Xiao TX, Tu S, Liang SZ, Guo RJ, Tian T et al. Solar cell-based hybrid energy harvesters towards sustainability. Opto-Electron Sci 2, 230011 (2023). doi: 10.29026/oes.2023.230011
Citation: Xiao TX, Tu S, Liang SZ, Guo RJ, Tian T et al. Solar cell-based hybrid energy harvesters towards sustainability. Opto-Electron Sci 2, 230011 (2023). doi: 10.29026/oes.2023.230011

Review Open Access

Solar cell-based hybrid energy harvesters towards sustainability

More Information
  • These authors contributed equally to this work.

  • Corresponding author: P. Müller-Buschbaum, E-mail: muellerb@ph.tum.de
  • Energy harvesting plays a crucial role in modern society. In the past years, solar energy, owing to its renewable, green, and infinite attributes, has attracted increasing attention across a broad range of applications from small-scale wearable electronics to large-scale energy powering. However, the utility of solar cells in providing a stable power supply for various electrical appliances in practical applications is restricted by weather conditions. To address this issue, researchers have made many efforts to integrate solar cells with other types of energy harvesters, thus developing hybrid energy harvesters (HEHs), which can harvest energy from the ambient environment via different working mechanisms. In this review, four categories of energy harvesters including solar cells, triboelectric nanogenerators (TENGs), piezoelectric nanogenerators (PENGs), and thermoelectric generators (TEGs) are introduced. In addition, we systematically summarize the recent progress in solar cell-based hybrid energy harvesters (SCHEHs) with a focus on their structure designs and the corresponding applications. Three hybridization designs through unique combinations of TENG, PENG, and TEG with solar cells are elaborated in detail. Finally, the main challenges and perspectives for the future development of SCHEHs are discussed.
  • 加载中
  • [1] Pang YK, Cao YT, Derakhshani M, Fang YH, Wang ZL et al. Hybrid energy-harvesting systems based on triboelectric nanogenerators. Matter 4, 116–143 (2021). doi: 10.1016/j.matt.2020.10.018

    CrossRef Google Scholar

    [2] Zhong JW, Zhong QZ, Hu QY, Wu N, Li WB et al. Stretchable self‐powered fiber‐based strain sensor. Adv Funct Mater 25, 1798–1803 (2015). doi: 10.1002/adfm.201404087

    CrossRef Google Scholar

    [3] Xu CH, Yang YR, Gao W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2 1414–1445 (2020).

    Google Scholar

    [4] Salter SH. Wave power. Nature 249, 720–724 (1974). doi: 10.1038/249720a0

    CrossRef Google Scholar

    [5] Liang SZ, Wang XY, Cheng YJ, Xia YG, Müller-Buschbaum P. Anatase titanium dioxide as rechargeable ion battery electrode-a chronological review. Energy Storage Mater 45, 201–264 (2022). doi: 10.1016/j.ensm.2021.11.023

    CrossRef Google Scholar

    [6] Herbert GMJ, Iniyan S, Sreevalsan E, Rajapandian S. A review of wind energy technologies. Renew Sustainable Energy Rev 11, 1117–1145 (2007). doi: 10.1016/j.rser.2005.08.004

    CrossRef Google Scholar

    [7] Lehmann J. Bio‐energy in the black. Front Ecol Environ 5, 381–387 (2007). doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

    CrossRef Google Scholar

    [8] Lai YC, Hsiao YC, Wu HM, Wang ZL. Waterproof fabric‐based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self‐powered sensors. Adv Sci 6, 1801883 (2019). doi: 10.1002/advs.201801883

    CrossRef Google Scholar

    [9] Cho Y, Lee K, Park S, Ahn S, Kim W et al. Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure. Nano Energy 61, 370–380 (2019). doi: 10.1016/j.nanoen.2019.04.083

    CrossRef Google Scholar

    [10] Elbanna A, Chaykun K, Lekina Y, Liu YD, Febriansyah B et al. Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. Opto-Electron Sci 1, 220006 (2022). doi: 10.29026/oes.2022.220006

    CrossRef Google Scholar

    [11] Tan DZ, Sun K, Li ZL, Xu BB, Qiu JR. Photo-processing of perovskites: current research status and challenges. Opto-Electron Sci 1, 220014 (2022). doi: 10.29026/oes.2022.220014

