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Applications of lasers: A promising route toward
low-cost fabrication of high-efficiency full-color
micro-LED displays
Shouqiang Lai1†, Shibiao Liu1†, Zilu Li1, Zhening Zhang1, Zhong Chen1,2,
Rong Zhang1,2*, Hao-Chung Kuo3,4* and Tingzhu Wu1,2*

Micro-light-emitting diodes (micro-LEDs) with outstanding performance are promising candidates for next-generation dis-
plays. To achieve the application of high-resolution displays such as meta-displays, virtual reality, and wearable electron-
ics, the size of LEDs must be reduced to the micro-scale. Thus, traditional technology cannot meet the demand during
the  processing  of  micro-LEDs.  Recently,  lasers  with  short-duration  pulses  have  attracted  attention  because  of  their
unique  advantages  during  micro-LED processing  such  as  noncontact  processing,  adjustable  energy  and  speed  of  the
laser beam, no cutting force acting on the devices, high efficiency, and low cost. Herein, we review the techniques and
principles of laser-based technologies for micro-LED displays, including chip dicing, geometry shaping, annealing, laser-
assisted bonding, laser lift-off, defect detection, laser repair, mass transfer, and optimization of quantum dot color conver-
sion films.  Moreover,  the  future  prospects  and  challenges  of  laser-based  techniques  for  micro-LED  displays  are  dis-
cussed.
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 Introduction
Recently, micro-light-emitting  diode  (micro-LED)  dis-
plays that reduce the size of traditional GaN-based LEDs
to  the  micro-scale  (smaller  than  50  ×  50  μm2),  remove
the  sapphire  substrate,  and  array  the  chips  into  drive-
controlled  pixels  have  been regarded as  next-generation
display technology  and  have  attracted  significant  atten-
tion1−3. Compared with liquid crystal displays and organ-

ic LED technology, the self-luminous display technology
of micro-LEDs has many advantages, such as low power
consumption, fast responses, long lifetimes, and high ef-
ficiency; another feature of micro-LEDs is their applica-
tion  in  high-resolution  display  panels.  Micro-LEDs
present great potential in many photoelectric fields, such
as virtual  reality  (VR)/augmented  reality  (AR)  light  en-
gines,  smart watches,  and high-resolution televisions.  In 
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the field  of  communication,  micro-LEDs  are  also  suit-
able  for  the  application  of  visible  light  communication
(VLC)  and  underwater  optical  communication4−11.  The
significant  potential  of  micro-LEDs  in  the  consumer
electronics market  has  evoked  enthusiasm  among  re-
searchers. However,  although  micro-LEDs  have  exhib-
ited excellent  performance  in  various  fields,  there  re-
main multiple challenges to their commercialization. For
example, traditional  technology  cannot  meet  the  de-
mand  for  processing  micrometer-sized  devices,  as  the
manufacturing process of inductively coupled plasma re-
active ion etching (ICP-RIE), which is used to define and
form the pixel, introduces sidewall defects; thus, it deteri-
orates  the  production  yield  and  luminous  efficiency  of
micro-LED  displays12,13. In  addition,  traditional  detec-
tion  and  mass-transfer  techniques  result  in  prohibitive
manufacturing costs,  and  the  industrialization  techno-
logy  of  full-color  displays  based  on  micro-LEDs  is  not
yet fully mature14−17.  These challenges have hindered the
commercialization of full-color micro-LED displays.

Since Bell Labs in the United States proposed microd-
isk laser technology in 1992, micro-scale photoelectronic
devices have attracted great attention18. H. X. Jiang et al.
first prepared  GaN-based  micro-LEDs in  2000  and suc-
cessfully fabricated a 10 × 10 blue micro-LED array with
a  diameter  of  about  12  μm  in  200119,20.  In  2004,  M.  D.
Dawson et  al.  reported  the  fabrication  process  and  per-
formance  of  a  64  ×  64  array  of  ultraviolet  (UV)  micro-
LEDs with a diameter of about 20 μm21. K. M. Lau and Z.
J.  Liu  et  al.  reported  on  UV  and  red,  green,  and  blue
(RGB)  micro-LEDs  with  a  diameter  of  50  μm  and  360
pixels  per  inch  (PPI)  resolution  in  201322,  and  then  on
blue micro-LEDs with 1700 and 2500 PPI resolution dis-
plays23,24. In 2014, P. F. Tian et al. fabricated 10 × 10 mi-
cro-LED arrays with pixel  diameters of  45 μm and peak

