Armas D, Matias IR, Lopez-Gonzalez MC et al. Generation of lossy mode resonances (LMR) using perovskite nanofilms. Opto-Electron Adv 7, 230072 (2024). doi: 10.29026/oea.2024.230072
Citation: Armas D, Matias IR, Lopez-Gonzalez MC et al. Generation of lossy mode resonances (LMR) using perovskite nanofilms. Opto-Electron Adv 7, 230072 (2024). doi: 10.29026/oea.2024.230072

Article Open Access

Generation of lossy mode resonances (LMR) using perovskite nanofilms

More Information
  • The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance (LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.
  • 加载中
  • [1] Del Villar I, Arregui FJ, Zamarreño CR et al. Optical sensors based on lossy-mode resonances. Sens Actuators B Chem 240, 174–185 (2017). doi: 10.1016/J.SNB.2016.08.126

    CrossRef Google Scholar

    [2] Arregui FJ, Del Villar I, Zamarreño CR et al. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens Actuators B Chem 232, 660–665 (2016). doi: 10.1016/J.SNB.2016.04.015

    CrossRef Google Scholar

    [3] Ozcariz A, Zamarreño CR, Zubiate P et al. Is there a frontier in sensitivity with lossy mode resonance (LMR) based refractometers. Sci Rep 7, 10280 (2017). doi: 10.1038/s41598-017-11145-9

    CrossRef Google Scholar

    [4] Del Villar I, Zamarreño CR, Hernaez M et al. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J Lightwave Technol 28, 111–117 (2010). doi: 10.1109/JLT.2009.2036580

    CrossRef Google Scholar

    [5] Zubiate P, Zamarreño CR, Del Villar I et al. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt Express 23, 8045–8050 (2015). doi: 10.1364/OE.23.008045

    CrossRef Google Scholar

    [6] Usha SP, Gupta BD. Performance analysis of zinc oxide-implemented lossy mode resonance-based optical fiber refractive index sensor utilizing thin film/nanostructure. Appl Opt 56, 5716–5725 (2017). doi: 10.1364/AO.56.005716

    CrossRef Google Scholar

    [7] Benítez M, Zubiate P, Del Villar I et al. Lossy mode resonance based microfluidic platform developed on planar waveguide for biosensing applications. Biosensors 12, 403 (2022). doi: 10.3390/BIOS12060403

    CrossRef Google Scholar

    [8] Del Villar I, Zamarreño CR, Sanchez P et al. Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J Opt 12, 095503 (2010). doi: 10.1088/2040-8978/12/9/095503

    CrossRef Google Scholar

    [9] Ozcariz A, Piña-Azamar D A, Zamarreño CR et al. Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers—an experimental demonstration. Sens Actuators B Chem 281, 698–704 (2019). doi: 10.1016/j.snb.2018.10.158

    CrossRef Google Scholar

    [10] Ozcariz A, Dominik M, Smietana M et al. Lossy mode resonance optical sensors based on indium-gallium-zinc oxide thin film. Sens Actuators A Phys 290, 20–27 (2019). doi: 10.1016/J.SNA.2019.03.010

    CrossRef Google Scholar

    [11] Kosiel K, Koba M, Masiewicz M et al. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique. Opt Laser Technol 102, 213–221 (2018). doi: 10.1016/j.optlastec.2018.01.002

    CrossRef Google Scholar

    [12] Zubiate P, Zamarreño CR, Del Villar I et al. D-shape optical fiber pH sensor based on lossy mode resonances (LMRs). In 2015 IEEE SENSORS 1–4 (IEEE, 2015);http://doi.org/10.1109/ICSENS.2015.7370421.

    Google Scholar

    [13] Sudas DP, Zakharov LY, Jitov VA et al. Silicon oxynitride thin film coating to lossy mode resonance fiber-optic refractometer. Sensors 22, 3665 (2022). doi: 10.3390/s22103665

    CrossRef Google Scholar

    [14] Bohorquez DL, Del Villar I, Corres JM et al. Generation of lossy mode resonances in a broadband range with multilayer coated coverslips optimized for humidity sensing. Sens Actuators B Chem 325, 128795 (2020). doi: 10.1016/J.SNB.2020.128795

    CrossRef Google Scholar

    [15] Elosua C, Arregui FJ, Zamarreño CR et al. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens Actuators B Chem 173, 523–529 (2012). doi: 10.1016/J.SNB.2012.07.048

    CrossRef Google Scholar

    [16] Śmietana M, Koba M, Sezemsky P et al. Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor. Biosens Bioelectron 154, 112050 (2020). doi: 10.1016/J.BIOS.2020.112050

