Citation: | Huang HJ, Balčytis A, Dubey A, Boes A, Nguyen TG et al. Spatio-temporal isolator in lithium niobate on insulator. Opto-Electron Sci 2, 220022 (2023). doi: 10.29026/oes.2023.220022 |
[1] | Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7 |
[2] | Xu MY, He MB, Zhang HG, Jian J, Pan Y et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun 11, 3911 (2020). doi: 10.1038/s41467-020-17806-0 |
[3] | Wang C, Zhang M, Yu MJ, Zhu RR, Hu H et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun 10, 978 (2019). doi: 10.1038/s41467-019-08969-6 |
[4] | Lu JJ, Surya JB, Liu XW, Bruch AW, Gong Z et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455–1460 (2019). doi: 10.1364/OPTICA.6.001455 |
[5] | Ma JJ, Xie F, Chen WJ, Chen JX, Wu W et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev 15, 2000521 (2021). doi: 10.1002/lpor.202000521 |
[6] | Fedotova A, Younesi M, Sautter J, Vaskin A, Löchner FJF et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett 20, 8608–8614 (2020). doi: 10.1021/acs.nanolett.0c03290 |
[7] | Wooten EL, Kissa KM, Yi-Yan A, Murphy EJ, Lafaw DA et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron 6, 69–82 (2000). doi: 10.1109/2944.826874 |
[8] | Zhou JX, Liang YT, Liu ZX, Chu W, Zhang HS et al. On‐chip integrated waveguide amplifiers on erbium‐doped thin‐film lithium niobate on insulator. Laser Photonics Rev 15, 2100030 (2021). doi: 10.1002/lpor.202100030 |
[9] | Luo Q, Yang C, Zhang R, Hao ZZ, Zheng DH et al. On-chip erbium-doped lithium niobate microring lasers. Opt Lett 46, 3275–3278 (2021). doi: 10.1364/OL.425178 |
[10] | Snigirev V, Riedhauser A, Lihachev G, Riemensberger J, Wang RN et al. Ultrafast tunable lasers using lithium niobate integrated photonics. arXiv: 2112.02036 (2021). https://doi.org/10.48550/arXiv.2112.02036 |
[11] | Tang LW, Li JC, Yang SG, Chen HW, Chen MH. A method for improving reflection tolerance of laser source in hybrid photonic packaged micro-system. IEEE Photonics Technol Lett 33, 465–468 (2021). doi: 10.1109/LPT.2021.3069220 |
[12] | Levy M, Osgood RM, Hegde H, Cadieu FJ, Wolfe R et al. Integrated optical isolators with sputter-deposited thin-film magnets. IEEE Photonics Technol Lett 8, 903–905 (1996). doi: 10.1109/68.502265 |
[13] | Kittlaus EA, Weigel PO, Jones WM. Low-loss nonlinear optical isolators in silicon. Nat Photonics 14, 338–339 (2020). |
[14] | Sounas DL, Alù A. Non-reciprocal photonics based on time modulation. Nat Photonics 11, 774–783 (2017). doi: 10.1038/s41566-017-0051-x |
[15] | Srinivasan K, Stadler BJH. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics [Invited]. Opt Mater Express 12, 697–716 (2022). doi: 10.1364/OME.447398 |
[16] | Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018). doi: 10.1038/s41586-018-0551-y |
[17] | Doerr CR, Dupuis N, Zhang LM. Optical isolator using two tandem phase modulators. Opt Lett 36, 4293–4295 (2011). doi: 10.1364/OL.36.004293 |
[18] | Lin Q, Wang JH, Fan SH. Compact dynamic optical isolator based on tandem phase modulators. Opt Lett 44, 2240–2243 (2019). doi: 10.1364/OL.44.002240 |
[19] | Huang HJ, Han X, Balčytis A, Dubey A, Boes A et al. Non-resonant recirculating light phase modulator. APL Photonics 7, 106102 (2022). doi: 10.1063/5.0103558 |
[20] | Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018). doi: 10.1002/lpor.201700256 |
[21] | Pan BC, Cao HY, Huang YS, Wang Z, Chen KX et al. Compact electro-optic modulator on lithium niobate. Photonics Res 10, 697–702 (2022). doi: 10.1364/PRJ.449172 |
[22] | Dostart N, Gevorgyan H, Onural D, Popović MA. Optical isolation using microring modulators. Opt Lett 46, 460–463 (2021). doi: 10.1364/OL.408614 |
[23] | Doerr CR, Chen L, Vermeulen D. Silicon photonics broadband modulation-based isolator. Opt Express 22, 4493–4498 (2014). doi: 10.1364/OE.22.004493 |
[24] | Lira H, Yu ZF, Fan SH, Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys Rev Lett 109, 033901 (2012). doi: 10.1103/PhysRevLett.109.033901 |
[25] | Bhandare S, Ibrahim SK, Sandel D, Zhang HB, Wust F et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material. IEEE J Sel Top Quantum Electron 11, 417–421 (2005). doi: 10.1109/JSTQE.2005.845620 |
(a) Illustration of the investigated spatiotemporal isolator in LNOI. (b) Cross-section of the SiN loaded LNOI waveguide. (c) Purple curve shows the simulated spectral response of the add-drop racetrack resonator with an FSR of 55 GHz. Black line is the simulated spectral response for light propagating in the forward direction for a modulation index of 0.77π/2 when the device meets the condition of Eq. (2). (d) Black line is the simulated spectral response for the reverse direction assuming a modulation index of 0.77π/2. The response of the add-drop racetrack resonator is shown in (c) and (d) for reference and is not considered in the black curves.
(a) Optical microscope image of the fabricated isolator. (b) Magnified view of the racetrack resonator coupling region. (c) The traveling wave electrode alignment to the waveguide. (d) SEM image of the fabricated SiN loaded LNOI waveguide.
(a) The blue curve shows the measured transmission spectrum of the racetrack resonator. The red curve shows the measured spectrum of the cascaded phase modulators for light travelling in the reverse direction; Measured spectra of the isolator when operating the device in the (b) reverse direction and (c) forward direction, when using the racetrack resonator to suppress sidebands.