Wang J Y, Fan J P, Shu H, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electron Eng, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319
Citation: Wang J Y, Fan J P, Shu H, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electron Eng, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319

Efficiency-tunable terahertz focusing lens based on graphene metasurface

    Fund Project: Science and Technology Research Program of Hubei Education Department (D20181107), Wuhan University of Science and Technology Graduate Innovation Fund (JCX201959), and the University Student Innovation Fund (20ZA083)
More Information
  • This paper proposes an efficiency-tunable terahertz focusing lens based on the graphene metasurface. The unit cell is composed of two symmetrical circular graphene hollows and an intermediate dielectric layer, wherein the hollow circular middle is connected by a rectangular graphene sheet. This structure can realize polarization conversion, for example, when an incidence with left-hand circular polarization emitted on the metasurface the polarization of the transmitted light is right-hand circular polarization. According to the principle of geometric phase, by rotating the direction of the rectangular bar, the transmitted wave will carry an additional phase and can cover the range of 2π. An THz focusing lens can be realized by properly arranging the unit structure of the graphene metasurface. The simulation results show that the conversion amplitude of circular polarized light can be adjusted by changing the Fermi level of graphene, and the focusing efficiency of the metalens can also be dynamically adjusted. Therefore, this graphene metasurface-based efficiency-tunable focusing lens can be realized by changing the Fermi level without changing the size of the unit cell, and can be widely used in terahertz applications such as energy harvesting and imaging.
  • 加载中
  • [1] Zheludev N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582–583. doi: 10.1126/science.1186756

    CrossRef Google Scholar

    [2] Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 2012, 3: 1198. doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [3] Ni X J, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Sci Appl, 2013, 2(4): e72. doi: 10.1038/lsa.2013.28

    CrossRef Google Scholar

    [4] Wang W, Guo Z Y, Li R Z, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens[J]. Photonics Res, 2015, 3(3): 68–71. doi: 10.1364/PRJ.3.000068

    CrossRef Google Scholar

    [5] Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [6] Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 2013, 13(2): 829–834. doi: 10.1021/nl304761m

    CrossRef Google Scholar

    [7] Li R Z, Guo Z Y, Wang W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Res, 2015, 3(5): 252–255. doi: 10.1364/PRJ.3.000252

    CrossRef Google Scholar

    [8] Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [9] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [10] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2014, 4: 2808.

    Google Scholar

    [11] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [12] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [13] Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [14] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [15] Fan J P, Cheng Y Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave[J]. J Phys D: Appl Phys, 2020, 53(2): 025109. doi: 10.1088/1361-6463/ab4d76

    CrossRef Google Scholar

    [16] Cheng Y Z, Fan J P, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial[J]. IEEE Access, 2019, 8: 7615–7621.

    Google Scholar

    [17] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Appl Phys Lett, 2010, 96(25): 251104. doi: 10.1063/1.3442904

    CrossRef Google Scholar

    [18] 章强, 张晓渝, 邢园园, 等. 基于铁磁薄膜可调谐太赫兹微结构的研究[J]. 光电工程, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447

    CrossRef Google Scholar

    Zhang Q, Zhang X Y, Xing Y Y, et al. Tunable terahertz structure based on the ferromagnetic film[J]. Opto-Electron Eng, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447

    CrossRef Google Scholar

    [19] 邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666

    CrossRef Google Scholar

    Deng H L, Zhou S L, Cen G T. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electron Eng, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666

    CrossRef Google Scholar

    [20] 张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    CrossRef Google Scholar

    Zhang H T, Cheng Y Z, Huang M L. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electron Eng, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    CrossRef Google Scholar

    [21] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    CrossRef Google Scholar

    [22] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [23] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294. doi: 10.1126/science.1202691

    CrossRef Google Scholar

    [24] Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Opt Express, 2013, 21(6): 7614–7632. doi: 10.1364/OE.21.007614

    CrossRef Google Scholar

    [25] Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nat Mater, 2009, 8(3): 235–242. doi: 10.1038/nmat2378

    CrossRef Google Scholar

    [26] Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802. doi: 10.1103/PhysRevLett.99.216802

    CrossRef Google Scholar

    [27] Li Z B, Yao K, Xia F N, et al. Graphene plasmonic metasurfaces to steer infrared light[J]. Sci Rep, 2015, 5: 12423. doi: 10.1038/srep12423

    CrossRef Google Scholar

    [28] Yatooshi T, Ishikawa A, Tsuruta K. Terahertz wavefront control by tunable metasurface made of graphene ribbons[J]. Appl Phys Lett, 2015, 107(5): 053105. doi: 10.1063/1.4927824

    CrossRef Google Scholar

    [29] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Adv Opt Mater, 2015, 3(12): 1744–1749. doi: 10.1002/adom.201500285

    CrossRef Google Scholar

    [30] Liu W G, Hu B, Huang Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Res, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703

    CrossRef Google Scholar

    [31] Cao G Y, Gan X S, Lin H, et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electron Adv, 2018, 1(7): 180012.

    Google Scholar

    [32] Yang J, Wang Z, Wang F, et al. Atomically thin optical lenses and gratings[J]. Light: Sci Appl, 2016, 5(3): e16046. doi: 10.1038/lsa.2016.46

    CrossRef Google Scholar

    [33] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展[J]. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501

    CrossRef Google Scholar

    Feng W, Zhang R, Cao J C. Progress of terahertz devices based on graphene[J]. Acta Phys Sin, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501

    CrossRef Google Scholar

    [34] Cai T, Wang G M, Xu H X, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Ann Phys, 2017, 530(1): 1700321.

    Google Scholar

    [35] Shi X, Han D Z, Dai Y Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Opt Express, 2013, 21(23): 28438–28443. doi: 10.1364/OE.21.028438

    CrossRef Google Scholar

    [36] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Appl Phys Lett, 2013, 103(20): 203112. doi: 10.1063/1.4831776

    CrossRef Google Scholar

    [37] Fallahi A, Perruisseau-Carrier J. Manipulation of giant Faraday rotation in graphene metasurfaces[J]. Appl Phys Lett, 2012, 101(23): 231605. doi: 10.1063/1.4769095

    CrossRef Google Scholar

    [38] Ding J, Arigong B, Ren H, et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Sci Rep, 2014, 4: 6128.

    Google Scholar

    [39] Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398. doi: 10.3390/nano9030398

    CrossRef Google Scholar

  • Overview: An efficiency-adjustable terahertz (THz) focusing lens based on the graphene metasurface is proposed. The unit cell is composed of two symmetrical circular graphene hollows and an intermediate dielectric layer, wherein the middle of the hollow circular is connected by a rectangular graphene sheet. This structure can realize circular polarization conversion, for example, the left-handed circularly polarized wave incident on the metasurface will exude in the right-handed polarized form. According to the principle of geometric phase, the full 2π additional phase-shift of transmitted cross-polarized wave can be obtained by rotating the direction of the rectangular graphene. Thereby, a focusing lens with a good performance can be realized by arranging these unit cells properly. Because of the flexible and controllable optical characteristics, graphene has obvious advantages in the construction of dynamically tunable metasurfaces. By adjusting the voltage, the Fermi level of the graphene can be changed, and the conductivity can also be manipulated artificially. The numerical simulation was carried out based on the time-domain finite-element method. The simulation results show that the conversion amplitude of the circular polarization can be adjusted by changing the Fermi level of the graphene. When the Fermi level is 0.9 eV, the cross-polarization transmission coefficient of the proposed graphene metasurface reaches a maximum of 0.55 at 1.42 THz, and the transmission amplitude of the metasurface increases with the increase of the Fermi level at 1.42 THz. In addition, the resonance frequency of the circular polarization conversion based on the graphene metasurface shows a certain blue shift with the decrease of Fermi level. By arranging the unit cells of the metasurface properly, we can construct an efficiency-adjustable metalens. When the Fermi level is 0.9 eV, the simulate focal length of the proposed metalens is 2.03 mm, which is consistent well with the preset theoretical of 2 mm. However, when the graphene Fermi level is 0.1 eV, the cross-circularly polarized wave passing through the graphene metalens is almost 0, which means the incident THz wave cannot be converted into spherical wave. This adjustable graphene metasurface turns into an on-off focusing lens. Different from other traditional lens, such an efficiency-adjustable THz focusing lens based on graphene metasurface has many advantages, such as simple device structure, adjustable efficiency, reconfigurable, and it has potential application value in THz imaging, high-resolution terahertz displays, communications and so on.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint