Citation: |
|
[1] | Zheludev N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582–583. doi: 10.1126/science.1186756 |
[2] | Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 2012, 3: 1198. doi: 10.1038/ncomms2207 |
[3] | Ni X J, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Sci Appl, 2013, 2(4): e72. doi: 10.1038/lsa.2013.28 |
[4] | Wang W, Guo Z Y, Li R Z, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens[J]. Photonics Res, 2015, 3(3): 68–71. doi: 10.1364/PRJ.3.000068 |
[5] | Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2 |
[6] | Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 2013, 13(2): 829–834. doi: 10.1021/nl304761m |
[7] | Li R Z, Guo Z Y, Wang W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Res, 2015, 3(5): 252–255. doi: 10.1364/PRJ.3.000252 |
[8] | Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644 |
[9] | Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807 |
[10] | Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2014, 4: 2808. |
[11] | Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102 |
[12] | Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713 |
[13] | Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686 |
[14] | Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399 |
[15] | Fan J P, Cheng Y Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave[J]. J Phys D: Appl Phys, 2020, 53(2): 025109. doi: 10.1088/1361-6463/ab4d76 |
[16] | Cheng Y Z, Fan J P, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial[J]. IEEE Access, 2019, 8: 7615–7621. |
[17] | Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Appl Phys Lett, 2010, 96(25): 251104. doi: 10.1063/1.3442904 |
[18] | 章强, 张晓渝, 邢园园, 等. 基于铁磁薄膜可调谐太赫兹微结构的研究[J]. 光电工程, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447 Zhang Q, Zhang X Y, Xing Y Y, et al. Tunable terahertz structure based on the ferromagnetic film[J]. Opto-Electron Eng, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447 |
[19] | 邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666 Deng H L, Zhou S L, Cen G T. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electron Eng, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666 |
[20] | 张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519 Zhang H T, Cheng Y Z, Huang M L. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electron Eng, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519 |
[21] | 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001 Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001 |
[22] | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896 |
[23] | Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294. doi: 10.1126/science.1202691 |
[24] | Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Opt Express, 2013, 21(6): 7614–7632. doi: 10.1364/OE.21.007614 |
[25] | Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nat Mater, 2009, 8(3): 235–242. doi: 10.1038/nmat2378 |
[26] | Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802. doi: 10.1103/PhysRevLett.99.216802 |
[27] | Li Z B, Yao K, Xia F N, et al. Graphene plasmonic metasurfaces to steer infrared light[J]. Sci Rep, 2015, 5: 12423. doi: 10.1038/srep12423 |
[28] | Yatooshi T, Ishikawa A, Tsuruta K. Terahertz wavefront control by tunable metasurface made of graphene ribbons[J]. Appl Phys Lett, 2015, 107(5): 053105. doi: 10.1063/1.4927824 |
[29] | Cheng H, Chen S Q, Yu P, et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Adv Opt Mater, 2015, 3(12): 1744–1749. doi: 10.1002/adom.201500285 |
[30] | Liu W G, Hu B, Huang Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Res, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703 |
[31] | Cao G Y, Gan X S, Lin H, et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electron Adv, 2018, 1(7): 180012. |
[32] | Yang J, Wang Z, Wang F, et al. Atomically thin optical lenses and gratings[J]. Light: Sci Appl, 2016, 5(3): e16046. doi: 10.1038/lsa.2016.46 |
[33] | 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展[J]. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501 Feng W, Zhang R, Cao J C. Progress of terahertz devices based on graphene[J]. Acta Phys Sin, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501 |
[34] | Cai T, Wang G M, Xu H X, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Ann Phys, 2017, 530(1): 1700321. |
[35] | Shi X, Han D Z, Dai Y Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Opt Express, 2013, 21(23): 28438–28443. doi: 10.1364/OE.21.028438 |
[36] | Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Appl Phys Lett, 2013, 103(20): 203112. doi: 10.1063/1.4831776 |
[37] | Fallahi A, Perruisseau-Carrier J. Manipulation of giant Faraday rotation in graphene metasurfaces[J]. Appl Phys Lett, 2012, 101(23): 231605. doi: 10.1063/1.4769095 |
[38] | Ding J, Arigong B, Ren H, et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Sci Rep, 2014, 4: 6128. |
[39] | Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398. doi: 10.3390/nano9030398 |
Overview: An efficiency-adjustable terahertz (THz) focusing lens based on the graphene metasurface is proposed. The unit cell is composed of two symmetrical circular graphene hollows and an intermediate dielectric layer, wherein the middle of the hollow circular is connected by a rectangular graphene sheet. This structure can realize circular polarization conversion, for example, the left-handed circularly polarized wave incident on the metasurface will exude in the right-handed polarized form. According to the principle of geometric phase, the full 2π additional phase-shift of transmitted cross-polarized wave can be obtained by rotating the direction of the rectangular graphene. Thereby, a focusing lens with a good performance can be realized by arranging these unit cells properly. Because of the flexible and controllable optical characteristics, graphene has obvious advantages in the construction of dynamically tunable metasurfaces. By adjusting the voltage, the Fermi level of the graphene can be changed, and the conductivity can also be manipulated artificially. The numerical simulation was carried out based on the time-domain finite-element method. The simulation results show that the conversion amplitude of the circular polarization can be adjusted by changing the Fermi level of the graphene. When the Fermi level is 0.9 eV, the cross-polarization transmission coefficient of the proposed graphene metasurface reaches a maximum of 0.55 at 1.42 THz, and the transmission amplitude of the metasurface increases with the increase of the Fermi level at 1.42 THz. In addition, the resonance frequency of the circular polarization conversion based on the graphene metasurface shows a certain blue shift with the decrease of Fermi level. By arranging the unit cells of the metasurface properly, we can construct an efficiency-adjustable metalens. When the Fermi level is 0.9 eV, the simulate focal length of the proposed metalens is 2.03 mm, which is consistent well with the preset theoretical of 2 mm. However, when the graphene Fermi level is 0.1 eV, the cross-circularly polarized wave passing through the graphene metalens is almost 0, which means the incident THz wave cannot be converted into spherical wave. This adjustable graphene metasurface turns into an on-off focusing lens. Different from other traditional lens, such an efficiency-adjustable THz focusing lens based on graphene metasurface has many advantages, such as simple device structure, adjustable efficiency, reconfigurable, and it has potential application value in THz imaging, high-resolution terahertz displays, communications and so on.
(a) Focusing schematic diagram of the electromagnetic beam perpendicularly incident on the metasurface; (b) The schematic diagram of the unit cell
The (a) real and (b) imaginary parts of the conductivity at different EF when the relaxation time τ is 1 ps
The transmission amplitude at different Fermi levels at a fixed rotation angle θ=0°
(a) The transmission amplitude and (b) the phase diagram at different rectangular rotation angles when Fermi level is 0.9 eV
The simulation results of Fermi levels are (a) 0.1 eV and (b) 0.9 eV at the working frequency of 1.4 THz
The profile distributions of the intensity at EF=0.1 eV, 0.9 eV in the x-o-z plane, when the cross polarized light is along (a) x and (b) z axes