    CrossRef Google Scholar

    [12] Jiang XY, Chotard P, Luo KX, Eckmann F, Tu S et al. Revealing donor-acceptor interaction on the printed active layer morphology and the formation kinetics for nonfullerene organic solar cells at ambient conditions. Adv Energy Mater 12, 2103977 (2022). doi: 10.1002/aenm.202103977

    CrossRef Google Scholar

    [13] Zou YQ, Yuan S, Buyruk A, Eichhorn J, Yin SS et al. The influence of CsBr on crystal orientation and optoelectronic properties of MAPbI3-based solar cells. ACS Appl Mater Interfaces 14, 2958–2967 (2022). doi: 10.1021/acsami.1c22184

    CrossRef Google Scholar

    [14] Yang Y, Chen L, He J, Hou XJ, Qiao XJ et al. Flexible and extendable honeycomb‐shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing. Adv Mater Technol 7, 2100702 (2022). doi: 10.1002/admt.202100702

    CrossRef Google Scholar

    [15] Guo TM, Gong YJ, Li ZG, Liu YM, Li W et al. A new hybrid lead‐free metal halide piezoelectric for energy harvesting and human motion sensing. Small 18, 2103829 (2022). doi: 10.1002/smll.202103829

    CrossRef Google Scholar

    [16] Qu XC, Liu Z, Tan PC, Wang C, Liu Y et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci Adv 8, eabq2521 (2022). doi: 10.1126/sciadv.abq2521

    CrossRef Google Scholar

    [17] Jiang DJ, Shi BJ, Ouyang H, Fan YB, Wang ZL et al. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14, 6436–6448 (2020). doi: 10.1021/acsnano.9b08268

    CrossRef Google Scholar

    [18] Guo XG, He TYY, Zhang ZX, Luo AX, Wang F et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15, 19054–19069 (2021). doi: 10.1021/acsnano.1c04464

    CrossRef Google Scholar

    [19] Xiao TX, Jiang T, Zhu JX, Liang X, Xu L et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl Mater Interfaces 10, 3616–3623 (2018). doi: 10.1021/acsami.7b17239

    CrossRef Google Scholar

    [20] Liang X, Jiang T, Liu GX, Feng YW, Zhang C et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci 13, 277–285 (2020). doi: 10.1039/C9EE03258D

    CrossRef Google Scholar

    [21] Jiang T, Pang H, An J, Lu PJ, Feng YW et al. Robust swing‐structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater 10, 2000064 (2020). doi: 10.1002/aenm.202000064

    CrossRef Google Scholar

    [22] Cheng C, Dai YW, Yu J, Liu C, Wang SJ et al. Review of liquid-based systems to recover low-grade waste heat for electrical energy generation. Energy Fuels 35, 161–175 (2021). doi: 10.1021/acs.energyfuels.0c03733

    CrossRef Google Scholar

    [23] Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). doi: 10.1126/science.1158899

    CrossRef Google Scholar

    [24] Lee TD, Ebong AU. A review of thin film solar cell technologies and challenges. Renew Sustainable Energy Rev 70, 1286–1297 (2017). doi: 10.1016/j.rser.2016.12.028

    CrossRef Google Scholar

    [25] Sengupta D, Das P, Mondal B, Mukherjee K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application-a review. Renew Sustainable Energy Rev 60, 356–376 (2016). doi: 10.1016/j.rser.2016.01.104

    CrossRef Google Scholar

    [26] Sathiyan G, Sivakumar EKT, Ganesamoorthy R, Thangamuthu R, Sakthivel P. Review of carbazole based conjugated molecules for highly efficient organic solar cell application. Tetrahedron Lett 57, 243–252 (2016). doi: 10.1016/j.tetlet.2015.12.057

    CrossRef Google Scholar

    [27] Kim JY, Lee JW, Jung HS, Shin H, Park NG. High-efficiency perovskite solar cells. Chem Rev 120, 7867–7918 (2020). doi: 10.1021/acs.chemrev.0c00107

    CrossRef Google Scholar

    [28] Wu TH, Qin ZZ, Wang YB, Wu YZ, Chen W et al. The main progress of perovskite solar cells in 2020-2021. Nano-Micro Lett 13, 152 (2021). doi: 10.1007/s40820-021-00672-w

    CrossRef Google Scholar

    [29] Xie L, Song W, Ge JF, Tang BC, Zhang XL et al. Recent progress of organic photovoltaics for indoor energy harvesting. Nano Energy 82, 105770 (2021). doi: 10.1016/j.nanoen.2021.105770

