Zhang FC, Camarero P, Haro-González P, Labrador-Páez L, Jaque D. Optical trapping of optical nanoparticles: Fundamentals and applications. Opto-Electron Sci 2, 230019 (2023). doi: 10.29026/oes.2023.230019
Citation: Zhang FC, Camarero P, Haro-González P, Labrador-Páez L, Jaque D. Optical trapping of optical nanoparticles: Fundamentals and applications. Opto-Electron Sci 2, 230019 (2023). doi: 10.29026/oes.2023.230019

Review Open Access

Optical trapping of optical nanoparticles: Fundamentals and applications

More Information
  • Optical nanoparticles are nowadays one of the key elements of photonics. They do not only allow optical imaging of a plethora of systems (from cells to microelectronics), but, in many cases, they also behave as highly sensitive remote sensors. In recent years, it has been demonstrated the success of optical tweezers in isolating and manipulating individual optical nanoparticles. This has opened the door to high resolution single particle scanning and sensing. In this quickly growing field, it is now necessary to sum up what has been achieved so far to identify the appropriate system and experimental set-up required for each application. In this review article we summarize the most relevant results in the field of optical trapping of individual optical nanoparticles. After systematic bibliographic research, we identify the main families of optical nanoparticles in which optical trapping has been demonstrated. For each case, the main advances and applications have been described. Finally, we also include our critical opinion about the future of the field, identifying the challenges that we are facing.
  • 加载中
  • [1] Li Y, Lin CJ, Li KQ, Chi C, Huang BL. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett 22, 5659–5666 (2022). doi: 10.1021/acs.nanolett.2c00322

    CrossRef Google Scholar

    [2] Kameya Y, Hanamura K. Enhancement of solar radiation absorption using nanoparticle suspension. Solar Energy 85, 299–307 (2011). doi: 10.1016/j.solener.2010.11.021

    CrossRef Google Scholar

    [3] Zhang M, Lin YJ, Mullen TJ, Lin WF, Sun LD et al. Improving hematite's solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J Phys Chem Lett 3, 3188–3192 (2012). doi: 10.1021/jz301444a

    CrossRef Google Scholar

    [4] Ma DY, Shen YL, Su TT, Zhao J, Rahman NU et al. Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Mater Chem Front 3, 2058–2065 (2019). doi: 10.1039/C9QM00311H

    CrossRef Google Scholar

    [5] Zuo MZ, Qian WR, Li TH, Hu XY, Jiang JL et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl Mater Interfaces 10, 39214–39221 (2018). doi: 10.1021/acsami.8b14110

    CrossRef Google Scholar

    [6] Przybylska D, Grzyb T, Erdman A, Olejnik K, Szczeszak A. Anti-counterfeiting system based on luminescent varnish enriched by NIR- excited nanoparticles for paper security. Sci Rep 12, 19388 (2022). doi: 10.1038/s41598-022-23686-9

    CrossRef Google Scholar

    [7] Kumar P, Dwivedi J, Gupta BK. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J Mater Chem C 2, 10468–10475 (2014). doi: 10.1039/C4TC02065K

    CrossRef Google Scholar

    [8] Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M et al. A sunblock based on bioadhesive nanoparticles. Nat Mater 14, 1278–1285 (2015). doi: 10.1038/nmat4422

    CrossRef Google Scholar

    [9] Huang J, He YR, Wang L, Huang YM, Jiang BC. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers Manag 132, 452–459 (2017). doi: 10.1016/j.enconman.2016.11.053

    CrossRef Google Scholar

    [10] Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014). doi: 10.1039/C4NR00708E

    CrossRef Google Scholar

    [11] Lu DS, Retama JR, Marin R, Marqués MI, Calderón OG et al. Thermoresponsive polymeric nanolenses magnify the thermal sensitivity of single upconverting nanoparticles. Small 18, 2202452 (2022). doi: 10.1002/smll.202202452

    CrossRef Google Scholar

    [12] López-Peña G, Hamraoui K, Horchani-Naifer K, Gerke C, Ortgies DH et al. Lanthanide doped nanoheaters with reliable and absolute temperature feedback. Phys B Condens Matter 631, 413652 (2022). doi: 10.1016/j.physb.2021.413652

    CrossRef Google Scholar

    [13] Shen YL, Lifante J, Zabala-Gutierrez I, de la Fuente-Fernández M, Granado M et al. Reliable and remote monitoring of absolute temperature during liver inflammation via luminescence-lifetime-based nanothermometry. Adv Mater 34, 2107764 (2022). doi: 10.1002/adma.202107764

    CrossRef Google Scholar

    [14] Rodríguez-Sevilla P, Zhang YH, Haro-González P, Sanz-Rodríguez F, Jaque F et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv Mater 28, 2421–2426 (2016). doi: 10.1002/adma.201505020

    CrossRef Google Scholar

    [15] Rodríguez-Sevilla P, Zhang YH, de Sousa N, Marqués MI, Sanz-Rodríguez F et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett 16, 8005–8014 (2016). doi: 10.1021/acs.nanolett.6b04583

    CrossRef Google Scholar

    [16] Esipova TV, Ye XC, Collins JE, Sakadžić S, Mandeville ET et al. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci USA 109, 20826–20831 (2012). doi: 10.1073/pnas.1213291110

    CrossRef Google Scholar

    [17] Suresh K, Bankapur A, Chidangil S, Madhyastha H, Sa-kai K et al. A broadband optical pH sensor using upconversion luminescence. J Mater Chem C 9, 8606–8614 (2021). doi: 10.1039/D1TC00792K

    CrossRef Google Scholar

    [18] Benjaminsen RV, Sun HH, Henriksen JR, Christensen NM, Almdal K et al. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 5, 5864–5873 (2011). doi: 10.1021/nn201643f

    CrossRef Google Scholar

    [19] Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II et al. Upconverting nanoparticle based optical sensor for carbon dioxide. Sens Actuators B Chem 150, 126–131 (2010). doi: 10.1016/j.snb.2010.07.031

    CrossRef Google Scholar

    [20] Kameda M, Seki H, Makoshi T, Amao Y, Nakakita K. A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film. Sens Actuators B Chem 171–172, 343–349 (2012).

    Google Scholar

    [21] Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun 3, 1108 (2012). doi: 10.1038/ncomms2109

    CrossRef Google Scholar

    [22] Huang G, Liu YT, Wang DJ, Zhu Y, Wen SH et al. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. eLight 2, 20 (2022). doi: 10.1186/s43593-022-00031-1

    CrossRef Google Scholar

    [23] Rodríguez-Sevilla P, Rodríguez-Rodríguez H, Pedroni M, Speghini A, Bettinelli M et al. Assessing single upconverting nanoparticle luminescence by optical tweezers. Nano Lett 15, 5068–5074 (2015). doi: 10.1021/acs.nanolett.5b01184

    CrossRef Google Scholar

    [24] Labrador-Páez L, Pedroni M, Speghini A, García-Solé J, Haro-González P et al. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 10, 22319–22328 (2018). doi: 10.1039/C8NR07566B

    CrossRef Google Scholar

    [25] Katano S, Hotsuki M, Uehara Y. Creation and luminescence of a single silver nanoparticle on Si(111) investigated by scanning tunneling microscopy. J Phys Chem C 120, 28575–28582 (2016). doi: 10.1021/acs.jpcc.6b09037

    CrossRef Google Scholar

    [26] Silly F, Gusev AO, Charra F, Taleb A, Pileni MP. Scanning tunneling microscopy-controlled dynamic switching of single nanoparticle luminescence at room temperature. Appl Phys Lett 79, 4013–4015 (2001). doi: 10.1063/1.1424466

    CrossRef Google Scholar

    [27] Schietinger S, Aichele T, Wang HQ, Nann T, Benson O. Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano Lett 10, 134–138 (2010). doi: 10.1021/nl903046r

    CrossRef Google Scholar

    [28] Tong LM, Li ZP, Zhu T, Xu HX, Liu ZF. Single gold-nanoparticle-enhanced raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. J Phys Chem C 112, 7119–7123 (2008). doi: 10.1021/jp7102484

    CrossRef Google Scholar

    [29] Ratchford D, Shafiei F, Kim S, Gray SK, Li XQ. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett 11, 1049–1054 (2011). doi: 10.1021/nl103906f

    CrossRef Google Scholar

    [30] Lu DS, Labrador-Páez L, Ortiz-Rivero E, Frades P, Antoniak MA et al. Exploring single-nanoparticle dynamics at high temperature by optical tweezers. Nano Lett 20, 8024–8031 (2020). doi: 10.1021/acs.nanolett.0c02936

    CrossRef Google Scholar

    [31] Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24, 156–159 (1970). doi: 10.1103/PhysRevLett.24.156

    CrossRef Google Scholar

    [32] Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review. J Nanophotonics 2, 021875 (2008). doi: 10.1117/1.2992045

    CrossRef Google Scholar

    [33] Rodríguez-Sevilla P, Prorok K, Bednarkiewicz A, Marqués MI, García-Martín A et al. Optical forces at the nanoscale: size and electrostatic effects. Nano Lett 18, 602–609 (2018). doi: 10.1021/acs.nanolett.7b04804

    CrossRef Google Scholar

    [34] Rodríguez-Rodríguez H, Sevilla PR, Rodríguez EM, Ortgies DH, Pedroni M et al. Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. Small 11, 1555–1561 (2015). doi: 10.1002/smll.201402587

    CrossRef Google Scholar

    [35] Berthelot J, Aćimović SS, Juan ML, Kreuzer MP, Renger J et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol 9, 295–299 (2014). doi: 10.1038/nnano.2014.24

    CrossRef Google Scholar

    [36] Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2, 365–370 (2008). doi: 10.1038/nphoton.2008.78

    CrossRef Google Scholar

    [37] Han X, Truong VG, Thomas PS, Chormaic SN. Sequential trapping of single nanoparticles using a gold plasmonic nanohole array. Photonics Res 6, 981–986 (2018). doi: 10.1364/PRJ.6.000981

    CrossRef Google Scholar

    [38] Mandal S, Serey X, Erickson D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett 10, 99–104 (2010). doi: 10.1021/nl9029225

    CrossRef Google Scholar

    [39] Wang HT, Wu X, Shen DY. Localized optical manipulation in optical ring resonators. Opt Express 23, 27650–27660 (2015). doi: 10.1364/OE.23.027650

    CrossRef Google Scholar

    [40] Lu DS, Pedroni M, Labrador-Páez L, Marqués MI, Jaque D et al. Nanojet trapping of a single sub-10 nm upconverting nanoparticle in the full liquid water temperature range. Small 17, 2006764 (2021). doi: 10.1002/smll.202006764

    CrossRef Google Scholar

    [41] Li YC, Xin HB, Lei HX, Liu LL, Li YZ et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl 5, e16176 (2016). doi: 10.1038/lsa.2016.176

    CrossRef Google Scholar

    [42] Chen ZZ, Cai ZW, Liu WB, Yan ZJ. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 157, 050901 (2022). doi: 10.1063/5.0086328

    CrossRef Google Scholar

    [43] Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett 19, 930–932 (1994). doi: 10.1364/OL.19.000930

    CrossRef Google Scholar

    [44] Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong LM, Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015). doi: 10.1021/acsnano.5b00286

    CrossRef Google Scholar

    [45] Lu DS, Gámez F, Haro-González P. Temperature effects on optical trapping stability. Micromachines 12, 954 (2021). doi: 10.3390/mi12080954

    CrossRef Google Scholar

    [46] Shao L, Käll M. Light‐driven rotation of plasmonic nanomotors. Adv Funct Mater 28, 1706272 (2018). doi: 10.1002/adfm.201706272

    CrossRef Google Scholar

    [47] Yuan YF, Lin YN, Gu BB, Panwar N, Tjin SC et al. Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord Chem Rev 339, 138–152 (2017). doi: 10.1016/j.ccr.2017.03.013

    CrossRef Google Scholar

    [48] Ohlinger A, Nedev S, Lutich AA, Feldmann J. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett 11, 1770–1774 (2011). doi: 10.1021/nl2003544

    CrossRef Google Scholar

    [49] Andrén D, Shao L, Länk NO, Aćimović SS, Johansson P et al. Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and brownian dynamics analysis. ACS Nano 11, 10053–10061 (2017). doi: 10.1021/acsnano.7b04302

    CrossRef Google Scholar

    [50] Andres-Arroyo A, Wang F, Toe WJ, Reece P. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy. Biomed Opt Express 6, 3646–3654 (2015). doi: 10.1364/BOE.6.003646

    CrossRef Google Scholar

    [51] Rodrigo JA, Alieva T. Polymorphic beams and Nature inspired circuits for optical current. Sci Rep 6, 35341 (2016). doi: 10.1038/srep35341

    CrossRef Google Scholar

    [52] Guffey MJ, Scherer NF. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett 10, 4302–4308 (2010). doi: 10.1021/nl904167t

    CrossRef Google Scholar

    [53] Ling L, Huang L, Fu JX, Guo HL, Li JF et al. The properties of gold nanospheres studied with dark field optical trapping. Opt Express 21, 6618–6624 (2013). doi: 10.1364/OE.21.006618

    CrossRef Google Scholar

    [54] Yang F, Yang NN, Huo XY, Xu SY. Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics 12, 041501 (2018). doi: 10.1063/1.5037421

    CrossRef Google Scholar

    [55] del Rosal B, Ximendes E, Rocha U, Jaque D. In vivo luminescence nanothermometry: from materials to applications. Adv Opt Mater 5, 1600508 (2017). doi: 10.1002/adom.201600508

    CrossRef Google Scholar

    [56] Zhou HY, Sharma M, Berezin O, Zuckerman D, Berezin MY. Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17, 27–36 (2016). doi: 10.1002/cphc.201500753

    CrossRef Google Scholar

    [57] Setoura K, Okada Y, Werner D, Hashimoto S. Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013). doi: 10.1021/nn402863s

    CrossRef Google Scholar

    [58] Hajizadeh F, Shao L, Andrén D, Johansson P, Rubinsztein-Dunlop H et al. Brownian fluctuations of an optically rotated nanorod. Optica 4, 746–751 (2017). doi: 10.1364/OPTICA.4.000746

    CrossRef Google Scholar

    [59] Zohar N, Chuntonov L, Haran G. The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21, 26–39 (2014). doi: 10.1016/j.jphotochemrev.2014.10.002

    CrossRef Google Scholar

    [60] Kermani H, Rohrbach A. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photonics 5, 4660–4667 (2018). doi: 10.1021/acsphotonics.8b01145

    CrossRef Google Scholar

    [61] Blattmann M, Rohrbach A. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett 15, 7816–7821 (2015). doi: 10.1021/acs.nanolett.5b02532

    CrossRef Google Scholar

    [62] Rodrigo JA, Angulo M, Alieva T. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Res 9, 1–12 (2021).

    Google Scholar

    [63] Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23, 741–745 (2005). doi: 10.1038/nbt1100

    CrossRef Google Scholar

    [64] Han F, Armstrong T, Andres-Arroyo A, Bennett D, Soeriyadi A et al. Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 12, 1680–1687 (2020). doi: 10.1039/C9NR07891F

    CrossRef Google Scholar

    [65] König K. Multiphoton microscopy in life sciences. J Microsc 200, 83–104 (2000). doi: 10.1046/j.1365-2818.2000.00738.x

    CrossRef Google Scholar

    [66] Vetrone F, Naccache R, Zamarrón A, de la Fuente AJ, Sanz-Rodríguez F et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010). doi: 10.1021/nn100244a

    CrossRef Google Scholar

    [67] Haro-González P, del Rosal B, Maestro LM, Rodríguez EM, Naccache R et al. Optical trapping of NaYF4: Er3+, Yb3+ upconverting fluorescent nanoparticles. Nanoscale 5, 12192–12199 (2013). doi: 10.1039/c3nr03644h

    CrossRef Google Scholar

    [68] Shan XC, Wang F, Wang DJ, Wen SH, Chen CH et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol 16, 531–537 (2021). doi: 10.1038/s41565-021-00852-0

    CrossRef Google Scholar

    [69] Cantelar E, Cussó F. Dynamics of the Yb3+ to Er3+ energy transfer in LiNbO3. Appl Phys B 69, 29–33 (1999). doi: 10.1007/s003400050765

    CrossRef Google Scholar

    [70] Cao BS, He YY, Feng ZQ, Li YS, Dong B. Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo: Yb2Ti2O7 nanophosphor. Sens Actuators B Chem 159, 8–11 (2011). doi: 10.1016/j.snb.2011.05.018

    CrossRef Google Scholar

    [71] Petit J, Viana B, Goldner P. Internal temperature measurement of an ytterbium doped material under laser operation. Opt Express 19, 1138–1146 (2011). doi: 10.1364/OE.19.001138

    CrossRef Google Scholar

    [72] Quintanilla M, Cantelar E, Cussó F, Villegas M, Caballero AC. Temperature sensing with up-converting submicron-sized LiNbO3: Er3+/Yb3+ particles. Appl Phys Express 4, 022601 (2011). doi: 10.1143/APEX.4.022601

    CrossRef Google Scholar

    [73] Alencar MARC, Maciel GS, Araújo CBd, Patra A. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett 84, 4753–4755 (2004). doi: 10.1063/1.1760882

    CrossRef Google Scholar

    [74] Haro-González P, Martín IR, Martín LL, León-Luis SF, Pérez-Rodríguez C et al. Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Opt Mater 33, 742–745 (2011). doi: 10.1016/j.optmat.2010.11.026

    CrossRef Google Scholar

    [75] Cai ZP, Xu HY. Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere. Sens Actuators A Phys 108, 187–192 (2003). doi: 10.1016/j.sna.2003.07.008

    CrossRef Google Scholar

    [76] Vetrone F, Naccache R, de la Fuente AJ, Sanz-Rodríguez F, Blazquez-Castro A et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 495–498 (2010). doi: 10.1039/B9NR00236G

    CrossRef Google Scholar

    [77] Maestro LM, Rodríguez EM, Vetrone F, Naccache R, Loro H et al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Opt Express 18, 23544–23553 (2010). doi: 10.1364/OE.18.023544

    CrossRef Google Scholar

    [78] Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008). doi: 10.1016/j.biomaterials.2007.10.051

    CrossRef Google Scholar

    [79] Wang M, Mi CC, Wang WX, Liu CH, Wu YF et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009). doi: 10.1021/nn900491j

    CrossRef Google Scholar

    [80] Drobczyński S, Prorok K, Tamarov K, Duś-Szachniewicz K, Lehto VP et al. Toward controlled photothermal treatment of single cell: optically induced heating and remote temperature monitoring in vitro through double wavelength optical tweezers. ACS Photonics 4, 1993–2002 (2017). doi: 10.1021/acsphotonics.7b00375

    CrossRef Google Scholar

    [81] Liu TY, Liu XG, Spring DR, Qian XH, Cui JN et al. Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci Rep 4, 5418 (2014). doi: 10.1038/srep05418

    CrossRef Google Scholar

    [82] Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Ann Rev Biophys 38, 301–326 (2009). doi: 10.1146/annurev.biophys.050708.133724

    CrossRef Google Scholar

    [83] Lammerding J, Lee RT. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp 264, 264–273 (2005).

    Google Scholar

    [84] Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113, 370–378 (2004). doi: 10.1172/JCI200419670

    CrossRef Google Scholar

    [85] Lee JSH, Chang MI, Tseng Y, Wirtz D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell 16, 871–880 (2005). doi: 10.1091/mbc.e03-12-0910

    CrossRef Google Scholar

    [86] Minin AA, Kulik AV, Gyoeva FK, Li Y, Goshima G et al. Regulation of mitochondria distribution by RhoA and formins. J Cell Sci 119, 659–670 (2006). doi: 10.1242/jcs.02762

    CrossRef Google Scholar

    [87] Kuimova MK. Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys 14, 12671–12686 (2012). doi: 10.1039/c2cp41674c

    CrossRef Google Scholar

    [88] Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT Jr et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J 298, 443–450 (1994). doi: 10.1042/bj2980443

    CrossRef Google Scholar

    [89] Deliconstantinos G, Villiotou V, Stavrides JC. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem Pharmacol 49, 1589–1600 (1995). doi: 10.1016/0006-2952(95)00094-G

    CrossRef Google Scholar

    [90] Zubenko GS, Kopp U, Seto T, Firestone LL. Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology 145, 175–180 (1999). doi: 10.1007/s002130051046

    CrossRef Google Scholar

    [91] Chen P, Song M, Wu E, Wu BT, Zhou JJ et al. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale 7, 6462–6466 (2015). doi: 10.1039/C5NR00289C

    CrossRef Google Scholar

    [92] Rodríguez-Sevilla P, Labrador-Páez L, Wawrzyńczyk D, Nyk M, Samoć M et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy. Nanoscale 8, 300–308 (2016). doi: 10.1039/C5NR06419H

    CrossRef Google Scholar

    [93] Lyu Z-, Dong H, Yang XF, Sun LD, Yan CH. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators. J Phys Chem Lett 12, 11288–11294 (2021). doi: 10.1021/acs.jpclett.1c03409

    CrossRef Google Scholar

    [94] Green KK, Wirth J, Lim SF. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy. Sci Rep 7, 762 (2017). doi: 10.1038/s41598-017-00869-3

    CrossRef Google Scholar

    [95] Kim J, Chacón R, Wang ZJ, Larquet E, Lahlil K et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat Commun 12, 1943 (2021). doi: 10.1038/s41467-021-22158-4

    CrossRef Google Scholar

    [96] Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Probing viscosity of co-polymer hydrogel and hela cell using fluorescent gold nanoclusters: fluorescence correlation spectroscopy and anisotropy decay. ChemPhysChem 21, 406–414 (2020). doi: 10.1002/cphc.201901161

    CrossRef Google Scholar

    [97] Ramazanova I, Suslov M, Sibgatullina G, Petrov K, Fedorenko S et al. Determination of the viscosity of the cytoplasm of M-HeLa cells using fluorescent magnetic nanoparticles and an electromagnetic needle, 30 August 2022, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1994074/v1

    Google Scholar

    [98] Schäferling M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8, 378–413 (2016). doi: 10.1002/wnan.1366

    CrossRef Google Scholar

    [99] Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021). doi: 10.29026/oea.2021.200015

    CrossRef Google Scholar

    [100] Kim K, Yoon J, Park YK. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015). doi: 10.1364/OPTICA.2.000343

    CrossRef Google Scholar

    [101] Bresolí-Obach R, Kudo T, Louis B, Chang YC, Scheblykin IG et al. Resonantly enhanced optical trapping of single dye-doped particles at an interface. ACS Photonics 8, 1832–1839 (2021). doi: 10.1021/acsphotonics.1c00438

    CrossRef Google Scholar

    [102] Louis B, Huang CH, Camacho R, Scheblykin IG, Sugiyama T et al. Unravelling 3D dynamics and hydrodynamics during incorporation of dielectric particles to an optical trapping site. ACS Nano 17, 3797–3808 (2023). doi: 10.1021/acsnano.2c11753

    CrossRef Google Scholar

    [103] Ito S, Mitsuishi M, Setoura K, Tamura M, Iida T et al. Mesoscopic motion of optically trapped particle synchronized with photochromic reactions of diarylethene derivatives. J Phys Chem Lett 9, 2659–2664 (2018). doi: 10.1021/acs.jpclett.8b00890

    CrossRef Google Scholar

    [104] Hosokawa C, Tsuji T, Kishimoto T, Okubo T, Kudoh SN et al. Convection dynamics forced by optical trapping with a focused laser beam. J Phys Chem C 124, 8323–8333 (2020). doi: 10.1021/acs.jpcc.9b11663

    CrossRef Google Scholar

    [105] Florin EL, Horber JKH, Stelzer EHK. High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd: YAG laser. Appl Phys Lett 69, 446–448 (1996). doi: 10.1063/1.118134

    CrossRef Google Scholar

    [106] Florin EL, Pralle A, Horber JKH, Stelzer EHK. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol 119, 202–211 (1997). doi: 10.1006/jsbi.1997.3880

    CrossRef Google Scholar

    [107] Lang MJ, Fordyce PM, Block SM. Combined optical trapping and single-molecule fluorescence. J Biol 2, 6 (2003). doi: 10.1186/1475-4924-2-6

    CrossRef Google Scholar

    [108] Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1, 133–139 (2004). doi: 10.1038/nmeth714

    CrossRef Google Scholar

    [109] Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nat Mater 4, 826–831 (2005). doi: 10.1038/nmat1508

    CrossRef Google Scholar

    [110] Wang LJ, Luo ML, Zhang QY, Tang B, Zhang CY. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase. Chem Commun 53, 11016–11019 (2017). doi: 10.1039/C7CC05485H

    CrossRef Google Scholar

    [111] Zhang Y, Zhang CY. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84, 224–231 (2012). doi: 10.1021/ac202405q

    CrossRef Google Scholar

    [112] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). doi: 10.1126/science.1104274

    CrossRef Google Scholar

    [113] Pan LY, Ishikawa A, Tamai N. Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence. Phys Rev B 75, 161305 (2007). doi: 10.1103/PhysRevB.75.161305

    CrossRef Google Scholar

    [114] Jauffred L, Richardson AC, Oddershede LB. Three-dimensional optical control of individual quantum dots. Nano Lett 8, 3376–3380 (2008). doi: 10.1021/nl801962f

    CrossRef Google Scholar

    [115] Jauffred L, Oddershede LB. Two-photon quantum dot excitation during optical trapping. Nano Lett 10, 1927–1930 (2010). doi: 10.1021/nl100924z

    CrossRef Google Scholar

    [116] Jauffred L, Kyrsting A, Arnspang EC, Reihani SNS, Oddershede LB. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot. Nanoscale 6, 6997–7003 (2014). doi: 10.1039/C4NR01319K

    CrossRef Google Scholar

    [117] Xu Z, Crozier KB. All-dielectric nanotweezers for trapping and observation of a single quantum dot. Opt Express 27, 4034–4045 (2019). doi: 10.1364/OE.27.004034

    CrossRef Google Scholar

    [118] Chiang WY, Okuhata T, Usman A, Tamai N, Masuhara H. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J Phys Chem B 118, 14010–14016 (2014). doi: 10.1021/jp502524f

    CrossRef Google Scholar

    [119] Head CR, Kammann E, Zanella M, Manna L, Lagoudakis PG. Spinningnanorods - active optical manipulation of semiconductor nanorods using polarised light. Nanoscale 4, 3693–3697 (2012). doi: 10.1039/c2nr30515a

    CrossRef Google Scholar

    [120] Agarwal R, Ladavac K, Roichman Y, Yu GH, Lieber CM et al. Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13, 8906–8912 (2005). doi: 10.1364/OPEX.13.008906

    CrossRef Google Scholar

    [121] Pinapati P, Joby JP, Cherukulappurath S. Graphene oxide based two-dimensional optical tweezers for low power trapping of quantum dots and E. coli bacteria. ACS Appl Nano Mater 3, 5107–5115 (2020). doi: 10.1021/acsanm.0c00367

    CrossRef Google Scholar

    [122] Rodríguez-Rodríguez H, Acebrón M, Juárez BH, Arias-Gonzalez JR. Luminescence dynamics of silica-encapsulated quantum dots during optical trapping. J Phys Chem C 121, 10124–10130 (2017). doi: 10.1021/acs.jpcc.6b11867

    CrossRef Google Scholar

    [123] Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang PD et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5, 97–101 (2006). doi: 10.1038/nmat1563

    CrossRef Google Scholar

    [124] Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007). doi: 10.1038/nature05921

    CrossRef Google Scholar

    [125] Rodríguez-Rodríguez H, Acebrón M, Iborra FJ, Arias-Gonzalez JR, Juárez BH. Photoluminescence activation of organic dyes via optically trapped quantum dots. ACS Nano 13, 7223–7230 (2019). doi: 10.1021/acsnano.9b02835

    CrossRef Google Scholar

    [126] Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4, 810–816 (2008). doi: 10.1038/nphys1075

    CrossRef Google Scholar

    [127] Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). doi: 10.1038/nature07278

    CrossRef Google Scholar

    [128] Dolde F, Fedder H, Doherty MW, Nöbauer T, Rempp F et al. Electric-field sensing using single diamond spins. Nat Phys 7, 459–463 (2011). doi: 10.1038/nphys1969

    CrossRef Google Scholar

    [129] Toyli DM, Christle DJ, Alkauskas A, Buckley BB, Van de Walle CG et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys Rev X 2, 031001 (2012).

    Google Scholar

    [130] Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J Am Chem Soc 127, 17604–17605 (2005). doi: 10.1021/ja0567081

    CrossRef Google Scholar

    [131] Liu KK, Cheng CL, Chang CC, Chao JI. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18, 325102 (2007). doi: 10.1088/0957-4484/18/32/325102

    CrossRef Google Scholar

    [132] McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6, 358–363 (2011). doi: 10.1038/nnano.2011.64

    CrossRef Google Scholar

    [133] Horowitz VR, Alemán BJ, Christle DJ, Cleland AN, Awschalom DD. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc Natl Acad Sci USA 109, 13493–13497 (2012). doi: 10.1073/pnas.1211311109

    CrossRef Google Scholar

    [134] Geiselmann M, Juan ML, Renger J, Say JM, Brown LJ et al. Three-dimensional optical manipulation of a single electron spin. Nat Nanotechnol 8, 175–179 (2013). doi: 10.1038/nnano.2012.259

    CrossRef Google Scholar

    [135] Wu TL, Chen XX, Gong ZY, Yan JH, Guo JH et al. Intracellular thermal probing using aggregated fluorescent nanodiamonds. Adv Sci 9, 2103354 (2022). doi: 10.1002/advs.202103354

    CrossRef Google Scholar

    [136] Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol 16, e2003992 (2018). doi: 10.1371/journal.pbio.2003992

    CrossRef Google Scholar

    [137] Roxworthy BJ, Toussaint KC. Optical trapping with π-phase cylindrical vector beams. New J Phys 12, 073012 (2010). doi: 10.1088/1367-2630/12/7/073012

    CrossRef Google Scholar

    [138] Huang L, Guo HL, Li JF, Ling L, Feng BH et al. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt Lett 37, 1694–1696 (2012). doi: 10.1364/OL.37.001694

    CrossRef Google Scholar

    [139] Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y et al. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49, 2865–2868 (2010). doi: 10.1002/anie.200905805

    CrossRef Google Scholar

    [140] Fujii M, Nakano T, Imakita K, Hayashi S. Upconversion luminescence of er and Yb codoped NaYF4 nanoparticles with metal shells. J Phys Chem C 117, 1113–1120 (2013). doi: 10.1021/jp309510s

    CrossRef Google Scholar

    [141] Shen YL, Lifante J, Fernández N, Jaque D, Ximendes E. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14, 4122–4133 (2020). doi: 10.1021/acsnano.9b08824

    CrossRef Google Scholar

    [142] von Chamier L, Laine RF, Jukkala J, Spahn C, Krentzel D et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). doi: 10.1038/s41467-021-22518-0

    CrossRef Google Scholar

    [143] Zhu MS, Zhuang J, Li Z, Liu QQ, Zhao RP et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol 18, 657–666 (2023). doi: 10.1038/s41565-023-01323-4

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(5111) PDF downloads(745) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint