基于透射法的隧道能见度检测系统设计

叶松, 白云飞, 李志伟, 等. 基于透射法的隧道能见度检测系统设计[J]. 光电工程, 2019, 46(10): 180607. doi: 10.12086/oee.2019.180607
引用本文: 叶松, 白云飞, 李志伟, 等. 基于透射法的隧道能见度检测系统设计[J]. 光电工程, 2019, 46(10): 180607. doi: 10.12086/oee.2019.180607
Ye Song, Bai Yunfei, Li Zhiwei, et al. Design of visibility detection system for tunnel based on transmission method[J]. Opto-Electronic Engineering, 2019, 46(10): 180607. doi: 10.12086/oee.2019.180607
Citation: Ye Song, Bai Yunfei, Li Zhiwei, et al. Design of visibility detection system for tunnel based on transmission method[J]. Opto-Electronic Engineering, 2019, 46(10): 180607. doi: 10.12086/oee.2019.180607

基于透射法的隧道能见度检测系统设计

  • 基金项目:
    国家自然科学基金资助项目(11703061);国家重点研发计划(2016YFB0500704)
详细信息
    作者简介:
    通讯作者: 施海亮(1983-),男,博士,副研究员,主要从事光学遥感方面的研究。E-mail:hlshi@aiofm.ac.cn
  • 中图分类号: TH765

Design of visibility detection system for tunnel based on transmission method

  • Fund Project: Supported by National Natural Science Foundation of China (11703061) and National Key R & D Program of China(2016YFB0500704)
More Information
  • 隧道能见度与行车安全有重要关系,对隧道能见度进行实时监测可以为隧道通风换气提供有力依据。基于透射法能见度检测原理,设计并搭建了一套能见度检测系统用于隧道能见度的自动检测。检测系统主要由激光二极管、分束器、硅探测器和信号处理单元等部分构成。采用高响应度硅探测器并设计了跨阻抗放大电路以满足在低能见度下测量需求。两硅探测器分别检测经光学路径衰减前后的光强并输出对应的光电流,信号处理电路对探测器两路输出进行放大滤波和A/D转换后,反演出消光系数。使用固定透过率滤光片模拟隧道环境,在实验室环境下对该检测系统性能指标进行测试。实验结果表明:消光系数测量范围3.37 km-1~118.82 km-1,最大相对测量误差为8.4%,稳定性优于0.12 km-1

  • Overview: With the development of the transportation industry, the number of medium and long road tunnels has been always increasing. Since the tunnel structure has a semi-closed cylindrical configuration, it is difficult to exchange with the outside air, and the exhaust of the vehicle is likely to cause the accumulation of pollutants and to cause a decrease in visibility in the tunnel. Tunnel visibility has an important relationship with driving safety. Real-time monitoring of tunnel visibility can provide a strong basis for tunnel ventilation and ventilation, reduce the probability of accidents under low visibility conditions and improve the tunnel environment. Based on the principle of visibility detection of transmission method, a set of visibility detection system is built for the automatic detection of tunnel visibility. The detection system is mainly composed of a laser diode, a beam splitter, a silicon detector, and a signal processing unit. An LED laser diode with the power of 5 mW and wavelength of 650 nm is used as a detection light source, and two high-reactivity silicon detectors respectively detect the light intensity before and after attenuation by the optical path and output a corresponding photocurrent. A transimpedance amplifier circuit is designed to perform amplification and I/V conversion of the photocurrent signal to meet the detection requirements under low visibility conditions. The signal processing circuit performs amplification filtering and analog-to-digital conversion on the two outputs of the detector, and is collected by the single-chip microcomputer. The extinction coefficient is inversed by the single-chip microcomputer by writing software. According to the calculated extinction coefficient and design threshold, the relay is controlled to be turned on or off to control the motor running in the tunnel. The prototype of the inspection system is designed and fabricated, and the main design parameters including measurement range, maximum measurement error and stability are experimentally analyzed. In order to avoid the influence of background light on the detection system, a 50 cm long shading cylinder and a 4 cm diameter aperture are designed. The tunnels under different visibility conditions are simulated using filters with fixed transmittances of 98.0%, 84.7%, 67.2% and 49.0%, respectively, and the performance indicators of the test system are tested in a laboratory. The experimental results show that the measurement range of the extinction coefficient of the detection system is 3.37 km-1~18.82 km-1, the maximum relative measurement error is 8.4%, and the stability within 12 hours is better than 0.12 km-1. The design indicators meet the requirements for the indicators of tunnel visibility detection instruments in the "Specifications for Design of Highway Tunnels". It laid the foundation for the future commercialization of tunnel visibility testing instruments.

  • 加载中
  • 图 1  系统整体组成框图

    Figure 1.  Block diagram of the detection system

    图 2  光学结构示意图

    Figure 2.  Schematic diagram of the optical structure

    图 3  发射与接收夹具模型

    Figure 3.  Launch and receiving part fixture model

    图 4  光谱响应曲线

    Figure 4.  Spectral response curve

    图 5  跨阻式放大电路

    Figure 5.  Transimpedance amplifier circuit

    图 6  信号处理电路实物图

    Figure 6.  Signal processing circuit

    图 7  主程序流程图

    Figure 7.  Main program flow chart

    图 8  能见度测试实验示意图

    Figure 8.  Schematic diagram of the visibility test

    图 9  不同透过率滤光片12 h消光系数测量折线图。(a)透过率98.0%;(b)透过率84.7%;(c)透过率67.2%;(d)透过率49.0%

    Figure 9.  Line chart of extinction coefficient of filter with different transmittance measured in 12 h. (a) The transmittance is 98.0%; (b) The transmittance is 84.7%; (c) The transmittance is 67.2%; (d) The transmittance is 49.0%

    表 1  不同透过率下检测装置各项性能指标

    Table 1.  The performance of detection device at different transmission

    Reference transmission/% Reference extinction coefficient/km-1 Average value/km-1 Δh/% s/km-1
    98.0 3.37 3.47 8.3 0.12
    85.4 26.30 27.65 5.9 0.11
    68.62 62.76 66.18 5.6 0.07
    49.02 118.82 108.92 8.4 0.08
    下载: 导出CSV
  • [1]

    董丽丽, 石娜, 张利东, 等.低透过率下隧道照明亮度对能见度的影响[J].光子学报, 2017, 46(2): 0222002. doi: 10.3788/gzxb20174602.0222002

    Dong L L, Shi N, Zhang L D, et al. Influence of tunnel lighting brightness on visibility under low transmittance[J]. Acta Photonica Sinica, 2017, 46(2): 0222002. doi: 10.3788/gzxb20174602.0222002

    [2]

    鞠琳.基于WSN的透射式能见度检测系统的硬件设计[D].南京: 南京信息工程大学, 2011: 5–7.

    Ju L. Hardware design of transmission visibility measurement based on WSN[D]. Nanjing: Nanjing University of Information Science and Technology, 2011: 5–7.

    [3]

    高强.基于红外前向散射能见度仪的研制[D].天津: 天津大学, 2015: 1–3.

    Gao Q. Development of the infrared forward scattering visibility meter[D]. Tianjin: Tianjin University, 2015: 1–3.

    [4]

    王江安, 康圣, 吴荣华, 等.能见度光学测量方法[J].光学学报, 2009, 29(1): 283–289. doi: 10.3772/j.issn.1009-5659.2010.23.013

    Wang J A, Kang S, Wu R H, et al. Method for calculating visibility utilizing optic ways[J]. Acta Optica Sinia, 2009, 29(1): 283–289. doi: 10.3772/j.issn.1009-5659.2010.23.013

    [5]

    蔡琴.透射式和前散射式能见度仪性能的分析[J].成都工业学院学报, 2014, 17(4): 40–42, 59. doi: 10.13542/j.cnki.51-1747/tn.2014.04.013

    Cai Q. Analysis of performance for transmission type and forward scatter type apparatus[J]. Journal of Chengdu Technological University, 2014, 17(4): 40–42, 59. doi: 10.13542/j.cnki.51-1747/tn.2014.04.013

    [6]

    程绍荣, 魏全忠, 吕军.一种实用型大气透射式能见度仪的研制[J].光电工程, 2011, 38(2): 144–150. doi: 10.3969/j.issn.1003-501X.2011.02.024

    Cheng S R, Wei Q Z, Lv J. The development of a new atmosphere transmittance meter[J]. Opto-Electronic Engineering, 2011, 38(2): 144–150. doi: 10.3969/j.issn.1003-501X.2011.02.024

    [7]

    王宗俐, 曹乃锋, 王春录.一种激光能见度仪设计的新方法[J].激光与红外, 2012, 42(6): 629–632. doi: 10.3969/j.issn.1001-5078.2012.06.007

    Wang Z L, Cao N F, Wang C L. New design of laser instrument for detecting the visibility[J]. Laser & Infrared, 2012, 42(6): 629–632. doi: 10.3969/j.issn.1001-5078.2012.06.007

    [8]

    宫纯文, 李学彬, 李建玉, 等.大气气溶胶消光系数测量新方法[J].光学学报, 2014, 34(1): 0101001. doi: 10.3788/AOS201434.0101001

    Gong C W, Li X B, Li J Y, et al. New method of aerosol extinction coefficient measurement[J]. Acta Optica Sinica, 2014, 34(1): 0101001. doi: 10.3788/AOS201434.0101001

    [9]

    庄子波, 台宏达, 蒋立辉.一种基线长度改变的能见度测量和评价方法[J].光学学报, 2016, 36(2): 0201001. doi: 10.3788/AOS201636.0201001

    Zhuang Z B, Tai H D, Jiang L H. Changing baseline lengths method of visibility measurement and evaluation[J]. Acta Optica Sinia, 2016, 36(2): 0201001. doi: 10.3788/AOS201636.0201001

    [10]

    中华人民共和国交通运输部.公路隧道设计规范第二册交通工程与附属设施: JTG D70/2–2014[S].北京: 人民交通出版社, 2014.

    Ministry of Transport of the People's Republic of China. Specifications for design of highway tunnels section 2 traffic engineering and affiliated facilities: JTG D70/2–2014[S]. Beijing: China Communications Press, 2014.

    [11]

    Bendix J. Determination of fog horizontal visibility by means of NOAA-AVHR[C]//1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 1995, 3: 1847–1849.

    [12]

    吴健, 杨春平, 刘建斌.大气中的光传输理论[M].北京:北京邮电大学出版社, 2005: 1–57.

    Wu J, Yang C P, Liu J B. Optical Transmission Theory in the Atmosphere[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2005: 1–57.

    [13]

    杜道中, 刘婷婷, 廖文和, 等.激光选区熔化熔池光强监测系统设计[J].红外与激光工程, 2017, 46(12): 1206002. doi: 10.3788/IRLA201746.1206002

    Du D Z, Liu T T, Liao W H, et al. Design of monitoring system of melt pool light intensity in selective laser melting[J]. Infrared and Laser Engineering, 2017, 46(12): 1206002. doi: 10.3788/IRLA201746.1206002

    [14]

    朱珠.光电检测前置放大电路设计及稳定性分析[J].现代电子技术, 2014, 37(17): 137–139. doi: 10.3969/j.issn.1004-373X.2014.17.041

    Zhu Z. Design and stability analysis of pre-amplification circuit for photodiode monitoring[J]. Modern Electronics Technique, 2014, 37(17): 137–139. doi: 10.3969/j.issn.1004-373X.2014.17.041

    [15]

    高丽梅. CO浓度和能见度检测系统的研究[D].杭州: 浙江大学, 2013: 55–56.

    Gao L M. Measurement of CO concentration and visibility[D]. Hangzhou: Zhejiang University, 2013: 55–56.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  7464
  • PDF下载数:  2930
  • 施引文献:  0
出版历程
收稿日期:  2018-09-05
修回日期:  2018-11-06
刊出日期:  2019-10-18

目录

/

返回文章
返回