Citation: | Zhang FC, Camarero P, Haro-González P, Labrador-Páez L, Jaque D. Optical trapping of optical nanoparticles: Fundamentals and applications. Opto-Electron Sci 2, 230019 (2023). doi: 10.29026/oes.2023.230019 |
[1] | Li Y, Lin CJ, Li KQ, Chi C, Huang BL. Nanoparticle-on-mirror metamaterials for full-spectrum selective solar energy harvesting. Nano Lett 22, 5659–5666 (2022). doi: 10.1021/acs.nanolett.2c00322 |
[2] | Kameya Y, Hanamura K. Enhancement of solar radiation absorption using nanoparticle suspension. Solar Energy 85, 299–307 (2011). doi: 10.1016/j.solener.2010.11.021 |
[3] | Zhang M, Lin YJ, Mullen TJ, Lin WF, Sun LD et al. Improving hematite's solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J Phys Chem Lett 3, 3188–3192 (2012). doi: 10.1021/jz301444a |
[4] | Ma DY, Shen YL, Su TT, Zhao J, Rahman NU et al. Performance enhancement in up-conversion nanoparticle-embedded perovskite solar cells by harvesting near-infrared sunlight. Mater Chem Front 3, 2058–2065 (2019). doi: 10.1039/C9QM00311H |
[5] | Zuo MZ, Qian WR, Li TH, Hu XY, Jiang JL et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl Mater Interfaces 10, 39214–39221 (2018). doi: 10.1021/acsami.8b14110 |
[6] | Przybylska D, Grzyb T, Erdman A, Olejnik K, Szczeszak A. Anti-counterfeiting system based on luminescent varnish enriched by NIR- excited nanoparticles for paper security. Sci Rep 12, 19388 (2022). doi: 10.1038/s41598-022-23686-9 |
[7] | Kumar P, Dwivedi J, Gupta BK. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J Mater Chem C 2, 10468–10475 (2014). doi: 10.1039/C4TC02065K |
[8] | Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M et al. A sunblock based on bioadhesive nanoparticles. Nat Mater 14, 1278–1285 (2015). doi: 10.1038/nmat4422 |
[9] | Huang J, He YR, Wang L, Huang YM, Jiang BC. Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation. Energy Convers Manag 132, 452–459 (2017). doi: 10.1016/j.enconman.2016.11.053 |
[10] | Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A et al. Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014). doi: 10.1039/C4NR00708E |
[11] | Lu DS, Retama JR, Marin R, Marqués MI, Calderón OG et al. Thermoresponsive polymeric nanolenses magnify the thermal sensitivity of single upconverting nanoparticles. Small 18, 2202452 (2022). doi: 10.1002/smll.202202452 |
[12] | López-Peña G, Hamraoui K, Horchani-Naifer K, Gerke C, Ortgies DH et al. Lanthanide doped nanoheaters with reliable and absolute temperature feedback. Phys B Condens Matter 631, 413652 (2022). doi: 10.1016/j.physb.2021.413652 |
[13] | Shen YL, Lifante J, Zabala-Gutierrez I, de la Fuente-Fernández M, Granado M et al. Reliable and remote monitoring of absolute temperature during liver inflammation via luminescence-lifetime-based nanothermometry. Adv Mater 34, 2107764 (2022). doi: 10.1002/adma.202107764 |
[14] | Rodríguez-Sevilla P, Zhang YH, Haro-González P, Sanz-Rodríguez F, Jaque F et al. Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle. Adv Mater 28, 2421–2426 (2016). doi: 10.1002/adma.201505020 |
[15] | Rodríguez-Sevilla P, Zhang YH, de Sousa N, Marqués MI, Sanz-Rodríguez F et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett 16, 8005–8014 (2016). doi: 10.1021/acs.nanolett.6b04583 |
[16] | Esipova TV, Ye XC, Collins JE, Sakadžić S, Mandeville ET et al. Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci USA 109, 20826–20831 (2012). doi: 10.1073/pnas.1213291110 |
[17] | Suresh K, Bankapur A, Chidangil S, Madhyastha H, Sa-kai K et al. A broadband optical pH sensor using upconversion luminescence. J Mater Chem C 9, 8606–8614 (2021). doi: 10.1039/D1TC00792K |
[18] | Benjaminsen RV, Sun HH, Henriksen JR, Christensen NM, Almdal K et al. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 5, 5864–5873 (2011). doi: 10.1021/nn201643f |
[19] | Ali R, Saleh SM, Meier RJ, Azab HA, Abdelgawad II et al. Upconverting nanoparticle based optical sensor for carbon dioxide. Sens Actuators B Chem 150, 126–131 (2010). doi: 10.1016/j.snb.2010.07.031 |
[20] | Kameda M, Seki H, Makoshi T, Amao Y, Nakakita K. A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film. Sens Actuators B Chem 171–172, 343–349 (2012). |
[21] | Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat Commun 3, 1108 (2012). doi: 10.1038/ncomms2109 |
[22] | Huang G, Liu YT, Wang DJ, Zhu Y, Wen SH et al. Upconversion nanoparticles for super-resolution quantification of single small extracellular vesicles. eLight 2, 20 (2022). doi: 10.1186/s43593-022-00031-1 |
[23] | Rodríguez-Sevilla P, Rodríguez-Rodríguez H, Pedroni M, Speghini A, Bettinelli M et al. Assessing single upconverting nanoparticle luminescence by optical tweezers. Nano Lett 15, 5068–5074 (2015). doi: 10.1021/acs.nanolett.5b01184 |
[24] | Labrador-Páez L, Pedroni M, Speghini A, García-Solé J, Haro-González P et al. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 10, 22319–22328 (2018). doi: 10.1039/C8NR07566B |
[25] | Katano S, Hotsuki M, Uehara Y. Creation and luminescence of a single silver nanoparticle on Si(111) investigated by scanning tunneling microscopy. J Phys Chem C 120, 28575–28582 (2016). doi: 10.1021/acs.jpcc.6b09037 |
[26] | Silly F, Gusev AO, Charra F, Taleb A, Pileni MP. Scanning tunneling microscopy-controlled dynamic switching of single nanoparticle luminescence at room temperature. Appl Phys Lett 79, 4013–4015 (2001). doi: 10.1063/1.1424466 |
[27] | Schietinger S, Aichele T, Wang HQ, Nann T, Benson O. Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano Lett 10, 134–138 (2010). doi: 10.1021/nl903046r |
[28] | Tong LM, Li ZP, Zhu T, Xu HX, Liu ZF. Single gold-nanoparticle-enhanced raman scattering of individual single-walled carbon nanotubes via atomic force microscope manipulation. J Phys Chem C 112, 7119–7123 (2008). doi: 10.1021/jp7102484 |
[29] | Ratchford D, Shafiei F, Kim S, Gray SK, Li XQ. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle. Nano Lett 11, 1049–1054 (2011). doi: 10.1021/nl103906f |
[30] | Lu DS, Labrador-Páez L, Ortiz-Rivero E, Frades P, Antoniak MA et al. Exploring single-nanoparticle dynamics at high temperature by optical tweezers. Nano Lett 20, 8024–8031 (2020). doi: 10.1021/acs.nanolett.0c02936 |
[31] | Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24, 156–159 (1970). doi: 10.1103/PhysRevLett.24.156 |
[32] | Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review. J Nanophotonics 2, 021875 (2008). doi: 10.1117/1.2992045 |
[33] | Rodríguez-Sevilla P, Prorok K, Bednarkiewicz A, Marqués MI, García-Martín A et al. Optical forces at the nanoscale: size and electrostatic effects. Nano Lett 18, 602–609 (2018). doi: 10.1021/acs.nanolett.7b04804 |
[34] | Rodríguez-Rodríguez H, Sevilla PR, Rodríguez EM, Ortgies DH, Pedroni M et al. Enhancing optical forces on fluorescent up-converting nanoparticles by surface charge tailoring. Small 11, 1555–1561 (2015). doi: 10.1002/smll.201402587 |
[35] | Berthelot J, Aćimović SS, Juan ML, Kreuzer MP, Renger J et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol 9, 295–299 (2014). doi: 10.1038/nnano.2014.24 |
[36] | Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2, 365–370 (2008). doi: 10.1038/nphoton.2008.78 |
[37] | Han X, Truong VG, Thomas PS, Chormaic SN. Sequential trapping of single nanoparticles using a gold plasmonic nanohole array. Photonics Res 6, 981–986 (2018). doi: 10.1364/PRJ.6.000981 |
[38] | Mandal S, Serey X, Erickson D. Nanomanipulation using silicon photonic crystal resonators. Nano Lett 10, 99–104 (2010). doi: 10.1021/nl9029225 |
[39] | Wang HT, Wu X, Shen DY. Localized optical manipulation in optical ring resonators. Opt Express 23, 27650–27660 (2015). doi: 10.1364/OE.23.027650 |
[40] | Lu DS, Pedroni M, Labrador-Páez L, Marqués MI, Jaque D et al. Nanojet trapping of a single sub-10 nm upconverting nanoparticle in the full liquid water temperature range. Small 17, 2006764 (2021). doi: 10.1002/smll.202006764 |
[41] | Li YC, Xin HB, Lei HX, Liu LL, Li YZ et al. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light Sci Appl 5, e16176 (2016). doi: 10.1038/lsa.2016.176 |
[42] | Chen ZZ, Cai ZW, Liu WB, Yan ZJ. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 157, 050901 (2022). doi: 10.1063/5.0086328 |
[43] | Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett 19, 930–932 (1994). doi: 10.1364/OL.19.000930 |
[44] | Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong LM, Kall M. Laser trapping of colloidal metal nanoparticles. ACS Nano 9, 3453–3469 (2015). doi: 10.1021/acsnano.5b00286 |
[45] | Lu DS, Gámez F, Haro-González P. Temperature effects on optical trapping stability. Micromachines 12, 954 (2021). doi: 10.3390/mi12080954 |
[46] | Shao L, Käll M. Light‐driven rotation of plasmonic nanomotors. Adv Funct Mater 28, 1706272 (2018). doi: 10.1002/adfm.201706272 |
[47] | Yuan YF, Lin YN, Gu BB, Panwar N, Tjin SC et al. Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord Chem Rev 339, 138–152 (2017). doi: 10.1016/j.ccr.2017.03.013 |
[48] | Ohlinger A, Nedev S, Lutich AA, Feldmann J. Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. Nano Lett 11, 1770–1774 (2011). doi: 10.1021/nl2003544 |
[49] | Andrén D, Shao L, Länk NO, Aćimović SS, Johansson P et al. Probing photothermal effects on optically trapped gold nanorods by simultaneous plasmon spectroscopy and brownian dynamics analysis. ACS Nano 11, 10053–10061 (2017). doi: 10.1021/acsnano.7b04302 |
[50] | Andres-Arroyo A, Wang F, Toe WJ, Reece P. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy. Biomed Opt Express 6, 3646–3654 (2015). doi: 10.1364/BOE.6.003646 |
[51] | Rodrigo JA, Alieva T. Polymorphic beams and Nature inspired circuits for optical current. Sci Rep 6, 35341 (2016). doi: 10.1038/srep35341 |
[52] | Guffey MJ, Scherer NF. All-optical patterning of Au nanoparticles on surfaces using optical traps. Nano Lett 10, 4302–4308 (2010). doi: 10.1021/nl904167t |
[53] | Ling L, Huang L, Fu JX, Guo HL, Li JF et al. The properties of gold nanospheres studied with dark field optical trapping. Opt Express 21, 6618–6624 (2013). doi: 10.1364/OE.21.006618 |
[54] | Yang F, Yang NN, Huo XY, Xu SY. Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics 12, 041501 (2018). doi: 10.1063/1.5037421 |
[55] | del Rosal B, Ximendes E, Rocha U, Jaque D. In vivo luminescence nanothermometry: from materials to applications. Adv Opt Mater 5, 1600508 (2017). doi: 10.1002/adom.201600508 |
[56] | Zhou HY, Sharma M, Berezin O, Zuckerman D, Berezin MY. Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17, 27–36 (2016). doi: 10.1002/cphc.201500753 |
[57] | Setoura K, Okada Y, Werner D, Hashimoto S. Observation of nanoscale cooling effects by substrates and the surrounding media for single gold nanoparticles under CW-laser illumination. ACS Nano 7, 7874–7885 (2013). doi: 10.1021/nn402863s |
[58] | Hajizadeh F, Shao L, Andrén D, Johansson P, Rubinsztein-Dunlop H et al. Brownian fluctuations of an optically rotated nanorod. Optica 4, 746–751 (2017). doi: 10.1364/OPTICA.4.000746 |
[59] | Zohar N, Chuntonov L, Haran G. The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21, 26–39 (2014). doi: 10.1016/j.jphotochemrev.2014.10.002 |
[60] | Kermani H, Rohrbach A. Orientation-control of two plasmonically coupled nanoparticles in an optical trap. ACS Photonics 5, 4660–4667 (2018). doi: 10.1021/acsphotonics.8b01145 |
[61] | Blattmann M, Rohrbach A. Plasmonic coupling dynamics of silver nanoparticles in an optical trap. Nano Lett 15, 7816–7821 (2015). doi: 10.1021/acs.nanolett.5b02532 |
[62] | Rodrigo JA, Angulo M, Alieva T. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Res 9, 1–12 (2021). |
[63] | Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23, 741–745 (2005). doi: 10.1038/nbt1100 |
[64] | Han F, Armstrong T, Andres-Arroyo A, Bennett D, Soeriyadi A et al. Optical tweezers-based characterisation of gold core–satellite plasmonic nano-assemblies incorporating thermo-responsive polymers. Nanoscale 12, 1680–1687 (2020). doi: 10.1039/C9NR07891F |
[65] | König K. Multiphoton microscopy in life sciences. J Microsc 200, 83–104 (2000). doi: 10.1046/j.1365-2818.2000.00738.x |
[66] | Vetrone F, Naccache R, Zamarrón A, de la Fuente AJ, Sanz-Rodríguez F et al. Temperature sensing using fluorescent nanothermometers. ACS Nano 4, 3254–3258 (2010). doi: 10.1021/nn100244a |
[67] | Haro-González P, del Rosal B, Maestro LM, Rodríguez EM, Naccache R et al. Optical trapping of NaYF4: Er3+, Yb3+ upconverting fluorescent nanoparticles. Nanoscale 5, 12192–12199 (2013). doi: 10.1039/c3nr03644h |
[68] | Shan XC, Wang F, Wang DJ, Wen SH, Chen CH et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat Nanotechnol 16, 531–537 (2021). doi: 10.1038/s41565-021-00852-0 |
[69] | Cantelar E, Cussó F. Dynamics of the Yb3+ to Er3+ energy transfer in LiNbO3. Appl Phys B 69, 29–33 (1999). doi: 10.1007/s003400050765 |
[70] | Cao BS, He YY, Feng ZQ, Li YS, Dong B. Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo: Yb2Ti2O7 nanophosphor. Sens Actuators B Chem 159, 8–11 (2011). doi: 10.1016/j.snb.2011.05.018 |
[71] | Petit J, Viana B, Goldner P. Internal temperature measurement of an ytterbium doped material under laser operation. Opt Express 19, 1138–1146 (2011). doi: 10.1364/OE.19.001138 |
[72] | Quintanilla M, Cantelar E, Cussó F, Villegas M, Caballero AC. Temperature sensing with up-converting submicron-sized LiNbO3: Er3+/Yb3+ particles. Appl Phys Express 4, 022601 (2011). doi: 10.1143/APEX.4.022601 |
[73] | Alencar MARC, Maciel GS, Araújo CBd, Patra A. Er3+-doped BaTiO3 nanocrystals for thermometry: influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett 84, 4753–4755 (2004). doi: 10.1063/1.1760882 |
[74] | Haro-González P, Martín IR, Martín LL, León-Luis SF, Pérez-Rodríguez C et al. Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Opt Mater 33, 742–745 (2011). doi: 10.1016/j.optmat.2010.11.026 |
[75] | Cai ZP, Xu HY. Point temperature sensor based on green upconversion emission in an Er: ZBLALiP microsphere. Sens Actuators A Phys 108, 187–192 (2003). doi: 10.1016/j.sna.2003.07.008 |
[76] | Vetrone F, Naccache R, de la Fuente AJ, Sanz-Rodríguez F, Blazquez-Castro A et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 495–498 (2010). doi: 10.1039/B9NR00236G |
[77] | Maestro LM, Rodríguez EM, Vetrone F, Naccache R, Loro H et al. Nanoparticles for highly efficient multiphoton fluorescence bioimaging. Opt Express 18, 23544–23553 (2010). doi: 10.1364/OE.18.023544 |
[78] | Chatterjee DK, Rufaihah AJ, Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937–943 (2008). doi: 10.1016/j.biomaterials.2007.10.051 |
[79] | Wang M, Mi CC, Wang WX, Liu CH, Wu YF et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4: Yb, Er upconversion nanoparticles. ACS Nano 3, 1580–1586 (2009). doi: 10.1021/nn900491j |
[80] | Drobczyński S, Prorok K, Tamarov K, Duś-Szachniewicz K, Lehto VP et al. Toward controlled photothermal treatment of single cell: optically induced heating and remote temperature monitoring in vitro through double wavelength optical tweezers. ACS Photonics 4, 1993–2002 (2017). doi: 10.1021/acsphotonics.7b00375 |
[81] | Liu TY, Liu XG, Spring DR, Qian XH, Cui JN et al. Quantitatively mapping cellular viscosity with detailed organelle information via a designed PET fluorescent probe. Sci Rep 4, 5418 (2014). doi: 10.1038/srep05418 |
[82] | Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Ann Rev Biophys 38, 301–326 (2009). doi: 10.1146/annurev.biophys.050708.133724 |
[83] | Lammerding J, Lee RT. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp 264, 264–273 (2005). |
[84] | Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113, 370–378 (2004). doi: 10.1172/JCI200419670 |
[85] | Lee JSH, Chang MI, Tseng Y, Wirtz D. Cdc42 mediates nucleus movement and MTOC polarization in Swiss 3T3 fibroblasts under mechanical shear stress. Mol Biol Cell 16, 871–880 (2005). doi: 10.1091/mbc.e03-12-0910 |
[86] | Minin AA, Kulik AV, Gyoeva FK, Li Y, Goshima G et al. Regulation of mitochondria distribution by RhoA and formins. J Cell Sci 119, 659–670 (2006). doi: 10.1242/jcs.02762 |
[87] | Kuimova MK. Mapping viscosity in cells using molecular rotors. Phys Chem Chem Phys 14, 12671–12686 (2012). doi: 10.1039/c2cp41674c |
[88] | Nadiv O, Shinitzky M, Manu H, Hecht D, Roberts CT Jr et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats. Biochem J 298, 443–450 (1994). doi: 10.1042/bj2980443 |
[89] | Deliconstantinos G, Villiotou V, Stavrides JC. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes. Biochem Pharmacol 49, 1589–1600 (1995). doi: 10.1016/0006-2952(95)00094-G |
[90] | Zubenko GS, Kopp U, Seto T, Firestone LL. Platelet membrane fluidity individuals at risk for Alzheimer's disease: a comparison of results from fluorescence spectroscopy and electron spin resonance spectroscopy. Psychopharmacology 145, 175–180 (1999). doi: 10.1007/s002130051046 |
[91] | Chen P, Song M, Wu E, Wu BT, Zhou JJ et al. Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale 7, 6462–6466 (2015). doi: 10.1039/C5NR00289C |
[92] | Rodríguez-Sevilla P, Labrador-Páez L, Wawrzyńczyk D, Nyk M, Samoć M et al. Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy. Nanoscale 8, 300–308 (2016). doi: 10.1039/C5NR06419H |
[93] | Lyu Z-, Dong H, Yang XF, Sun LD, Yan CH. Highly polarized upconversion emissions from lanthanide-doped LiYF4 crystals as spatial orientation indicators. J Phys Chem Lett 12, 11288–11294 (2021). doi: 10.1021/acs.jpclett.1c03409 |
[94] | Green KK, Wirth J, Lim SF. Nanoplasmonic upconverting nanoparticles as orientation sensors for single particle microscopy. Sci Rep 7, 762 (2017). doi: 10.1038/s41598-017-00869-3 |
[95] | Kim J, Chacón R, Wang ZJ, Larquet E, Lahlil K et al. Measuring 3D orientation of nanocrystals via polarized luminescence of rare-earth dopants. Nat Commun 12, 1943 (2021). doi: 10.1038/s41467-021-22158-4 |
[96] | Chakraborty S, Nandi S, Bhattacharyya K, Mukherjee S. Probing viscosity of co-polymer hydrogel and hela cell using fluorescent gold nanoclusters: fluorescence correlation spectroscopy and anisotropy decay. ChemPhysChem 21, 406–414 (2020). doi: 10.1002/cphc.201901161 |
[97] | Ramazanova I, Suslov M, Sibgatullina G, Petrov K, Fedorenko S et al. Determination of the viscosity of the cytoplasm of M-HeLa cells using fluorescent magnetic nanoparticles and an electromagnetic needle, 30 August 2022, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-1994074/v1 |
[98] | Schäferling M. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8, 378–413 (2016). doi: 10.1002/wnan.1366 |
[99] | Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021). doi: 10.29026/oea.2021.200015 |
[100] | Kim K, Yoon J, Park YK. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343–346 (2015). doi: 10.1364/OPTICA.2.000343 |
[101] | Bresolí-Obach R, Kudo T, Louis B, Chang YC, Scheblykin IG et al. Resonantly enhanced optical trapping of single dye-doped particles at an interface. ACS Photonics 8, 1832–1839 (2021). doi: 10.1021/acsphotonics.1c00438 |
[102] | Louis B, Huang CH, Camacho R, Scheblykin IG, Sugiyama T et al. Unravelling 3D dynamics and hydrodynamics during incorporation of dielectric particles to an optical trapping site. ACS Nano 17, 3797–3808 (2023). doi: 10.1021/acsnano.2c11753 |
[103] | Ito S, Mitsuishi M, Setoura K, Tamura M, Iida T et al. Mesoscopic motion of optically trapped particle synchronized with photochromic reactions of diarylethene derivatives. J Phys Chem Lett 9, 2659–2664 (2018). doi: 10.1021/acs.jpclett.8b00890 |
[104] | Hosokawa C, Tsuji T, Kishimoto T, Okubo T, Kudoh SN et al. Convection dynamics forced by optical trapping with a focused laser beam. J Phys Chem C 124, 8323–8333 (2020). doi: 10.1021/acs.jpcc.9b11663 |
[105] | Florin EL, Horber JKH, Stelzer EHK. High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd: YAG laser. Appl Phys Lett 69, 446–448 (1996). doi: 10.1063/1.118134 |
[106] | Florin EL, Pralle A, Horber JKH, Stelzer EHK. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J Struct Biol 119, 202–211 (1997). doi: 10.1006/jsbi.1997.3880 |
[107] | Lang MJ, Fordyce PM, Block SM. Combined optical trapping and single-molecule fluorescence. J Biol 2, 6 (2003). doi: 10.1186/1475-4924-2-6 |
[108] | Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1, 133–139 (2004). doi: 10.1038/nmeth714 |
[109] | Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nat Mater 4, 826–831 (2005). doi: 10.1038/nmat1508 |
[110] | Wang LJ, Luo ML, Zhang QY, Tang B, Zhang CY. Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase. Chem Commun 53, 11016–11019 (2017). doi: 10.1039/C7CC05485H |
[111] | Zhang Y, Zhang CY. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84, 224–231 (2012). doi: 10.1021/ac202405q |
[112] | Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005). doi: 10.1126/science.1104274 |
[113] | Pan LY, Ishikawa A, Tamai N. Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence. Phys Rev B 75, 161305 (2007). doi: 10.1103/PhysRevB.75.161305 |
[114] | Jauffred L, Richardson AC, Oddershede LB. Three-dimensional optical control of individual quantum dots. Nano Lett 8, 3376–3380 (2008). doi: 10.1021/nl801962f |
[115] | Jauffred L, Oddershede LB. Two-photon quantum dot excitation during optical trapping. Nano Lett 10, 1927–1930 (2010). doi: 10.1021/nl100924z |
[116] | Jauffred L, Kyrsting A, Arnspang EC, Reihani SNS, Oddershede LB. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot. Nanoscale 6, 6997–7003 (2014). doi: 10.1039/C4NR01319K |
[117] | Xu Z, Crozier KB. All-dielectric nanotweezers for trapping and observation of a single quantum dot. Opt Express 27, 4034–4045 (2019). doi: 10.1364/OE.27.004034 |
[118] | Chiang WY, Okuhata T, Usman A, Tamai N, Masuhara H. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses. J Phys Chem B 118, 14010–14016 (2014). doi: 10.1021/jp502524f |
[119] | Head CR, Kammann E, Zanella M, Manna L, Lagoudakis PG. Spinningnanorods - active optical manipulation of semiconductor nanorods using polarised light. Nanoscale 4, 3693–3697 (2012). doi: 10.1039/c2nr30515a |
[120] | Agarwal R, Ladavac K, Roichman Y, Yu GH, Lieber CM et al. Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13, 8906–8912 (2005). doi: 10.1364/OPEX.13.008906 |
[121] | Pinapati P, Joby JP, Cherukulappurath S. Graphene oxide based two-dimensional optical tweezers for low power trapping of quantum dots and E. coli bacteria. ACS Appl Nano Mater 3, 5107–5115 (2020). doi: 10.1021/acsanm.0c00367 |
[122] | Rodríguez-Rodríguez H, Acebrón M, Juárez BH, Arias-Gonzalez JR. Luminescence dynamics of silica-encapsulated quantum dots during optical trapping. J Phys Chem C 121, 10124–10130 (2017). doi: 10.1021/acs.jpcc.6b11867 |
[123] | Pauzauskie PJ, Radenovic A, Trepagnier E, Shroff H, Yang PD et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nat Mater 5, 97–101 (2006). doi: 10.1038/nmat1563 |
[124] | Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007). doi: 10.1038/nature05921 |
[125] | Rodríguez-Rodríguez H, Acebrón M, Iborra FJ, Arias-Gonzalez JR, Juárez BH. Photoluminescence activation of organic dyes via optically trapped quantum dots. ACS Nano 13, 7223–7230 (2019). doi: 10.1021/acsnano.9b02835 |
[126] | Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4, 810–816 (2008). doi: 10.1038/nphys1075 |
[127] | Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). doi: 10.1038/nature07278 |
[128] | Dolde F, Fedder H, Doherty MW, Nöbauer T, Rempp F et al. Electric-field sensing using single diamond spins. Nat Phys 7, 459–463 (2011). doi: 10.1038/nphys1969 |
[129] | Toyli DM, Christle DJ, Alkauskas A, Buckley BB, Van de Walle CG et al. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys Rev X 2, 031001 (2012). |
[130] | Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J Am Chem Soc 127, 17604–17605 (2005). doi: 10.1021/ja0567081 |
[131] | Liu KK, Cheng CL, Chang CC, Chao JI. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18, 325102 (2007). doi: 10.1088/0957-4484/18/32/325102 |
[132] | McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6, 358–363 (2011). doi: 10.1038/nnano.2011.64 |
[133] | Horowitz VR, Alemán BJ, Christle DJ, Cleland AN, Awschalom DD. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc Natl Acad Sci USA 109, 13493–13497 (2012). doi: 10.1073/pnas.1211311109 |
[134] | Geiselmann M, Juan ML, Renger J, Say JM, Brown LJ et al. Three-dimensional optical manipulation of a single electron spin. Nat Nanotechnol 8, 175–179 (2013). doi: 10.1038/nnano.2012.259 |
[135] | Wu TL, Chen XX, Gong ZY, Yan JH, Guo JH et al. Intracellular thermal probing using aggregated fluorescent nanodiamonds. Adv Sci 9, 2103354 (2022). doi: 10.1002/advs.202103354 |
[136] | Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R et al. Mitochondria are physiologically maintained at close to 50 °C. PLoS Biol 16, e2003992 (2018). doi: 10.1371/journal.pbio.2003992 |
[137] | Roxworthy BJ, Toussaint KC. Optical trapping with π-phase cylindrical vector beams. New J Phys 12, 073012 (2010). doi: 10.1088/1367-2630/12/7/073012 |
[138] | Huang L, Guo HL, Li JF, Ling L, Feng BH et al. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt Lett 37, 1694–1696 (2012). doi: 10.1364/OL.37.001694 |
[139] | Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y et al. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49, 2865–2868 (2010). doi: 10.1002/anie.200905805 |
[140] | Fujii M, Nakano T, Imakita K, Hayashi S. Upconversion luminescence of er and Yb codoped NaYF4 nanoparticles with metal shells. J Phys Chem C 117, 1113–1120 (2013). doi: 10.1021/jp309510s |
[141] | Shen YL, Lifante J, Fernández N, Jaque D, Ximendes E. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano 14, 4122–4133 (2020). doi: 10.1021/acsnano.9b08824 |
[142] | von Chamier L, Laine RF, Jukkala J, Spahn C, Krentzel D et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). doi: 10.1038/s41467-021-22518-0 |
[143] | Zhu MS, Zhuang J, Li Z, Liu QQ, Zhao RP et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat Nanotechnol 18, 657–666 (2023). doi: 10.1038/s41565-023-01323-4 |
(a) Time evolutions of the longitudinal surface plasmon resonance (LSPR) peak position (blue points) and the rotation frequency (red) as the laser power (green) is swept in sawtooth ramps with linearly increasing maxima. The dashed blue line is fit to the low laser power spectral peak positions, illustrating the continuous reshaping behavior. The grey area indicates a change in the slope of the linear relation between the laser power and λLSPR, where nucleation of vapor is suggested to occur. (b) Temperature determination based on LSPR spectroscopy (red data points, based on water’s refractive index (RI) temperature variation and subsequent λLSPR variation) and rotational Brownian dynamics (blue data points, based on water’s viscosity temperature variation and subsequent rotation frequency change) obtained from the data in (a). Figure reproduced with permission from ref.49, Copyright 2017 American Chemical Society.
Plasmonic nanoparticles for investigation of nanoparticle-nanoparticle interaction. (a) Time evolution of the darkfield spectrum of optically trapped silver nanoparticles. Observing intensity steps at the silver plasmon resonance (~450 nm) allowed to count the number of nanoparticles entering inside the trap. (b) Experimental darkfield spectra of one (black), two noncoupled (blue), and three (two of them coupled) (red) trapped silver nanoparticles. (c) Theoretical plane wave scattering cross section spectra of one (black), two noncoupled (blue), and two coupled (distance = 2 nm) plus one noncoupled (red) silver nanoparticles, assuming randomly changing orientation of nanoparticles in space. Evolution of scattering color at the optical trap (true color images) with time when two silver nanoparticles are simultaneously trapped: (d) initially, (e) 10 s after (d), (f) 60 ms after (e). No other particles were observed entering the trap during the color evolution process. (g) Darkfield images at different times (left and center) and time-lapse image (right) illustrating the optical transport of several 60 nm diameter silver nanospheres around a 3 μm radius ring-shaped optical trap. Darker blue for monomers, lighter blue for close-standing nanospheres, light green for dimers. (h) Illustration of the thermo-responsive behavior of the core (purple)-satellite (orange) plasmonic nano-assemblies incorporating thermo-responsive polymers. Figure reproduced with permission from: (a–f) ref.48, Copyright 2011 American Chemical Society; (g) ref.62, Copyright 2021, Chinese Laser Press.
Lanthanide-doped nanoparticles for thermal sensing. (a) Energy scheme of Er3+-Yb3+ co-doped UCNP. Black continuous arrows indicate 4F7/2 level population by an energy transfer process. Grey discontinuous arrows indicate energy transfer processes between Er3+ and Yb3+ ions. Dark green (2H11/2→4I15/2), light green (4S3/2→4I15/2), and red (4F9/2→4I15/2) continuous arrows indicate radiative emissions centered at 520 nm, 540 nm, and 660 nm, respectively. (b) Schematic representation of the experimental setup used for thermal scanning in the surroundings of a HeLa cell subjected to a plasmonic photothermal treatment. The arrow indicates the scanning direction. (c) On the top, the temperature decay measured from cell surface for three different distances from the substrate. The symbols are the experimental data, and the lines are a guide for the eyes. On the bottom, the control experiment in absence of the 800 nm heating laser. (d) Functional scheme of the active dual-wavelength optical multitrap setup. The 980 nm beams (orange cones) for trapping of the cell and trapping/reading of the optical microthermometers, while the 1064 nm optical trap (green cone) for optical trapping/heating. (e) Microscope image of the cell, silica microparticles and optical microthermometers being trapped, activated, and read. Red rectangles represent 980 nm trapping laser, while green rectangles represent 1064 nm trapping laser. (f) Time lapse images of the heated cells at 10, 30, and 65 s after switching on the heating. On the bottom-right, graphs of relative Trypan Blue (TB) accumulation in the dying cell and the corresponding temperature (right axis). Figure reproduced with permission from: (b, c) ref.14, Copyright 2016 John Wiley and Sons; (d–f) ref.80, Copyright 2017 American Chemical Society.
Lanthanide-doped particles for intracellular viscosity sensing. (a) Diagram of the three excitation configurations. σ-polarization state, defined by propagating light along the optical axis (z-axis) with a polarization perpendicular to it (parallel to x- or y-axes) and α- and π-polarization states, where light propagates perpendicularly to the optical axis of the UCNP with a polarization parallel (π) or perpendicular (α) to it. (b) Emission spectra along the three polarization states. (c) Schematic representation of the rotation of a UCNP inside a HeLa cell. (d) Measured viscosity as a function of the rotation frequency. Inset is the log−log representation. Blue data correspond to the values measured by the active method while red data is the averaged value obtained from passive method experiments. The rotation frequency for passive method is estimated by dividing the accumulated rotated angle by the elapsed drag. Black dashed lines correspond to the best fitting. Figure reproduced with permission from ref.15, Copyright 2016 American Chemical Society.
Lanthanide-doped particles for chemical sensing. (a) Red to green emission ratio depending on pH value for a single UCMP in a buffer solution. Blue dots are experimental data. Grey line is the linear fitting. (b) Red to green emission ratio of the optically trapped UCMP vs. pH in various buffer solutions. Figure reproduced with permission from ref.17, under a Creative Commons Attribution 3.0 International License.
(a) Jablonsky diagram of the electronic states involved in the optical resonance effect. (b) Theoretical calculations of the population of each state vs the 488 nm excitation power. (c) Changes in the trapping stiffness vs the excitation wavelength, there is no fluorescence or resonance effect without 488 nm excitation. (d) Changes in the trapping stiffness vs the 488 nm laser power. Figure reproduced with permission from ref.101. Copyright 2021 American Chemical Society.
Fluorescent polymeric particles for investigation of single particle dynamics. (a) Left: Schematic of multiplane microscope with optical tweezer. Right: Time frame of fluorescent images from different planes. (b) 3D incorporation trajectories of 200 nm fluorescent polystyrene particles in an optical trap. Blue and red lines represent the incorporation trajectories going through the inner and outer cones, respectively. (c) Schematic of mesoscopic mechanical motions induced by the photochromic reaction of a single PMMA particle. (d) Time course of the positional change along the Z axis (red line) and the fluorescence intensity (blue line) of a trapped particle with the continuous wave 532 nm laser. (e) Z displacement of a fluorescent particle under trapping. (f) Profile of radial flow component ur for various particle numbers (N) and diameters (dp). (g–h) Snapshots of the fluorescence images of different numbers of 1 μm polystyrene particles around the optical trap. Figure reproduced with permission from: (a, b) ref.102, under a Creative Commons Attribution 4.0 International License; (c–e) ref.103, Copyright 2023 American Chemical Society; (g–h) ref.104, Copyright 2020 American Chemical Society.
Fluorescent polymeric particles for biological applications. (a) Scheme of the scanning procedure: a latex bead is trapped by the focused laser beam (red arrows). The fluorophore in the latex beads is excited by laser light via a two-photon absorption process. When the trapped bead is moved across an obstacle such as a cell (grey arrow), it is pushed out of the laser focus and the fluorescence intensity decreases. (b) A 500 nm polystyrene bead is tethered to cover glass surface by a 1010 base-pair DNA molecule, consisting of a long strand (black) joined to a shorter 15- base-pair duplex region (red). (c) Simultaneous records of force (red trace) and fluorescence (blue trace). Rupture occurred at 2 s at an unzipping force of 9 pN. The dye unquenched at the point of rupture, and later bleached at 9 s. Figure reproduced with permission from: (b, c) ref.107, under a Creative Commons Attribution 4.0 International License.
Fluorescent nano-semiconductors for single particle spectroscopy. (a) Time series fluorescence snapshots of trapping and releasing events of 35 nm QDs on graphene oxide. (b) Plot of luminescence intensity of trapped QD with time. The decrease in the emission of the QD on graphene oxide with time can be clearly observed. Evolution of emission peak intensity for trapped (c) QD@SiO2 with only SiO2 shell and (d) pQD@SiO2 with sulfur and SiO2 shells. Insets: diagram of trapped (c) QD@SiO2 and (d) pQD@SiO2. Figure reproduced with permission from: (a, b) ref.121, Copyright 2020 American Chemical Society; (c, d) ref.122, Copyright 2017 American Chemical Society.
Fluorescent nano-semiconductors for cell imaging. (a) Sketch of the indirect excitation of a dye labeled cell. An optically trapped QD540@SiO2 cluster is positioned in the vicinity of a labeled Jurkat cell with Alexa Fluor 546 to induce its photoluminescence. Bright field microscopy images and collected spectra (black curves) from a QD540@SiO2 cluster trapped (b) ~10 μm away from the Jurkat cell, (c) close (a few microns) to the labeled Jurkat cell membrane, (d) in the vicinity (within 1 μm) of the Jurkat cell membrane, and (e) above the whole Jurkat cell structure. The optical trap position roughly matches the reticle center. Red curves represent in all cases the emission of the original QD540@SiO2. Figure reproduced with permission from ref.125, Copyright 2019 American Chemical Society.
Fluorescent nanodiamonds for cell imaging. (a) Confocal microscope image of a human brain microvascular endothelial cell (HMEC-1). (b) Fluorescence image of the cell with mitochondria stained by Mito-Tracker Green FM (excitation: 490 nm, emission: 516 nm). (c) Fluorescence image of the nanodiamonds microaggregates at different locations in the HMEC-1. Blue and pink arrows pointed to the microspheres near the nuclear membrane and cell membrane, respectively. Figure reproduced from ref.135, under a Creative Commons Attribution License.