    CrossRef Google Scholar

    [17] Chiavaioli F, Zubiate P, Del Villar I et al. Femtomolar detection by nanocoated fiber label-free biosensors. ACS Sens 3, 936–943 (2018). doi: 10.1021/ACSSENSORS.7B00918

    CrossRef Google Scholar

    [18] Zubiate P, Urrutia A, Zamarreño CR et al. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens Bioelectron X 2, 100026 (2019). doi: 10.1016/J.BIOSX.2019.100026

    CrossRef Google Scholar

    [19] Dominguez I, Del Villar I, Fuentes O et al. Interdigital concept in photonic sensors based on an array of lossy mode resonances. Sci Rep 11, 13228 (2021). doi: 10.1038/s41598-021-92765-0

    CrossRef Google Scholar

    [20] Dominguez I, Del Villar I, Fuentes O et al. Dually nanocoated planar waveguides towards multi-parameter sensing. Sci Rep 11, 3669 (2021). doi: 10.1038/s41598-021-83324-8

    CrossRef Google Scholar

    [21] Del Villar I, Hernaez M, Zamarreño CR et al. Design rules for lossy mode resonance based sensors. Appl Opt 51, 4298–4307 (2012). doi: 10.1364/AO.51.004298

    CrossRef Google Scholar

    [22] Zhao WM, Wang Q. Analytical solutions to fundamental questions for lossy mode resonance. Laser Photon Rev 17, 2200554 (2023). doi: 10.1002/LPOR.202200554

    CrossRef Google Scholar

    [23] Wu LM, Xiang YJ, Qin YW. Lossy-mode-resonance sensor based on perovskite nanomaterial with high sensitivity. Opt Express 29, 17602–17612 (2021). doi: 10.1364/OE.426409

    CrossRef Google Scholar

    [24] Yadollahzadeh S, Aghbolaghi R, Parvizi R. Perovskite-based lossy-mode resonance sensor in visible light spectrum: comparison and optimization of optical enhancements. Phys B Condens Matter 640, 414048 (2022). doi: 10.1016/j.physb.2022.414048

    CrossRef Google Scholar

    [25] Fakharuddin A, Gangishetty MK, Abdi-Jalebi M et al. Perovskite light-emitting diodes. Nat Electron 5, 203–216 (2022). doi: 10.1038/s41928-022-00745-7

    CrossRef Google Scholar

    [26] Li CL, Wang HL, Wang F et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci Appl 9, 31 (2020). doi: 10.1038/s41377-020-0264-5

    CrossRef Google Scholar

    [27] Deumel S, Van Breemen A, Gelinck G et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron 4, 681–688 (2021). doi: 10.1038/s41928-021-00644-3

    CrossRef Google Scholar

    [28] Xu W, Li FM, Cai ZX et al. An ultrasensitive and reversible fluorescence sensor of humidity using perovskite CH3NH3PbBr3. J Mater Chem C 4, 9651–9655 (2016). doi: 10.1039/C6TC01075J

    CrossRef Google Scholar

    [29] Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics 8, 506–514 (2014). doi: 10.1038/nphoton.2014.134

    CrossRef Google Scholar

    [30] Rubin M. Optical properties of soda lime silica glasses. Sol Energy Mater 12, 275–288 (1985). doi: 10.1016/0165-1633(85)90052-8

    CrossRef Google Scholar

    [31] Yeh P, Yariv A, Hong CS. Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67, 423–438 (1977). doi: 10.1364/JOSA.67.000423

    CrossRef Google Scholar

    [32] Sharma AK, Gupta BD. On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Opt Commun 245, 159–169 (2005). doi: 10.1016/J.OPTCOM.2004.10.013

    CrossRef Google Scholar

    [33] da Silva Filho JMC, Marques FC. Growth of perovskite nanorods from PbS quantum dots. MRS Adv 3, 1843–1848 (2018). doi: 10.1557/adv.2018.188

    CrossRef Google Scholar

    [34] Wu KW, Bera A, Ma C et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys 16, 22476–22481 (2014). doi: 10.1039/C4CP03573A

    CrossRef Google Scholar

    [35] Gil-Escrig L, Momblona C, La-Placa MG et al. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv Energy Mater 8, 1703506 (2018). doi: 10.1002/aenm.201703506

    CrossRef Google Scholar

    [36] Del Villar I, Zamarreño CR, Hernaez M et al. Generation of lossy mode resonances with absorbing thin-films. J Lightwave Technol 28, 3351–3357 (2010).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2071) PDF downloads(373) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint