.03.009

    CrossRef Google Scholar

    [14] Chen C L P, Li H, Wei Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Trans Geosci Remote Sens, 2014, 52(1): 574-581. doi: 10.1109/TGRS.2013.2242477

    CrossRef Google Scholar

    [15] Wei Y T, You X G, Li H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recogn, 2016, 58: 216-226. doi: 10.1016/j.patcog.2016.04.002

    CrossRef Google Scholar

    [16] Liu J, He Z Q, Chen Z L, et al. Tiny and dim infrared target detection based on weighted local contrast[J]. IEEE Geosci Remote Sens Lett, 2018, 15(11): 1780-1784. doi: 10.1109/LGRS.2018.2856762

    CrossRef Google Scholar

    [17] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587.

    Google Scholar

    [18] 赵春梅, 陈忠碧, 张建林. 基于深度学习的飞机目标跟踪应用研究[J]. 光电工程, 2019, 46(9): 180261. doi: 10.12086/oee.2019.180261

    CrossRef Google Scholar

    Zhao C M, Chen Z B, Zhang J L. Application of aircraft target tracking based on deep learning[J]. Opto-Electron Eng, 2019, 46(9): 180261. doi: 10.12086/oee.2019.180261

    CrossRef Google Scholar

    [19] 赵春梅, 陈忠碧, 张建林. 基于卷积网络的目标跟踪应用研究[J]. 光电工程, 2020, 47(1): 180668. doi: 10.12086/oee.2020.180668

    CrossRef Google Scholar

    Zhao C M, Chen Z B, Zhang J L. Research on target tracking based on convolutional networks[J]. Opto-Electron Eng, 2020, 47(1): 180668. doi: 10.12086/oee.2020.180668

    CrossRef Google Scholar

    [20] 张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10): 200314. doi: 10.12086/oee.2020.200314

    CrossRef Google Scholar

    Zhang R Z, Zhang J L, Qi X P, et al. Infrared target detection and recognition in complex scene[J]. Opto-Electron Eng, 2020, 47(10): 200314. doi: 10.12086/oee.2020.200314

    CrossRef Google Scholar

    [21] Zuo H R, Xu Z Y, Zhang J L, et al. Visual tracking based on transfer learning of deep salience information[J]. Opto-Electron Adv, 2020, 3(9): 190018.

    Google Scholar

    [22] Candès E J, Li X D, Ma Y, et al. Robust principal component analysis?[J]. J ACM, 2011, 58(3): Article No. : 11.

    Google Scholar

    [23] Gao C Q, Meng D Y, Yang Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Trans Image Process, 2013, 22(12): 4996-5009. doi: 10.1109/TIP.2013.2281420

    CrossRef Google Scholar

    [24] Dai Y M, Wu Y Q. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10(8): 3752-3767. doi: 10.1109/JSTARS.2017.2700023

    CrossRef Google Scholar

    [25] Wang X Y, Peng Z M, Kong D H, et al. Infrared dim target detection based on total variation regularization and principal component pursuit[J]. Image Vis Comput, 2017, 63: 1-9. doi: 10.1016/j.imavis.2017.04.002

    CrossRef Google Scholar

    [26] Zhang L D, Peng Z M. Infrared small target detection based on partial sum of the tensor nuclear norm[J]. Remote Sens, 2019, 11(4): 382. doi: 10.3390/rs11040382

    CrossRef Google Scholar

    [27] 李吉成, 沈振康. 红外起伏背景下运动点目标的检测方法[J]. 红外与激光工程, 1997, 26(6): 8-13.

    Google Scholar

    Li J C, Shen Z K. Small moving target detection in clutter infrared background[J]. Infrared Laser Eng, 1997, 26(6): 8-13.

    Google Scholar

    [28] 李正周, 董能力, 金钢, 等. 基于自适应滤波的强起伏背景下弱小目标检测[J]. 仪器仪表学报, 2004, 25(S1): 663-665.

    Google Scholar

    Li Z Z, Dong N L, Jin G, et al. Dim small Target detection in strong undulant clutter background based on adaptive filter[J]. Chin J Sci Instrum, 2004, 25(S1): 663-665.

    Google Scholar

    [29] 樊香所, 徐智勇, 张建林. 改进梯度倒数加权滤波红外弱小目标背景抑制[J]. 光电工程, 2017, 44(7): 719-724. doi: 10.3969/j.issn.1003-501X.2017.07.008

    CrossRef Google Scholar

    Fan X S, Xu Z Y, Zhang J L. Infrared dim and small target background suppression based on improved gradient inverse weighting filter[J]. Opto-Electron Eng, 2017, 44(7): 719-724. doi: 10.3969/j.issn.1003-501X.2017.07.008

    CrossRef Google Scholar

  • Overview: Due to the small scale and weak energy of the infrared dim small target, the background must be suppressed to enhance the target in order to ensure the performance of detection and tracking of the target in the later stage. In order to improve the ability of gradient reciprocal filter to suppress the clutter texture and reduce the interference of the residual texture to the target in the difference image, an adaptive gradient reciprocal filtering algorithm (AGRF) is proposed in this paper. In the AGRF, the adaptive judgment threshold and the adaptive relevancy coefficient function of inter-pixel correlation in the local region are determined by analyzing the distribution characteristics and statistical numeral characteristic of the background region, clutter texture, and target. Then the element value of the adaptive gradient reciprocal filter is determined by combining the relevancy coefficient function and the gradient reciprocal function. Experimental results indicate that the sensitivity of the AGRF algorithm to the clutter texture is significantly lower than that of the traditional gradient reciprocal filtering algorithm under the premise of the same target enhancement performance. Compared with the other nine algorithms, the AGRF algorithm has better signal-to-noise ratio gain (SNRG) and background suppress factor (BSF).

    Compared with the traditional gradient reciprocal filtering algorithm, the AGRF algorithm has the following characteristics: 1) The parameters are fully adaptive. The AGRF algorithm provides a new threshold determination method for the inter-pixel correlation, which realizes the adaptive determination of the threshold with the statistical features of the neighborhood pixels. A new correlation coefficient function is defined to improve the gating performance of the filter by its value nonlinear adaptive change with the correlation coefficient. 2) Compared with the traditional reciprocal gradient filtering algorithm, the AGRF algorithm can effectively suppress the background with better texture suppression. Compared with the traditional reciprocal gradient filtering algorithm, the parameters of the AGRF algorithm can be adjusted completely adaptively according to the statistical characteristics of image components with different distribution characteristics, so it can achieve better texture suppression performance.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint