Citation: | Obata K, Kawabata S, Hanada Y et al. High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses. Opto-Electron Sci 3, 230053 (2024). doi: 10.29026/oes.2024.230053 |
[1] | Zhang YC, Jiang QL, Long MQ et al. Femtosecond laser-induced periodic structures: mechanisms, techniques, and applications. Opto-Electron Sci 1, 220005(2022). doi: 10.29026/oes.2022.220005 |
[2] | Chen LW, Hong MH. Laser surface structuring of semiconductors and functionalization. In Sugioka K. Handbook of Laser Micro- and Nano-Engineering (Cham: Springer, 2021). |
[3] | Zhang DS, Li XZ, Fu Y et al. Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS. Opto-Electron Adv 5, 210066(2022). doi: 10.29026/oea.2022.210066 |
[4] | Fraggelakis F, Tsibidis GD, Stratakis E. Ultrashort pulsed laser induced complex surface structures generated by tailoring the melt hydrodynamics. Opto-Electron Adv 5, 210052(2022). doi: 10.29026/oea.2022.210052 |
[5] | Zhang YC, Jiang QL, Cao KQ et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon Res 9, 839–847(2021). doi: 10.1364/PRJ.418937 |
[6] | Jiang QL, Zhang YC, Xu YF et al. Extremely high-quality periodic structures on ITO film efficiently fabricated by femtosecond pulse train output from a frequency-doubled Fabry-Perot cavity. Nanomaterials 13, 1510(2023). doi: 10.3390/nano13091510 |
[7] | He F, Yu JJ, Tan YX et al. Tailoring femtosecond 1.5-μm Bessel beams for manufacturing high-aspect-ratio through-silicon vias. Sci Rep 7, 40785(2017). doi: 10.1038/srep40785 |
[8] | Zhang JW, Obata K, Ozasa K et al. Rapid manufacturing of glass-based digital nucleic acid amplification chips by ultrafast Bessel pulses. Small Sci 4, 2300166(2024). doi: 10.1002/smsc.202300166 |
[9] | Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88(2016). doi: 10.1038/nature18619 |
[10] | Mishchik K, Bonamis G, Qiao J et al. High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source. Opt Lett 44, 2193–2196(2019). doi: 10.1364/OL.44.002193 |
[11] | Bonamis G, Audouard E, Hönninger C et al. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Opt Express 28, 27702–27714(2020). doi: 10.1364/OE.400624 |
[12] | Metzner D, Lickschat P, Weißmantel S. High-quality surface treatment using GHz burst mode with tunable ultrashort pulses. Appl Surf Sci 531, 147270(2020). doi: 10.1016/j.apsusc.2020.147270 |
[13] | Hodgson N, Allegre H, Starodoumov A et al. Femtosecond laser ablation in burst mode as a function of pulse fluence and intra-burst repetition rate. J Laser Micro Nanoeng 15, 236–244(2020). |
[14] | Metzner D, Lickschat P, Weißmantel S. Optimization of the ablation process using ultrashort pulsed laser radiation in different burst modes. J Laser Appl 33, 012057(2021). doi: 10.2351/7.0000352 |
[15] | Žemaitis A, Gaidys M, Gečys P et al. Femtosecond laser ablation by bibursts in the MHz and GHz pulse repetition rates. Opt Express 29, 7641–7653(2021). doi: 10.1364/OE.417883 |
[16] | Matsumoto H, Lin ZB, Schrauben JN et al. Ultrafast laser ablation of silicon with ~GHz bursts. J Laser Appl 33, 032010(2021). doi: 10.2351/7.0000372 |
[17] | Förster DJ, Jäggi B, Michalowski A et al. Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 14, 3331(2021). doi: 10.3390/ma14123331 |
[18] | Obata K, Caballero-Lucas F, Sugioka K. Material processing at GHz burst mode by femtosecond laser ablation. J Laser Micro Nanoeng 16, 19–23(2021). |
[19] | Sugioka K. Will GHz burst mode create a new path to femtosecond laser processing. Int J Extrem Manuf 3, 043001(2021). doi: 10.1088/2631-7990/ac2479 |
[20] | Caballero-Lucas F, Obata K, Sugioka K. Enhanced ablation efficiency for silicon by femtosecond laser microprocessing with GHz bursts in MHz bursts (BiBurst). Int J Extrem Manuf 4, 015103(2022). doi: 10.1088/2631-7990/ac466e |
[21] | Obata K, Caballero-Lucas F, Kawabata S et al. GHz bursts in MHz burst (BiBurst) enabling high-speed femtosecond laser ablation of Silicon due to prevention of air ionization. Int J Extrem Manuf 5, 025002(2023). doi: 10.1088/2631-7990/acc0e5 |
[22] | Kawabata S, Bai S, Obata K et al. Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses. Int J Extrem Manuf 5, 015004(2023). doi: 10.1088/2631-7990/acb133 |
[23] | Kawabata S, Bai S, Obata K et al. Formation of two-dimensional laser-induced periodic surface structures on titanium by GHz burst mode femtosecond laser pulses. Front Nanotechnol 5, 1267284(2023). doi: 10.3389/fnano.2023.1267284 |
[24] | Zhang J, Sugioka K, Midorikawa K. Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser. Opt Lett 23, 1486–1488(1998). doi: 10.1364/OL.23.001486 |
[25] | Zhang J, Sugioka K, Midorikawa K. High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl Phys A 69, S879–S882(1999). doi: 10.1007/s003390051551 |
[26] | Hanada Y, Sugioka K, Obata K et al. Transient electron excitation in laser-induced plasma-assisted ablation of transparent materials. J Appl Phys 99, 043301(2006). doi: 10.1063/1.2171769 |
[27] | Hanada Y, Sugioka K, Miyamoto I et al. Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study. Appl Surf Sci 248, 276–280(2005). doi: 10.1016/j.apsusc.2005.03.050 |
[28] | Hanada Y, Sugioka K, Gomi Y et al. Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials. Appl Phys A 79, 1001–1003(2004). doi: 10.1007/s00339-004-2614-1 |
[29] | Buschow KH, Cahn RW, Flemings MC et al. Properties, growth and applications. Encyclopedia of Materials: Science and Technology (Amsterdam: Elsevier, 2001). |
[30] | Li Y, Liu HG, Hong MH. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation. Opt Express 28, 6242–6250(2020). doi: 10.1364/OE.381268 |
[31] | Liu JM. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7, 196–198(1982). doi: 10.1364/OL.7.000196 |
[32] | Žemaitis A, Gaidys M, Brikas M et al. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Sci Rep 8, 17376(2018). doi: 10.1038/s41598-018-35604-z |
[33] | Förster DJ, Faas S, Gröninger S et al. Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses. Appl Surf Sci 440, 926–931(2018). doi: 10.1016/j.apsusc.2018.01.297 |
[34] | Heath DF, Sacher PA. Effects of a simulated high-energy space environment on the ultraviolet transmittance of optical materials between 1050 Å and 3000 Å. Appl Opt 5, 937–943(1966). doi: 10.1364/AO.5.000937 |
[35] | Skliutas E, Samsonas D, Čiburys A et al. X-photon laser direct write 3D nanolithography. Virtual Phys Prototyp 18, e2228324(2023). doi: 10.1080/17452759.2023.2228324 |
[36] | Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149(2014). doi: 10.1038/lsa.2014.30 |
[37] | Rekštytė S, Jonavičius T, Gailevičius D et al. Nanoscale precision of 3D polymerization via polarization control. Adv Opt Mater 4, 1209–1214(2016). doi: 10.1002/adom.201600155 |
[38] | Hong MH, Sugioka K, Lu YF et al. Laser microfabrication of transparent hard materials and signal diagnostics. Appl Surf Sci 186, 556–561(2002). doi: 10.1016/S0169-4332(01)00638-9 |
[39] | Hong MH, Sugioka K, Wu DJ et al. Laser-induced-plasma-assisted ablation for glass microfabrication. Proc SPIE 4595, 138–146(2001). doi: 10.1117/12.446603 |
Supplementary information for High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses |
![]() |
Schematic illustrations of (a) experimental setup for the GHz burst LIPAA process, (b) a pulse form of GHz burst mode containing P intra-pulses, and the measured waveforms of (c) a GHz burst pulse with 10 intra-pulse numbers and (d) a pulse at the single-pulse mode operation as comparison.
(a) Dependence of the ablated depth by GHz burst LIPAA process on the intra-pulse number in GHz burst pulse for the various intra-pulse fluence (0.18, 0.22, 0.27, 0.36, 0.44 and 0.53 J/cm2) and (b) pulse forms of GHz burst mode with various number of P intra-pulses.
Dependence of ablation depth on laser fluence for (a) GHz burst LIPAA process (circle, P=10, 1 shot) and conventional single-pulse mode direct ablation (triangle, 10 shots) and (b) GHz burst LIPAA process (circle, P=10, 1 shot) and single-pulse mode LIPAA process (square, 10 shots). Schematic schemes with pulse forms of each process are illustrated below graphs.
SEM images of ablated spots on the sapphire surfaces with different configurations: GHz burst LIPAA (P= 10) at intra-pulse fluence of (a) 0.22 J/cm2, (b) 0.27 J/cm2, and (c) 0.53 J/cm2, single-pulse mode LIPAA (10 shots of fs laser pulses at a repetition rate of 10 Hz) at same intra-pulse fluence of (d) 0.22 J/cm2, (e) 0.27 J/cm2, and (f) 0.53 J/cm2 with (g) schematic scheme of two-step process, and single-pulse mode direct fs laser ablation at laser fluences of (h) 2.33 J/cm2, (i) 3.13 J/cm2, and (j) 8.05 J/cm2. Schematic illustrations of each scheme are shown at left side of SEM images.