改进的多光谱聚合通道行人检测

彭志蓉, 赵美蓉, 杨伟明, 等. 改进的多光谱聚合通道行人检测[J]. 光电工程, 2017, 44(9): 882-887. doi: 10.3969/j.issn.1003-501X.2017.09.004
引用本文: 彭志蓉, 赵美蓉, 杨伟明, 等. 改进的多光谱聚合通道行人检测[J]. 光电工程, 2017, 44(9): 882-887. doi: 10.3969/j.issn.1003-501X.2017.09.004
Peng Zhirong, Zhao Meirong, Yang Weiming, et al. Improved multispectral aggregate channel for pedestrian detection[J]. Opto-Electronic Engineering, 2017, 44(9): 882-887. doi: 10.3969/j.issn.1003-501X.2017.09.004
Citation: Peng Zhirong, Zhao Meirong, Yang Weiming, et al. Improved multispectral aggregate channel for pedestrian detection[J]. Opto-Electronic Engineering, 2017, 44(9): 882-887. doi: 10.3969/j.issn.1003-501X.2017.09.004

改进的多光谱聚合通道行人检测

  • 基金项目:
    国家自然科学基金资助项目(60874106)
详细信息

Improved multispectral aggregate channel for pedestrian detection

  • Fund Project:
More Information
  • 针对外部环境的多变性和复杂性导致的单一波段下行人检测准确率较低的问题,提出了一种改进的基于可见和红外双波段聚合通道特征的行人检测算法。分别提取可见图像与红外图像的聚合通道特征;通过改变像素对比规则,采用自适应的阈值进行比较,将得到的改进的中心对称的局部二值模式特征添加到特征通道中;针对多光谱聚合通道特征设计了不同滤波器组进行滤波;训练分类器,实现多光谱下行人检测。实验表明,改进的局部二值模式特征能更好地描述红外图像中行人的对称性,中间滤波层丰富了候选特征池,算法在多种场景均能有效检测出行人,提高了行人检测精度,与利用多光谱聚合积分通道的检测工作相比,平均漏检率有所降低。

  • Pedestrian detection is the principal technique for various applications, such as surveillance, tracking system and autonomous driving. Although the topic has been intensively investigated and significant improvement has been achieved in recent years, pedestrian detection is still a challenging task, limited by occluded appearances, cluttered backgrounds, and low image resolution. Besides, since most of recent researches focus on the detection of pedestrians in visible spectrum images, they are very likely to be stuck with images captured at night or bad lighting. However, ambient lighting has less effect on thermal imaging. Thermal images usually present clear silhouettes of human, but lose fine visual details of pedestrian, which can be captured by visual cameras. To overcome the drawbacks of visible images, it's helpful to fuse the information of visible images and long wave length infrared images. Aggregate channel feature is an easy but useful way to detect pedestrian. However, it only uses the information of visible spectrum images. For the above reasons, an improved pedestrian detection algorithm based on multispectral aggregate channel features is proposed. First, the aggregate channel features of the visible image and the infrared image are extracted, respectively. Specifically, the channel features extracted from the visible images include three LUV color channel features, one normalized gradient magnitude channel feature, and six histogram of oriented gradients channel (HOG) features. The channel features extracted from infrared images include one brightness channel feature and nine HOG features. All the channel features make up the aggregate multispectral channel features. Then, to use the symmetry information of pedestrian in infrared images, the improved central symmetric local binary pattern is proposed. The improved pattern feature is achieved by changing the pixel contrast rule and comparing the contrast result with the adaptive threshold. The improved central symmetric local binary pattern feature is added to feature channels to get the aggregate multispectral channel features. Next, to learn more local features and observe the effect of filters, different filter banks are designed to filter the aggregate multispectral channel features. Finally, the real adaptive boosting learning method is used to train the classifier to realize the multispectral pedestrian detection. Experiments show that the improved local binary pattern feature can better describe the symmetry of pedestrians of infrared images and the intermediate filter layer enriches the candidate feature pool. The algorithm makes use of the complementary information provided by color and thermal images, which can effectively detect pedestrians in various scenes and improve pedestrian detection accuracy. Compared with the previous multispectral aggregate channel detection work, the algorithm reduces the log-average miss rate.

  • 加载中
  • 图 1  改进的多光谱聚合通道特征的行人检测算法流程.

    Figure 1.  Flow chart of improved multispectral aggregate channel feature for pedestrian detection.

    图 2  8邻域下的LBP和CS-LBP的编码方式.

    Figure 2.  LBP and CS-LBP features for a neighborhood of eight pixels.

    图 3  不同滤波器组形式. (a) LDCF滤波器组. (b)随机滤波器组. (c)棋盘格滤波器组.

    Figure 3.  Illustration of different filter banks. (a) LDCF filter bank. (b) Random filter bank. (c) Checkerboard filter bank.

    图 4  算法检测结果.

    Figure 4.  Results of pedestrian detection.

    图 5  不同场景的检测结果. (a)仅利用可见波段训练并在可见图像检测的结果. (b)利用MMACF算法在可见图像检测的结果. (c)利用MMACF算法在红外图像检测的结果.

    Figure 5.  Detection results of different scenes. (a) Detection results of a visual images trained by visual band. (b) Detection results of visual images trained by MMACF. (c) Detection results of infrared images trained by MMACF.

  • [1]

    Zhang S S, Benenson R, Omran M, et al. How far are we from solving pedestrian detection?[C]// Proceedings of IEEEConference on Computer Vision and Pattern Recognition, 2016: 1259–1267.https://www.researchgate.net/publication/301854437_How_Far_are_We_from_Solving_Pedestrian_Detection

    [2]

    黄富瑜, 沈学举, 刘旭敏, 等.基于空时域融合处理检测超大视场红外目标[J].光学精密工程, 2015, 23(8): 2328–2338. http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

    Huang Fuyu, Shen Xueju, Liu Xumin, et al. Detection of super wide-field infrared target based on spatial-temporal fusion processing[J]. Optics and Precision Engineering, 2015, 23(8): 2328–2338. http://www.cnki.com.cn/Article/CJFDTotal-GXJM201508027.htm

    [3]

    Davis J, Sharma V. Background-subtraction using contour-based fusion of thermal and visible imagery[J]. Computer Vision and Image Understanding, 2007, 106(2): 162–182. https://web.cse.ohio-state.edu/~davis.1719/Publications/cviu07.pdf

    [4]

    Castillo J C, Serrano-Cuerda J, Femández-Caballero A, et al. Hierarchical Architecture for Robust People Detection by Fusion of Infrared and Visible Video[M]// Novais P, Camacho D, Analide C, et al. Intelligent Distributed Computing IX. Studies in Computational Intelligence. Cham: Springer, 2016: 343–351.

    [5]

    Yuan Y, Lu X Q, Chen X. Multi-spectral pedestrian detection[J]. Signal Processing, 2015, 110(5): 94–100. http://cn.bing.com/academic/profile?id=332ffaca2c325a71e713ad87dba34ab8&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037–1045.

    [7]

    Dollar P, Appel R, Belongie S, et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1532–1545. doi: 10.1109/TPAMI.2014.2300479

    [8]

    Heikkila M, Pietikainen M, Schmid C. Description of interest regions with center-symmetric local binary patterns[C]// Kalra P K, Peleg S. Computer Vision. Graphics and Image Processing. Berlin, Heidelberg: Springer 2006: 58–69.

    [9]

    刘琳, 耿俊梅, 顾国华, 等.轮廓特征与神经网络相结合的行人检测[J].光电工程, 2014, 41(7): 50–56. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdgc201407010&dbname=CJFD&dbcode=CJFQ

    Liu Lin, Geng Junmei, Gu Guohua, et al. Human detection based on contour features and neural networks[J]. Opto-Electronic Engineering, 2014, 41(7): 50–56. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdgc201407010&dbname=CJFD&dbcode=CJFQ

    [10]

    谷灵康, 周鸣争.多特征融合下的快速行人检测[J].光电工程, 2015, 42(9): 14–20. http://www.cnki.com.cn/Article/CJFDTotal-GDGC201509004.htm

    Gu Lingkang, Zhou Mingzheng. Fast pedestrian detection based on multi-feature fusion[J]. Opto-Electronic Engineering, 2015, 42(9): 14–20. http://www.cnki.com.cn/Article/CJFDTotal-GDGC201509004.htm

    [11]

    Nam W, Dollar P, Han J. Local decorrelation for improved pedestrian detection[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 424–432.

    [12]

    Zhang S S, Benenson R, Schiele B. Filtered channel features for pedestrian detection[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1751–1760.

    [13]

    金志刚, 赵明昕, 张瑞, 等.基于双目视觉的聚合积分通道行人检测优化算法[J].天津大学学报:自然科学与工程技术版, 2016, 49(12): 1225–1230. http://www.cnki.com.cn/Article/CJFDTotal-TJDX201612001.htm

    Jin Zhigang, Zhao Mingxin, Zhang Rui, et al. Optimized aggregated channel features pedestrian detection algorithm based on binocular vision[J]. Journal of Tianjin University: Science and Technology, 2016, 49(12): 1225–1230. http://www.cnki.com.cn/Article/CJFDTotal-TJDX201612001.htm

    [14]

    Dollar P, Wojek C, Schiele B, et al. Pedestrian detection: An evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 743–761. doi: 10.1109/TPAMI.2011.155

  • 加载中

(5)

计量
  • 文章访问数:  5967
  • PDF下载数:  3454
  • 施引文献:  0
出版历程
收稿日期:  2017-05-22
修回日期:  2017-07-02
刊出日期:  2017-09-15

目录

/

返回文章
返回