    CrossRef Google Scholar

    [30] Cui Y, Yao HF, Hong L, Zhang T, Tang YB et al. Organic photovoltaic cell with 17% efficiency and superior processability. Natl Sci Rev 7, 1239–1246 (2020). doi: 10.1093/nsr/nwz200

    CrossRef Google Scholar

    [31] Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020). doi: 10.1016/j.nanoen.2020.104495

    CrossRef Google Scholar

    [32] Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater 4, 269–285 (2019). doi: 10.1038/s41578-019-0097-0

    CrossRef Google Scholar

    [33] Yuan JY, Hazarika A, Zhao Q, Ling XF, Moot T et al. Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule 4, 1160–1185 (2020). doi: 10.1016/j.joule.2020.04.006

    CrossRef Google Scholar

    [34] Hu L, Zhao Q, Huang SJ, Zheng JH, Guan XW et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat Commun 12, 466 (2021). doi: 10.1038/s41467-020-20749-1

    CrossRef Google Scholar

    [35] Chen D, Vaqueiro Contreras M, Ciesla A, Hamer P, Hallam B et al. Progress in the understanding of light‐and elevated temperature‐induced degradation in silicon solar cells: a review. Prog Photovolt Res Appl 29, 1180–1201 (2021). doi: 10.1002/pip.3362

    CrossRef Google Scholar

    [36] Omazic A, Oreski G, Halwachs M, Eder GC, Hirschl C et al. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: a literature review. Sol Energy Mater Sol Cells 192, 123–133 (2019). doi: 10.1016/j.solmat.2018.12.027

    CrossRef Google Scholar

    [37] Dunfield SP, Bliss L, Zhang F, Luther JM, Zhu K et al. From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv Energy Mater 10, 1904054 (2020). doi: 10.1002/aenm.201904054

    CrossRef Google Scholar

    [38] Kundu S, Kelly TL. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2, e12025 (2020).

    Google Scholar

    [39] Guo RJ, Han D, Chen W, Dai LJ, Ji KY et al. Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen. Nat Energy 6, 977–986 (2021). doi: 10.1038/s41560-021-00912-8

    CrossRef Google Scholar

    [40] Xiong Z, Chen X, Zhang B, Odunmbaku GO, Ou ZP et al. Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv Mater 34, 2106118 (2022). doi: 10.1002/adma.202106118

    CrossRef Google Scholar

    [41] Sharma R, Sharma A, Agarwal S, Dhaka MS. Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol Energy 244, 516–535 (2022). doi: 10.1016/j.solener.2022.08.001

    CrossRef Google Scholar

    [42] Li CQ, Gu XB, Chen ZH, Han X, Yu N et al. Achieving record-efficiency organic solar cells upon tuning the conformation of solid additives. J Am Chem Soc 144, 14731–14739 (2022). doi: 10.1021/jacs.2c05303

    CrossRef Google Scholar

    [43] Tang QW. All‐weather solar cells: a rising photovoltaic revolution. Chem Eur J 23, 8118–8127 (2017). doi: 10.1002/chem.201700098

    CrossRef Google Scholar

    [44] Ryu H, Yoon HJ, Kim SW. Hybrid energy harvesters: toward sustainable energy harvesting. Adv Mater 31, 1802898 (2019). doi: 10.1002/adma.201802898

    CrossRef Google Scholar

    [45] Wu YH, Qu JK, Chu PK, Shin DM, Luo Y et al. Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies. Nano Energy 89, 106376 (2021). doi: 10.1016/j.nanoen.2021.106376

    CrossRef Google Scholar

    [46] Gautam A, Saini RP. A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. J Energy Storage 27, 101046 (2020). doi: 10.1016/j.est.2019.101046

    CrossRef Google Scholar

    [47] Makki A, Omer S, Sabir H. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sustainable Energy Rev 41, 658–684 (2015). doi: 10.1016/j.rser.2014.08.069

    CrossRef Google Scholar

    [48] Yang Y, Wang ZL. Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy 14, 245–256 (2015). doi: 10.1016/j.nanoen.2014.11.058

    CrossRef Google Scholar

    [49] Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). doi: 10.1016/j.nanoen.2012.01.004

    CrossRef Google Scholar

    [50] Yang YQ, Guo XG, Zhu ML, Sun ZD, Zhang ZX et al. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv Energy Mater 13, 2203040 (2023). doi: 10.1002/aenm.202203040

    CrossRef Google Scholar

    [51] Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). doi: 10.1126/science.1124005

    CrossRef Google Scholar

    [52] Champier D. Thermoelectric generators: a review of applications. Energy Convers Manag 140, 167–181 (2017). doi: 10.1016/j.enconman.2017.02.070

    CrossRef Google Scholar

    [53] Sivasubramanian R, Vaithilingam CA, Indira SS, Paiman S, Misron N et al. A review on photovoltaic and nanogenerator hybrid system. Mater Today Energy 20, 100772 (2021). doi: 10.1016/j.mtener.2021.100772

    CrossRef Google Scholar

    [54] Das D, Kalita P, Roy O. Flat plate hybrid photovoltaic-thermal (PV/T) system: a review on design and development. Renew Sustainable Energy Rev 84, 111–130 (2018). doi: 10.1016/j.rser.2018.01.002

    CrossRef Google Scholar

    [55] Wang J, Xiao F, Zhao H. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renew Sustainable Energy Rev 151, 111522 (2021). doi: 10.1016/j.rser.2021.111522

    CrossRef Google Scholar

    [56] Sharov VA, Alekseev PA, Borodin BR, Dunaevskiy MS, Reznik RR et al. InP/Si heterostructure for high-current hybrid triboelectric/photovoltaic generation. ACS Appl Energy Mater 2, 4395–4401 (2019). doi: 10.1021/acsaem.9b00576

    CrossRef Google Scholar

    [57] Bensmail S, Rekioua D, Azzi H. Study of hybrid photovoltaic/fuel cell system for stand-alone applications. Int J Hydrogen Energy 40, 13820–13826 (2015). doi: 10.1016/j.ijhydene.2015.04.013

    CrossRef Google Scholar

    [58] Chen YD, Jie Y, Zhu JQ, Lu QX, Cheng Y et al. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res 15, 2069–2076 (2022). doi: 10.1007/s12274-021-3822-0

    CrossRef Google Scholar

    [59] Cao R, Wang JN, Xing Y, Song WX, Li NW et al. A self-powered lantern based on a triboelectric-photovoltaic hybrid nanogenerator. Adv Mater 3, 1700371 (2018).

    Google Scholar

    [60] Le XH, Guo XG, Lee C. Evolution of micro-nano energy harvesting technology—scavenging energy from diverse sources towards self-sustained micro/nano systems. Nanoenergy Adv 3, 101–125 (2023). doi: 10.3390/nanoenergyadv3020006

    CrossRef Google Scholar

    [61] Qiu CK, Wu F, Lee C, Yuce MR. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy 70, 104456 (2020). doi: 10.1016/j.nanoen.2020.104456

    CrossRef Google Scholar

    [62] Luque A, Hegedus S. Handbook of Photovoltaic Science and Engineering 2nd ed (Wiley, Chichester, 2011).

    Google Scholar

    [63] Halme J, Vahermaa P, Miettunen K, Lund P. Device physics of dye solar cells. Adv Mater 22, E210–E234 (2010). doi: 10.1002/adma.201000726

    CrossRef Google Scholar

    [64] Clarke TM, Durrant JR. Charge photogeneration in organic solar cells. Chem Rev 110, 6736–6767 (2010). doi: 10.1021/cr900271s

    CrossRef Google Scholar

    [65] Li H, Zhou JJ, Tan LG, Li MH, Jiang CF et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci Adv 8, eabo7422 (2022). doi: 10.1126/sciadv.abo7422

    CrossRef Google Scholar

    [66] Sun YN, Chang MJ, Meng LX, Wan XJ, Gao HH et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat Electron 2, 513–520 (2019). doi: 10.1038/s41928-019-0315-1

    CrossRef Google Scholar

    [67] Yang ZY, Fan JZ, Proppe AH, Arquer FPGD, Rossouw D et al. Mixed-quantum-dot solar cells. Nat Commun 8, 1325 (2017). doi: 10.1038/s41467-017-01362-1

    CrossRef Google Scholar

    [68] Rath AK, Bernechea M, Martinez L, De Arquer FPG, Osmond J et al. Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat Photonics 6, 529–534 (2012). doi: 10.1038/nphoton.2012.139

    CrossRef Google Scholar

    [69] Luo X, Luo HW, Li HJ, Xia R, Zheng XT et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater 35, 2207883 (2023). doi: 10.1002/adma.202207883

    CrossRef Google Scholar

    [70] Reb LK, Böhmer M, Predeschly B, Grott S, Weindl CL et al. Perovskite and organic solar cells on a rocket flight. Joule 4, 1880–1892 (2020). doi: 10.1016/j.joule.2020.07.004

    CrossRef Google Scholar

    [71] Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today 30, 34–51 (2019). doi: 10.1016/j.mattod.2019.05.016

    CrossRef Google Scholar

    [72] Wang ZL. On Maxwell's displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20, 74–82 (2017). doi: 10.1016/j.mattod.2016.12.001

    CrossRef Google Scholar

    [73] Kim S, Gupta MK, Lee KY, Sohn A, Kim TY et al. Transparent flexible graphene triboelectric nanogenerators. Adv Mater 26, 3918–3925 (2014). doi: 10.1002/adma.201400172

    CrossRef Google Scholar

    [74] Saha CR, O’Donnell T, Wang N, McCloskey P. Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147, 248–253 (2008). doi: 10.1016/j.sna.2008.03.008

    CrossRef Google Scholar

    [75] Zhao JQ, Zhen GW, Liu GX, Bu TZ, Liu WB et al. Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy 61, 111–118 (2019). doi: 10.1016/j.nanoen.2019.04.047

    CrossRef Google Scholar

    [76] Hinchet R, Yoon HJ, Ryu H, Kim MK, Choi EK et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019). doi: 10.1126/science.aan3997

    CrossRef Google Scholar

    [77] Zi YL, Wang ZL. Nanogenerators: an emerging technology towards nanoenergy. APL Mater 5, 074103 (2017). doi: 10.1063/1.4977208

    CrossRef Google Scholar

    [78] Zhao ZF, Pu X, Du CH, Li LX, Jiang CY et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano 10, 1780–1787 (2016). doi: 10.1021/acsnano.5b07157

    CrossRef Google Scholar

    [79] Xiao TX, Liang X, Jiang T, Xu L, Shao JJ et al. Spherical triboelectric nanogenerators based on spring‐assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater 28, 1802634 (2018). doi: 10.1002/adfm.201802634

    CrossRef Google Scholar

    [80] Kang Y, Wang B, Dai SG, Liu GL, Pu YP et al. Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications. ACS Appl Mater Interfaces 7, 20469–20476 (2015). doi: 10.1021/acsami.5b06675

    CrossRef Google Scholar

    [81] Huang T, Wang C, Yu H, Wang HZ, Zhang QH et al. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). doi: 10.1016/j.nanoen.2015.01.038

    CrossRef Google Scholar

    [82] Wang C, Hu YR, Liu Y, Shan YZ, Qu XC et al. Tissue‐adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. Adv Funct Mater , 202303696 (2023). doi: 10.1002/adfm.202303696

    CrossRef Google Scholar

    [83] Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008). doi: 10.1038/nature06601

    CrossRef Google Scholar

    [84] Zhang C, Fan W, Wang SJ, Wang Q, Zhang YF et al. Recent progress of wearable piezoelectric nanogenerators. ACS Appl Electron Mater 3, 2449–2467 (2021). doi: 10.1021/acsaelm.1c00165

    CrossRef Google Scholar

    [85] Xu S, Qin Y, Xu C, Wei YG, Yang RS et al. Self-powered nanowire devices. Nat Nanotechnol 5, 366–373 (2010). doi: 10.1038/nnano.2010.46

    CrossRef Google Scholar

    [86] Park KI, Son JH, Hwang GT, Jeong CK, Ryu J et al. Highly‐efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26, 2514–2520 (2014). doi: 10.1002/adma.201305659

    CrossRef Google Scholar

    [87] Zhang M, Gao T, Wang JS, Liao JJ, Qiu YQ et al. Single BaTiO3 nanowires-polymer fiber based nanogenerator. Nano Enery 11, 510–517 (2015). doi: 10.1016/j.nanoen.2014.11.028

    CrossRef Google Scholar

    [88] Chang C, Tran VH, Wang JB, Fuh YK, Lin LW. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10, 726–731 (2010). doi: 10.1021/nl9040719

    CrossRef Google Scholar

    [89] Zhang X, Chen JF, Wang Y. Hierarchical PbZrxTi1-xO3 nanowires for vibrational energy harvesting. ACS Appl Nano Mater 1, 1461–1466 (2018). doi: 10.1021/acsanm.7b00317

    CrossRef Google Scholar

    [90] Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev 120, 7399–7515 (2020). doi: 10.1021/acs.chemrev.0c00026

    CrossRef Google Scholar

    [91] Yang L, Chen ZG, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater 8, 1701797 (2018). doi: 10.1002/aenm.201701797

    CrossRef Google Scholar

    [92] Oechsle AL, Heger JE, Li N, Yin SS, Bernstorff S et al. Correlation of thermoelectric performance, domain morphology and doping level in PEDOT: PSS thin films post‐treated with ionic liquids. Macromol Rapid Commun 42, 2100397 (2021). doi: 10.1002/marc.202100397

    CrossRef Google Scholar

    [93] Tu S, Tian T, Oechsle AL, Yin SS, Jiang XY et al. Improvement of the thermoelectric properties of PEDOT: PSS films via DMSO addition and DMSO/salt post-treatment resolved from a fundamental view. Chem Eng J 429, 132295 (2022). doi: 10.1016/j.cej.2021.132295

    CrossRef Google Scholar

    [94] Xie WJ, Weidenkaff A, Tang XF, Zhang QJ, Poon J et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012). doi: 10.3390/nano2040379

    CrossRef Google Scholar

    [95] Liu ZJ, Tian B, Li Y, Lei JM, Zhang ZK et al. A large-area bionic skin for high-temperature energy harvesting applications. Nano Res 16, 10245–10255 (2023). doi: 10.1007/s12274-023-5699-6

    CrossRef Google Scholar

    [96] Migita T, Tachikawa N, Katayama Y, Miura T. Thermoelectromotive force of some redox couples in an amide-type room-temperature ionic liquid. Electrochemistry 77, 639–641 (2009). doi: 10.5796/electrochemistry.77.639

    CrossRef Google Scholar

    [97] Orr B, Akbarzadeh A, Mochizuki M, Singh R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl Therm Eng 101, 490–495 (2016). doi: 10.1016/j.applthermaleng.2015.10.081

    CrossRef Google Scholar

    [98] Iezzi B, Ankireddy K, Twiddy J, Losego MD, Jur JS. Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. Appl Energy 208, 758–765 (2017). doi: 10.1016/j.apenergy.2017.09.073

    CrossRef Google Scholar

    [99] Proto A, Penhaker M, Conforto S, Schmid M. Nanogenerators for human body energy harvesting. Trends Biotechnol 35, 610–624 (2017). doi: 10.1016/j.tibtech.2017.04.005

    CrossRef Google Scholar

    [100] Settaluri KT, Lo H, Ram RJ. Thin thermoelectric generator system for body energy harvesting. J Electron Mater 41, 984–988 (2012). doi: 10.1007/s11664-011-1834-3

    CrossRef Google Scholar

    [101] Trung NH, Van Toan N, Ono T. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl Energy 210, 467–476 (2018). doi: 10.1016/j.apenergy.2017.05.005

    CrossRef Google Scholar

    [102] Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1, 16050 (2016). doi: 10.1038/natrevmats.2016.50

    CrossRef Google Scholar

    [103] Zhang FJ, Zang YP, Huang DZ, Di CA, Zhu DB. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 6, 8356 (2015). doi: 10.1038/ncomms9356

    CrossRef Google Scholar

    [104] Shi H, Liu CC, Jiang QL, Xu JK. Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Adv Electron Mater 1, 1500017 (2015). doi: 10.1002/aelm.201500017

    CrossRef Google Scholar

    [105] Bießmann L, Kreuzer LP, Widmann T, Hohn N, Moulin JF et al. Monitoring the swelling behavior of PEDOT: PSS electrodes under high humidity conditions. ACS Appl Mater Interfaces 10, 9865–9872 (2018). doi: 10.1021/acsami.8b00446

    CrossRef Google Scholar

    [106] Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C et al. The crystallization of PEDOT: PSS polymeric electrodes probed in situ during printing. Adv Mater 27, 3391–3397 (2015). doi: 10.1002/adma.201500315

    CrossRef Google Scholar

    [107] Oechsle AL, Heger JE, Li N, Yin SS, Bernstorff S et al. In situ observation of morphological and oxidation level degradation processes within ionic liquid post-treated PEDOT: PSS thin films upon operation at high temperatures. ACS Appl Mater Interfaces 14, 30802–30811 (2022). doi: 10.1021/acsami.2c05745

    CrossRef Google Scholar

    [108] Saxena N, Pretzl B, Lamprecht X, Bießmann L, Yang D et al. Ionic liquids as post-treatment agents for simultaneous improvement of Seebeck coefficient and electrical conductivity in PEDOT: PSS Films. ACS Appl Mater Interfaces 11, 8060–8071 (2019). doi: 10.1021/acsami.8b21709

    CrossRef Google Scholar

    [109] Kluge RM, Saxena N, Chen W, Körstgens V, Schwartzkopf M et al. Doping dependent in‐plane and cross‐plane thermoelectric performance of thin n‐type polymer P(NDI2OD‐T2) films. Adv Funct Mater 30, 2003092 (2020). doi: 10.1002/adfm.202003092

    CrossRef Google Scholar

    [110] Kluge RM, Saxena N, Müller-Buschbaum, P. A solution-processable polymer-based thin-film thermoelectric generator. Adv Energy Sustainability Res 2, 2000060 (2021). doi: 10.1002/aesr.202000060

    CrossRef Google Scholar

    [111] Huo ZY, Lee DM, Kim YJ, Kim SW. Solar-induced hybrid energy harvesters for advanced oxidation water treatment. IScience 24, 102808 (2021). doi: 10.1016/j.isci.2021.102808

    CrossRef Google Scholar

    [112] Liu YQ, Sun N, Liu JW, Wen Z, Sun XH et al. Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893–2899 (2018). doi: 10.1021/acsnano.8b00416

    CrossRef Google Scholar

    [113] Zhao LL, Duan JL, Liu LQ, Wang JW, Duan YY et al. Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting. Nano Energy 82, 105773 (2021). doi: 10.1016/j.nanoen.2021.105773

    CrossRef Google Scholar

    [114] Ren ZY, Zheng Q, Wang HB, Guo H, Miao LM et al. Wearable and self-cleaning hybrid energy harvesting system based on micro/nanostructured haze film. Nano Energy 67, 104243 (2020). doi: 10.1016/j.nanoen.2019.104243

    CrossRef Google Scholar

    [115] Pu X, Song WX, Liu MM, Sun CW, Du CH et al. Wearable power‐textiles by integrating fabric triboelectric nanogenerators and fiber‐shaped dye‐sensitized solar cells. Adv Energy Mater 6, 1601048 (2016). doi: 10.1002/aenm.201601048

    CrossRef Google Scholar

    [116] Kim B, Song JY, Kim DY, Kim MC, Lin ZH et al. All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester. Nano Energy 104, 107878 (2022). doi: 10.1016/j.nanoen.2022.107878

    CrossRef Google Scholar

    [117] Liu T, Zheng Y, Xu YX, Liu XJ, Wang CF et al. Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy 103, 107776 (2022). doi: 10.1016/j.nanoen.2022.107776

    CrossRef Google Scholar

    [118] Liu YQ, Li EL, Yan YJ, Lin ZN, Chen QZ et al. A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy. Nano Energy 86, 106118 (2021). doi: 10.1016/j.nanoen.2021.106118

    CrossRef Google Scholar

    [119] Xu C, Wang XD, Wang ZL. Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131, 5866–5872 (2009). doi: 10.1021/ja810158x

    CrossRef Google Scholar

    [120] Xu C, Wang ZL. Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv Mater 23, 873–877 (2011). doi: 10.1002/adma.201003696

    CrossRef Google Scholar

    [121] Ahmed R, Kim Y, Zeeshan, Chun W. Development of a tree-shaped hybrid nanogenerator using flexible sheets of photovoltaic and piezoelectric films. Energies 12, 229 (2019). doi: 10.3390/en12020229

    CrossRef Google Scholar

    [122] Yoon GC, Shin KS, Gupta MK, Lee KY, Lee JH et al. High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy 12, 547–555 (2015). doi: 10.1016/j.nanoen.2015.01.028

    CrossRef Google Scholar

    [123] Liu X, Li J, Fang ZZ, Wang C, Shu LS et al. Ultraviolet-protecting, flexible and stable photovoltaic-assisted piezoelectric hybrid unit nanogenerator for simultaneously harvesting ultraviolet light and mechanical energies. J Mater Sci 55, 15222–15237 (2020). doi: 10.1007/s10853-020-05078-4

    CrossRef Google Scholar

    [124] Kim YM, Kim W, Choi DW, Choi DH. Reliable output performance of a photovoltaic–piezoelectric hybridized energy harvester with an automatic position-adjustable bending instrument. Int. J Precis Eng Manuf - Green Technol 9, 1077–1086 (2022). doi: 10.1007/s40684-021-00350-7

    CrossRef Google Scholar

    [125] Lee DH. Direct parallel and hybrid power control scheme of a low-power PV and piezoelectric energy harvesting module. J Electr Eng Technol 16, 2045–2053 (2021). doi: 10.1007/s42835-021-00722-8

    CrossRef Google Scholar

    [126] Sundarraj P, Maity D, Roy SS, Taylor RA. Recent advances in thermoelectric materials and solar thermoelectric generators-a critical review. RSC Adv 4, 46860–46874 (2014). doi: 10.1039/C4RA05322B

    CrossRef Google Scholar

    [127] Ju X, Wang ZF, Flamant G, Li P, Zhao WY. Numerical analysis and optimization of a spectrum splitting concentration photovoltaic-thermoelectric hybrid system. Sol Energy 86, 1941–1954 (2012). doi: 10.1016/j.solener.2012.02.024

    CrossRef Google Scholar

    [128] Li YL, Witharana S, Cao H, Lasfargues M, Huang Y et al. Wide spectrum solar energy harvesting through an integrated photovoltaic and thermoelectric system. Particuology 15, 39–44 (2014). doi: 10.1016/j.partic.2013.08.003

    CrossRef Google Scholar

    [129] Deng Y, Zhu W, Wang Y, Shi YM. Enhanced performance of solar-driven photovoltaic-thermoelectric hybrid system in an integrated design. Sol Energy 88, 182–191 (2013). doi: 10.1016/j.solener.2012.12.002

    CrossRef Google Scholar

    [130] Xu L, Xiong Y, Mei AY, Hu Y, Rong YG et al. Efficient perovskite photovoltaic‐thermoelectric hybrid device. Adv Energy Mater 8, 1702937 (2018). doi: 10.1002/aenm.201702937

    CrossRef Google Scholar

    [131] Hsueh TJ, Shieh JM, Yeh YM. Hybrid Cd‐free CIGS solar cell/TEG device with ZnO nanowires. Prog Photovolt Res Appl 23, 507–512 (2015). doi: 10.1002/pip.2457

    CrossRef Google Scholar

    [132] Liu ZY, Sun B, Zhong Y, Liu XY, Han JH et al. Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion. Nano Energy 38, 457–466 (2017). doi: 10.1016/j.nanoen.2017.06.016

    CrossRef Google Scholar

    [133] Zhou YP, He YL, Qiu Y, Ren QL, Xie T. Multi-scale investigation on the absorbed irradiance distribution of the nanostructured front surface of the concentrated PV-TE device by a MC-FDTD coupled method. Appl Energy 207, 18–26 (2017). doi: 10.1016/j.apenergy.2017.05.115

    CrossRef Google Scholar

    [134] Jurado JP, Dörling B, Zapata-Arteaga O, Goñi AR, Campoy-Quiles M. Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics. J Mater Chem C 9, 2123–2132 (2021). doi: 10.1039/D0TC05067A

    CrossRef Google Scholar

    [135] Zhang KW, Wang YH, Yang Y. Structure design and performance of hybridized nanogenerators. Adv Funct Mater 29, 1806435 (2019). doi: 10.1002/adfm.201806435

    CrossRef Google Scholar

    [136] Zhang KW, Wang ZL, Yang Y. Enhanced P3HT/ZnO nanowire array solar cells by pyro-phototronic effect. ACS Nano 10, 10331–10338 (2016). doi: 10.1021/acsnano.6b06049

    CrossRef Google Scholar

    [137] Shao HY, Wen Z, Cheng P, Sun N, Shen QQ et al. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 39, 608–615 (2017). doi: 10.1016/j.nanoen.2017.07.045

    CrossRef Google Scholar

    [138] Yang Y, Zhang HL, Zhu G, Lee S, Lin ZH et al. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7, 785–790 (2013). doi: 10.1021/nn305247x

    CrossRef Google Scholar

    [139] Yoon HJ, Kwak SS, Kim SM, Kim SW. Aim high energy conversion efficiency in triboelectric nanogenerators. Sci Technol Adv Mater 21, 683–688 (2020). doi: 10.1080/14686996.2020.1800366

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(4804) PDF downloads(879) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint