激光冲击强化技术原理及研究发展

李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
引用本文: 李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
Citation: Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

激光冲击强化技术原理及研究发展

  • 基金项目:
    国家自然科学基金(2015020115)资助项目;国家重大专项(U1608259)
详细信息

Research and development of laser shock processing technology

  • Fund Project:
More Information
  • 激光冲击强化技术(LSP)是一种新型的激光应用表面处理技术。与传统表面改性技术相比,激光冲击强化技术能给材料带来更深的残余应力层,使材料表层晶粒细化甚至出现纳米晶,同时大幅提高材料的疲劳寿命。利用高能激光辐照约束层材料(黑漆、黑胶带或铝箔),约束层材料在瞬间熔融气化并产生高温高压的等离子体。等离子体冲击波是一种爆轰波,可以通过C-J模型计算冲击波的峰值压力。等离子体冲击波在约束层(水、光学玻璃)的约束下向材料内部传播,其压力远远超过了材料的弹性屈服极限,材料经历了弹性-塑性变形,最终材料表面形成稳定的残余应力场并发生微弱的塑性变形。本文介绍了激光冲击强化技术的研究发展历程,在此基础上对该技术发展方向进行了展望。

  • Abstract: The concept of “laser” was proposed at the beginning of 20th century. Since then, laser research had alwaysbeen a popular research area. Laser is widely applied because of its characteristics, such as good direction, highbrightness, and good color. Laser processing technology is one of the most promising areas for laser applications. Laser shock processing (LSP) is a new and efficient type of laser surface treatment technologies. Modern society makeshigher requirements of the service to mechanical parts, and mechanical properties of parts are needed to improve tomeet the use. As a typical laser surface treatment technology, LSP can achieve a greater increase of the performance,compared with other traditional surface treatment technologies. LSP strengthening process is similar to that of shotpeening, except that the mechanical effect of laser is used instead of the impact of the projectile. The impact pressureand the influence of depth on the surface of the material are larger. It also has a smaller change to the surface topography of parts. LSP can bring a deeper residual stress layer to the material and make surface grain refinement or evenappear nano-crystalline, meanwhile significantly improving the fatigue life of the material. The LSP utilizes the mechanical effect of the laser rather than the thermal effect. The high-energy laser irradiates the material of the confinement layer (usually is black paint, black tape or aluminum foil), and the material of the confinement layer is instantaneously melted and gasified to produce high-temperature and high-pressure plasma. The plasma continues to absorblaser energy and expands to form a shock wave. The plasma shock wave can be seen as a detonation wave of a physicalproperty, and C-J model is used to calculate and predict the variation of the peak pressure of the plasma shock wave.The plasma propagates to the interior of the material under the constraint of the confinement layer (usually is water oroptical glass). The pressure of the shock wave far exceeds the elastic yield limit of the material. Therefore, the materialundergoes elastic-plastic deformation and eventually forms a stable residual stress field and a slight plastic deformation. The research and development of LSP are introduced, including the key of this technology: the selection andperfection process of absorbing and protective layer. The development direction of the technology is also forecasted.

  • 加载中
  • 图 1  技术原理示意图[6].

    Figure 1.  Technical principle diagram of laser shock processing[6].

    图 2  激光冲击波的形成增强及衰减[16].

    Figure 2.  The formation and enhancement and attenuation of laser shock waves [16].

    图 3  残余压应力和塑性变形产生示意图[17].

    Figure 3.  The formation diagram of residual compressive stress and plastic deformation [17].

    图 4  激光冲击强化对7075铝合金疲劳寿命的影响[19].

    Figure 4.  Effect on fatigue life of 7075 aluminum alloy by LSP [19].

    图 5  空气与水中等离子体膨胀过程[21].

    Figure 5.  The expansion process of plasma in air and water [21].

    图 6  ABAQUS模拟激光冲击强化TC4残余应力场[37].

    Figure 6.  Simulation of the residual stress field produced in TC4 alloy by LSP with ABAQUS software [37].

    图 7  PVDF(压电薄膜法)和EMV(电磁法)两种测试方法对不同脉宽的冲击压力测量结果[38].

    Figure 7.  The measurement results of the impact pressure for different pulse widths tested by polyvinylidene fluoride (PVDF) and electromagnetic gauges (EMV) [38].

    图 8  镭宝光电生产的高性能SGR-Extra脉冲纳秒Nd:YAG激光器[44].

    Figure 8.  High performance SGR-extra pulse nanosecond Nd: YAG laser produced by beamtech [44].

  • [1]

    激光加工技术及其应用[M].北京:冶金工业出版社, 2007: 1.

    [2]

    李伟, 李应红, 何卫锋, 等.激光冲击强化技术的发展和应用[J].激光与光电子学进展, 2008, 45(12): 15–19. https://www.wenkuxiazai.com/doc/af0575080740be1e650e9a0a-4.html

    Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15–19. https://www.wenkuxiazai.com/doc/af0575080740be1e650e9a0a-4.html

    [3]

    Sealy M P, Guo Y B, Caslaru R C, et al. Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants[J]. International Journal of Fatigue, 2016, 82: 428–436. doi: 10.1016/j.ijfatigue.2015.08.024

    [4]

    乔红超, 赵亦翔, 赵吉宾, 等.激光冲击强化对TiAl合金组织和性能的影响[J].光学精密工程, 2014, 22(7): 1766–1773. http://www.irgrid.ac.cn/handle/1471x/900885

    Qiao Hongchao, Zhao Yixiang, Zhao Jibin, et al. Effect of laser peening on microstructures and properties of TiAl alloy[J]. Optics and Precision Engineering, 2014, 22(7): 1766–1773. http://www.irgrid.ac.cn/handle/1471x/900885

    [5]

    Caralapatti V K, Narayanswamy S. Analyzing the effect of high repetition laser shock peening on dynamic corrosion rate of magnesium[J]. Optics & Laser Technology, 2017, 93: 165–174. https://www.sciencedirect.com/science/article/pii/S0030399216312713

    [6]

    李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013: 7.

    [7]

    Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497–1502. doi: 10.1063/1.326137

    [8]

    Zhou Liucheng, He Weifeng, Luo Sihai, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and Compounds, 2016, 655: 66–70. doi: 10.1016/j.jallcom.2015.06.268

    [9]

    车志刚, 杨杰, 巩水利, 等.激光冲击强化TC4钛合金表面自纳米化研究(英文)[J].稀有金属材料与工程, 2014, 43(5): 1056–1060. http://www.cqvip.com/QK/92850X/201405/49960199.html

    Che Zhigang, Yang Jie, Gong Shuili, et al. Self-nanocry stallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5): 1056–1060. http://www.cqvip.com/QK/92850X/201405/49960199.html

    [10]

    朱颖, 范博文, 郭伟, 等.激光冲击次数对TA15微观组织和硬度的影响[J].北京航空航天大学学报, 2014, 40(4): 444–448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201404004

    Zhu Ying, Fan Bowen, Guo Wei, et al. Influence of laser shock peening times on microstructure and hardness of TA15 titanium alloy [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 444–448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201404004

    [11]

    Kashaev N, Ventzke V, Horstmann M, et al. Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens[J]. International Journal of Fatigue, 2017, 98: 223–233. doi: 10.1016/j.ijfatigue.2017.01.042

    [12]

    Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021–1036. doi: 10.1016/S0142-1123(02)00022-1

    [13]

    孙承纬.激光辐照效应[M].北京:国防工业出版社, 2002: 112.

    [14]

    泽尔道维奇Я Б, 康巴涅耶茨A C. 爆震原理[M]. 徐华舫译. 北京: 高等教育出版社, 1958.

    [15]

    Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 755–784. doi: 10.1063/1.346780

    [16]

    Cottet F, Romain J P. Formation and decay of laser-generated shock waves[J]. Physics Review A, 1982, 25(1): 576–579. doi: 10.1103/PhysRevA.25.576

    [17]

    李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013: 133.

    [18]

    孙汝剑, 朱颖, 郭伟, 等.激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J].塑性工程学报, 2017, 24(1): 187–193. http://www.opticsjournal.net/abstract.htm?aid=OJ1211220000999EbHdK

    Sun Rujian, Zhu Ying, Guo Wei, et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 2017, 24(1): 187–193. http://www.opticsjournal.net/abstract.htm?aid=OJ1211220000999EbHdK

    [19]

    Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893–3896. doi: 10.1063/1.1661837

    [20]

    Clauer A H, Fairand B P, Wilcox B A. Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy[J]. Metallurgical Transactions A, 1977, 8(1): 119–125. doi: 10.1007/BF02677273

    [21]

    Sano Yuji, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 121(1–4): 432– 436. doi: 10.1016/S0168-583X(96)00551-4

    [22]

    李志勇, 朱文辉, 周光泉, 等.实验研究有机玻璃约束层对激光冲击波的影响[J].中国激光, 1997, 24(2): 118–122. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz702.005&dbname=CJFD&dbcode=CJFQ

    Li Zhiyong, Zhu Wenhui, Zhou Guangquan, et al. Experimental study of the effects of PMMA confinement on laser-induced shock waves[J]. Chinese Journal of Lasers, 1997, 24(2): 118–122. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz702.005&dbname=CJFD&dbcode=CJFQ

    [23]

    周建忠, 周明, 肖爱民, 等.约束层的厚度和柔性对激光冲击强化效果的影响[J].应用激光, 2002, 22(1): 7–9, 6. http://www.opticsjournal.net/abstract.htm?id=OJ101104000521WsYv2y

    Zhou Jianzhong, Zhou Ming, Xiao Aimin, et al. Study of the effects of overlay thickness and flexibility on laser shock processing[J]. Applied Laser, 2002, 22(1): 7–9, 6. http://www.opticsjournal.net/abstract.htm?id=OJ101104000521WsYv2y

    [24]

    Grevey D, Maiffredy L, Vannes A B, et al. Transformation de phase par choc laser d'un acier T.R.I.P.[J]. Scripta Metallurgica et Materialia, 1990, 24(4): 767–772. doi: 10.1016/0956-716X(90)90239-D

    [25]

    Forget P, Strude J L, Jeandin M, et al. Laser shock surface treatment of Ni-based superalloys [J]. Materials and Manufacturing Processes, 1990, 5(4): 501–528. doi: 10.1080/10426919008953275

    [26]

    Cellard C, Retraint D, Fran ois M, et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A, 2012, 532: 362–372. doi: 10.1016/j.msea.2011.10.104

    [27]

    Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering: A, 2006, 417(1–2): 334–340. doi: 10.1016/j.msea.2005.11.017

    [28]

    Sano Y, Adachi Y, Akita K, et al. Enhancement of surface property by low-energy laser peening without protective coating[J]. Key Engineering Materials, 2007, 345–346: 1589–1592. doi: 10.4028/www.scientific.net/KEM.345-346

    [29]

    Oca a J L, Morales M, Molpeceres C, et al. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science, 2004, 238(1–4): 242–248. doi: 10.1016/j.apsusc.2004.05.232

    [30]

    Bischoff A J, Arabi-Hashemi A, Ehrhardt M, et al. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films[J]. Applied Physics Letters, 2016, 108(15): 151901. doi: 10.1063/1.4945709

    [31]

    Shadangi Y, Chattopadhyay K, Rai S B, et al. Effect of LASER shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel[J]. Surface and Coatings Technology, 2015, 280: 216–224. doi: 10.1016/j.surfcoat.2015.09.014

    [32]

    Peyre P, Berthe L, Scherpereel X, et al. Experimental study of laser-driven shock waves in stainless steels[J]. Journal of Applied Physics, 1998, 84(11): 5985–5992. doi: 10.1063/1.368894

    [33]

    Ye Chang, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014–1025. doi: 10.1016/j.actamat.2010.10.032

    [34]

    Ye Chang, Suslov S, Lin Dong, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369–1389. doi: 10.1080/14786435.2011.645899

    [35]

    Ye Chang, Suslov S, Lin Dong, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110(8): 083504. doi: 10.1063/1.3651508

    [36]

    Ye Chang, Liu Yang, Sang Xiahan, et al. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening[J]. Journal of Applied Physics, 2015, 118(13): 134902. doi: 10.1063/1.4932142

    [37]

    Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7): 719–724. doi: 10.1016/S0142-1123(99)00035-3

    [38]

    Peyre P, Berthe L, Fabbro R, et al. Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6–3 ns laser pulses in a confined regime with water[J]. Journal of Physics, 2000, 33(5): 498–503.

    [39]

    Ge Maozhong, Xiang Jianyun. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680: 544–552. doi: 10.1016/j.jallcom.2016.04.179

    [40]

    Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127: 252–266. doi: 10.1016/j.actamat.2017.01.050

    [41]

    李靖, 李军, 何卫锋, 等. TC17钛合金激光多次冲击强化后组织和力学性能研究[J].红外与激光工程, 2014, 43(9): 2889–2895. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201409019.htm

    Li Jing, Li Jun, He Weifeng, et al. Microstructure and mechanical properties of TC17 titanium alloy by laser shock peening with different impacts[J]. Infrared and Laser Engineering, 2014, 43(9): 2889–2895. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201409019.htm

    [42]

    孟宪凯, 周建忠, 苏纯, 等.温度对激光喷丸强化2024航空铝合金表面力学性能的影响[J].中国激光, 2016, 43(10): 1002003. http://www.opticsjournal.net/abstract.htm?id=OJ120413000150GdJfMi

    Meng Xiankai, Zhou Jianzhong, Su Chun, et al. Effect of temperature on surface mechanical property of 2024 aluminum alloy treated by laser peening[J]. Chinese Journal of Lasers, 2016, 43(10): 1002003. http://www.opticsjournal.net/abstract.htm?id=OJ120413000150GdJfMi

    [43]

    Lu G X, Liu J D, Qiao H C, et al. Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock peening[J]. Optics & Laser Technology, 2017, 91: 116–119. https://www.sciencedirect.com/science/article/pii/S0030399216308003

    [44]

    乔红超, 赵吉宾, 陆莹.纳秒脉宽Nd: YAG激光冲击强化激光器的研制及分析[J].中国激光, 2013, 40(8): 802001. http://www.opticsjournal.net/abstract.htm?id=OJ130726002622rYu2x4

    Qiao Hongchao, Zhao Jibin, Lu Ying. Develop and analysis of nanosecond pulse width Nd: YAG laser for laser peening[J]. Chinese Journal of Lasers, 2013, 40(8): 802001. http://www.opticsjournal.net/abstract.htm?id=OJ130726002622rYu2x4

  • 加载中

(8)

计量
  • 文章访问数:  9612
  • PDF下载数:  5620
  • 施引文献:  0
出版历程
收稿日期:  2017-04-08
修回日期:  2017-05-12
刊出日期:  2017-03-25

目录

/

返回文章
返回