emission at ~470 nm25. In 2016, B. Liu et al. developed a
new type of hybrid nanohole periodic array/II-VI group
white light LED, which used dipole coupling to enhance
the  nonradiative-energy  transfer  mechanism  to  achieve
white light emission, exhibited high color conversion ef-
ficiency and effective quantum yield, and obtained an ul-
tra-high color rendering index26. In 2019, F. Y. Jiang and
N.  Chi  et  al.  proposed  micro-LEDs  fabricated  on  Si  for
applications in the field of underwater VLC27. In 2020, J.
Han  et  al.  fabricated  semi-polar  green  micro-LEDs,
which improved the efficiency and bandwidth of micro-
LEDs  in  display  and  VLC  applications28.  In  2021,  H.  C.
Kuo  and  T.  Z.  Wu  et  al.  proposed  a  flexible  white-light
system for  high-speed  VLC  applications,  which  con-
sisted  of  a  semi-polar  blue  InGaN/GaN  single  quantum
well micro-LEDs on a flexible substrate of green CsPbBr3

perovskite  quantum  dot  (PQD)  and  red  CdSe  quantum
dot  (QD)  papers29. In  2022,  M.  D.  Dawson  et  al.  pro-
posed an  ultrahigh  frame  rate  digital  light  projector  us-
ing  chip-scale  micro-LEDs  on  a  complementary
metal–oxide–semiconductor  (CMOS),  in  which  a  self-
emissive  chip-scale  projector  system  based  on  micro-
LEDs was directly bonded to a smart  pixel  CMOS drive
chip. Therefore, the micro-LED arrays could project bin-
ary  patterns  at  up  to  0.5  Mfps  and  toggle  between  two
stored frames  at  megahertz  speeds.  This  technology can
be  used  in  conjunction  with  high-speed  spatial  pattern
projection30.  Research  into  micro-LEDs  for  applications
in displays  and  communication  since  2000  is  summar-
ized in Table 1.

Decreasing  chip  size  leads  to  greater  stress,  defect
density, wavelength,  and  brightness  uniformity  require-
ments for the epitaxial growth of wafers for micro-LEDs.
When  these  requirements  are  not  met,  defective  pixels
must  be  detected  and repaired  effectively  to  yield  pixels

 
Table 1 | Progress of micro-LEDs and their applications.

 

Year Substrate Pixel size (μm) Array Wavelength Application Group Reference

2000 Sapphire 12 / Blue Display H. X. Jiang et al. ref.19

2004 Sapphire 20 64 × 64 UV / M. D. Dawson et al. ref.21

2013 Sapphire 50 / UV and RGB Display K. M. Liu et al. ref.22

2014 Sapphire 80 / Blue VLC P. F. Tian et al. ref.25

2016 PSS / / Blue Full-color display B. Liu et al. ref.26

2019 Si / / RGB Underwater VLC F. Y. Jiang et al. ref.27

2020 PSS / / Green VLC J. Han et al. ref.28

2021 Sapphire 50 / Blue VLC H. C. Kuo et al. ref.29

2022 Sapphire 30 128 × 128 Blue Projector M. D. Dawson et al. ref.30

PSS: Patterned sapphire substrate
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that  achieve  99.999%  in  full-color  micro-LED
displays31,32.  In  addition,  because  the  size  of  the  light-
emitting  surface  of  micro-LEDs is  smaller  in  relation to
their  thickness,  efficient  and  nondestructive  techniques
for substrate lift-off and annealing technology with high
precision, high efficiency for  temperature and area con-
trol  are  needed33,34.  Moreover,  millions  of  micro-LEDs
are available for display applications.  Thus,  a  bottleneck
of mass-transfer techniques hinders the practical applica-
tion  of  micro-LEDs,  necessitating  the  optimization  of
traditional mass-transfer technology35,36.  In addition, the
preparation of color-conversion layers for full-color mi-
cro-LED displays faces many challenges, such as the pat-
terning  and  morphology  modification  of  the  quantum-
dot  color  conversion  films  (QD-CCF)37.  In  conclusion,
the processing, detection, repair, mass transfer, and full-
color  technology  of  full-color  micro-LED  displays  with
the advantages of low cost, high precision, and high pro-
duction efficiency are essential.

Recently, laser-based  technology  has  attracted  atten-
tion  for  its  advantages  in  the  preparation  of  full-color
micro-LED  displays.  For  example,  in  2023,  ASMPT
launched  a  new  type  of  laser-based  device  for  the  mass
transfer  of  micro-LEDs38. Simultaneously,  Xiamen  Uni-

versity built the world’s first 23.5-inch laser-based mass-
transfer  production  line  of  micro-LEDs39.  In  addition,
“Touch Taiwan Smart Display” reported that 2023 is the
first year of micro-LED mass production40… Unlike tra-
ditional processes, laser-based processes have the advant-
ages  of  no  contact,  adjustable  energy,  high  speed,  and
high material selectivity in the multi-material system and
no cutting force acting on the device. The application of
lasers  during  micro-LED  processing  is  shown  in Fig. 1.
Lasers can be used in chip dicing, geometric shaping, an-
nealing, bonding, and lift off. For example, Gu et al. used
a repetitively pulsed UV copper vapor laser (255 nm) to
manufacture  and  dice  micro-LEDs  in  200441,  Guo  et  al.
used picosecond laser multiple scribing to shape the sub-
strate sidewalls of LEDs42, and Zheng et al. used laser an-
nealing  to  optimize  the  contact  resistance  of  Mg-doped
GaN43.  In addition, lasers with short wavelengths can be
used for the photoluminescence (PL) detection of micro-
LEDs,  which  can  distinguish  sub-standard  devices,  thus
improving the yield during mass transfer and effectively
reducing the cost of laser repair. For example, Park et al.
used a  375-nm micropulse  laser  to  detect  the properties
of  micro-LED  arrays44.  Owing  to  their  high  precision,
high efficiency, and low cost, lasers can be used in the re-
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pair  and  mass-transfer  procedures  of  micro-LEDs.  For
example,  the  laser  repair  and  laser-enabled  advanced
placement  (LEAP)  mass-transfer  strategies,  which  use
the  beam-addressed  release  (BAR)  method,  selectively
release  perfect  micro-LEDs with  the  advantages  of  large
size,  no contact,  and high efficiency45.  Moreover,  super-
inkjet printing  technology  for  QDs  patterning  can  pro-
duce 1732 PPI full-color displays46. With the widespread
application of lasers,  the commercialization of full-color
micro-LED displays has been vigorously promoted.

In  recent  years,  several  problems  associated  with  the
application  of  micro-LED displays  have  been  identified.
In 2020, P. F. Tian and H. C. Kuo et al. reviewed micro-
LED  mass  transfer  technology47.  In  2021,  B.  Shen  et  al.
summarized the problems with and possible solutions to
the  epitaxial  growth  and chip  technology  of  micro-LED
displays48.  In  2022,  M.  J.  Cheng  et  al.  categorized  the
mass transfer, detection, and repair technologies for mi-
cro-LED  displays31. In  2022,  H.  C.  Kuo  et  al.  summar-
ized the application progress and future development of
QD-based  full-color  micro-LED  displays49. These  sum-
maries considerably  improve  the  understanding  on  mi-
cro-LED display technologies. However, few studies have
focused on  laser-based  technologies  for  micro-LED dis-
plays. This  review  comprehensively  analyzes  the  chal-
lenges surrounding  micro-LED  displays,  including  fab-
rication  problems  such  as  processing,  detection,  repair,
mass transfer, and QD-based full-color displays. In addi-
tion, the applications of laser-based technologies and fu-
ture  development  trends  in  the  fabrication  of  micro-
LEDs are discussed50−53.

 Overview of micro-LED-based full-color
displays

 Challenges in full-color micro-LED displays
The reduced  size  of  micro-LEDs  optimizes  their  junc-
tion  temperature  and  current  density  distribution.
However, as the size of micro-LEDs decreases, their large
volume-to-surface ratio results in the generation of side-
wall  defects  and  surface  damage  caused  by  dry  etching
via  ICP-RIE.  The  problems  of  conductivity  control  and
electrode structure design in the device would lead to the
longitudinal  expansion of  current,  which in  turn results
in  current  crowding  effect  in  micro-LEDs.  In  addition,
the  uneven  luminescence  distribution  and  excessively
large  light  angle  of  micro-LEDs  would  cause  light
crosstalk in displays54−57. These factors deteriorate the ef-

ficiency and reliability of the devices. Therefore, optimiz-
ing  techniques  for  sidewall  passivation,  improving  the
current-crowded  effect,  and  reducing  optical  crosstalk
between  pixels  are  necessary  in  fabricating  micro-LED
devices58−60. In addition,  for the yield of  micro-LED dis-
plays to exceed 99.999%, defective pixels  generated dur-
ing  fabrication  and  mass  transfer  should  be  accurately
detected,  removed,  and  repaired.  Mass  transfer  is  also  a
challenge for  full-color  micro-LED  displays.  The  ul-
trahigh yield requirement for RGB micro-LEDs and fab-
rication  bottleneck  for  red  micro-LEDs  result  in  high
cost,  which  hinders  the  development  and application  of
full-color  micro-LED  displays61,62.  An  alternate  method
to achieve  full-color  displays  is  using  QD-CCF  techno-
logy;  the  patterning  and  morphology  modification  of
QD-CCF  help  reduce  optical  crosstalk  and  improve  the
efficiency,  resolution,  and reliability  of  full-color  micro-
LED  displays63,64.  In  this  case,  the  fabrication  of  micro-
LEDs includes the epitaxial growth of wafers, device pre-
paration,  defect  detection,  defect  repair,  mass  transfer,
and  full-color  displays,  which  should  be  improved  to
achieve  the  commercialization  of  micro-LED
displays65−71.

 Advantages of lasers for fabricating micro-LEDs
Lasers have  been  employed  as  an  effective  tool  for  mi-
cromachining  and  afford  versatile  methods  for  cutting,
drilling, and modification of various engineering materi-
als owing to their directionality, uniform wavelength co-
herence,  and  high  energy  density72. During  the  fabrica-
tion  of  micro-LEDs,  parameters  such  as  laser  intensity,
wavelength,  and  pulse  duration  can  be  changed;  thus,
laser processing technology differs from traditional pro-
cessing  technologies.  The  unique  advantages  of  laser-
based  technologies  for  fabrication  of  micro-LEDs  are
noncontact  processing,  adjustable  laser  beam  energy,
high efficiency, and low cost73.

 Laser-based processing technology for
micro-LEDs
The  increasing  demand  for  micro-LEDs  has  driven  the
development of  related  processing  technologies.  Ad-
vanced  technologies  such  as  laser-based  wafer  dicing,
geometry  shaping,  laser-assisted  bonding,  and  laser  lift-
off (LLO) have  been proposed and developed to  optim-
ize  the  production  yield,  efficiency,  and  cost  during  the
manufacturing of micro-LEDs.
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 Wafer dicing
As regards  the  manufacturing  of  micro-LEDs,  ultrahigh
hardness  of  sapphire  can cause  issues  such as  low yield,
low output,  and high cost74.  Traditional diamond dicing
technology only achieves row widths of 50 μm, which is
comparable  to  the  size  of  micro-LEDs.  Similarly,  the
low-cost and high-speed plasma dicing technology faces
the  challenges  of  low  dicing  accuracy  and  excessively
large  dicing  grooves  in  addition  to  generating  harmful
gases and arcs during the dicing processes. Unlike tradi-
tional  diamond  dicing  and  plasma  dicing  methods,  the
accuracy of UV lasers achieves a row width of 2.5–20 μm,
which would allow for significant increase in the produc-
tion yield of micro-LEDs75. In addition, the LEDs exhibit
no significant brightness loss,  and the increased absorp-
tion rate of GaN and sapphire to short-wavelength light
from UV lasers helps reduce the radiant power required
for dicing. Moreover, the processing efficiency is also im-
proved significantly.  In  this  case,  UV  lasers  are  con-
sidered ideal tools for wafer dicing76,77.  These techniques
are discussed in the following sections.

 Geometry shaping
To enhance the light extraction efficiency (LEE) of LEDs,
wet  etching,  plasma  etching,  and  laser-based  geometry
shaping techniques have been employed. While wet etch-
ing has  the  advantage  of  being low cost  and highly  effi-
cient, the use of strong acids and alkalis for etching GaN
is associated with a high health hazard risk. Further, the
accuracy  of  the  etching  process  is  insufficient.  Plasma
etching  technology  has  similar  advantages  of  low  cost,
low pollution, and high etching rate.  However,  the poor
anisotropy  of  plasma  etching  causes  serious  drilling
erosion, and the accompanied glow discharge during the
processing  procedures  hinders  its  application  in  micro-
LED  geometry  shaping.  Therefore,  wet  etching  and
plasma etching are  only suitable  for  processing the geo-
metry shape of the entire micro-LED. In contrast,  laser-
based  geometry  shaping  technology  has  the  advantages
of high controllability, high accuracy and high efficiency;
therefore,  the  electrical  characteristics  of  the  devices
would  not  deteriorate,  and  this  technology  is  applicable
in the nanostructure processing of micro-LEDs78−80. Fu et
al. reported a single-step dicing and shaping method for
InGaN-based  LED  chips  using  a  laser  micromachine;
chips shaped into inverted pyramids presented an 85.2%
increase  in  LEE81.  Lin  et  al.  fabricated  InGaN-based
LEDs with cone- and sawtooth-shaped sapphire sidewall

structures using a laser drilling process in which the light
output power was 16% higher than that of a convention-
al LED structure with a laser-scribed sidewall82. To over-
come the  problems  of  debris  and  contaminants  gener-
ated  during  geometry  shaping,  picosecond  lasers  have
been used instead of nanosecond lasers. For example, Lin
et al.  performed laser decomposition, laser scribing, and
lateral crystallographic wet etching at the GaN/Al2O3 in-
terface to form LEDs with a rough-patterned back on the
N-face GaN surface83. Guo et  al.  proposed a ps-laser  di-
cing method  to  form  LEDs  with  oblique  substrate  side-
walls.  During  processing,  the  applied  multiple  scribing
lines  in the sapphire  were intentionally  aligned to guide
the wafer to be diced along the oblique sidewalls with de-
signed  angles42. Li  et  al.  proposed  parallel  laser  pro-
cessing technologies that can fabricate functional devices
such  as  LEDs,  photovoltaic  devices,  light  sensors,  and
optical  components  or  windows  as  micro/nanostruc-
tures of gratings, pyramids, porous structures, rods, and
cones over a large area with high efficiency84.

 Laser lift-off
The  lattice  mismatch  between  Group  III  nitrides  and
sapphire causes strong compressive stress, which leads to
a  large  defect  density  and  a  strong  quantum-confined
Stark effect in micro-LEDs85. Moreover, the poor thermal
and electrical  conductivity of sapphire lead to poor heat
dissipation  and  high  resistance  in  micro-LED  displays,
which hinders the development of applications; thus, it is
necessary to develop techniques that are used for the lift-
off of micro-LEDs from sapphire86. Currently, three pop-
ular  lift-off  methods  have  attracted  attention87:  LLO,
chemical  and  mechanical  lift-off  (CLO),  and  spalling.
However,  CLO  technology  faces  many  challenges,  such
as chemical pollution and high cost, and spalling techno-
logy  has  many  drawbacks  and  limitations  owing  to  the
hardness of the sapphire substrate and its  wurtzite crys-
tal  lattice88,89.  LLO  technology,  which  environmentally
heats  the  crystal  and  causes  damage  to  achieve  high
throughput and yield without sacrificing the wafer  area,
has  overcome  many  problems  associated  with  standard
separation techniques  and  is  therefore  the  most  prom-
ising technology for micro-LEDs90.

Currently,  the  excimer  nanosecond  pulse  lasers  and
ultrafast pulse lasers have been proposed for LLO. Com-
pared  with  excimer  nanosecond  pulse  lasers,  ultrafast
lasers with a pulse within 10−11 s  and appropriate lift-off
single  pulse  energy  could  reduce  the  thermal  damage
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during LLO processes. Thus, these lasers are expected to
become  a  key  breakthrough  point  in  the  bottleneck  of
micro-LED  mass  transfer91,92.  The  chemical  equation  of
laser-induced thermal  decomposition  of  GaN  is  as  fol-
lows93: 

2GaN(s)→2Ga(l) +N2(g)↑ . (1)

The  schematic  and  physical  mechanism  of  the  LLO
processes  is  depicted  in Fig. 2(a–d), for  bandgap  ener-
gies of 9.2 and 3.3 eV of sapphire and GaN, respectively;
therefore, lasers  with  a  wavelength  lower  than  the  ab-
sorption edge of GaN (such as the 248-nm (5.0 eV) KrF
excimer nanosecond  pulse  laser)  could  be  used  to  de-
compose the material of GaN. The LLO process is as fol-
lows. A  short-wavelength  pulse  laser  is  used  to  decom-
pose  the  micro-GaN  into  N2 and  Ga.  This  significantly
weakens  the  interface  adhesion  between  the  sapphire
substrate micro-LED, allowing for the sapphire to be re-
leased by remelting or etching the metal94,95.

Many methods for improving the efficiency and valid-
ity of LLO have been proposed. An example is the step-
and-repeat  method,  which  refers  to  the  process  of  spot
scanning  line  by  line  until  the  entire  area  is  scanned.
During  scanning,  adjusting  the  size  and  step  of  light
spots  is  necessary  to  make  good  connections  between
them  and  avoid  damage  caused  by  repeated  scanning
and overlapping light spots. With regard to the lift-off of
micro-LEDs  using  diode-pumped  solid  state  (DPSS)
lasers  (DPSS),  the  line-by-line  scanning  method  results
in an uneven stress release during LLO, which leads to an
excessive curvature of the wafer and possible dark cracks
or fragments. The spiral scanning method, which moves
from the  periphery  to  the  center  of  the  wafer,  was  pro-
posed to achieve a uniform stress release and reduce the
warpage of  the  wafer  after  LLO.  Moreover,  the  femto-

second laser LLO technology for the production of free-
standing GaN  light-emitting  diode  chips  has  been  de-
veloped.  The  laser  machining  setup  is  illustrated  in Fig.
3(a).  As  shown  in Fig. 3(b),  by  using  the  high-energy
pulsed laser beam to penetrate the sapphire substrate and
to evenly  scan  the  interface  between  the  sapphire  sub-
strate  and  the  epitaxial  GaN  material,  the  separation  of
the  substrate  and  chips  could  be  achieved.  In  addition,
microscopic  images  of  the  wafer  and  chip  surface  after
applying the two-step LLO process with increasing laser
power are shown in Fig. 3(c)66.

 Laser-based defect detection technology
The application  of  micro-scale  chips  in  consumer  elec-
tronics, connected  hardware,  electronic  medical  equip-
ment,  and  other  fields  faces  the  challenges  of  high-effi-
ciency  detection,  location,  and  removal  of  defects.
However, technologies  such  as  spectral  detection,  spec-
tral  correction,  automatic  detection,  and  deep  learning
have emerged to improve the sensitivity and accuracy of
defective chips.  In  the  display  field,  micro-LEDs  are  re-
garded as  next-generation  display  technology  that  re-
quires  a  yield  exceeding  99.999%.  Therefore,  defective
pixels caused by fabrication and mass transfer processes
should be accurately detected and removed96−98.

The luminous intensity and uniformity of micro-LEDs
are  essential  for  performance,  such  as  that  of  the  color
gamut and  brightness;  thus,  defect  detection  technolo-
gies have practical  significance in industrialization.  Tra-
ditional cathodoluminescence  defect  detection  techno-
logy damages the characteristics of micro-LEDs, and the
efficiency  of  electroluminescence  (EL)  defect  detection
technology is  not  applicable  to  industrialization.  There-
fore, the PL defect detection technique using lasers with
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the advantage of no contact and ultrahigh detection effi-
ciencies has attracted attention. This technology applies a
specific  laser  irradiation  wavelength  onto  micro-LEDs;
the characteristics of the micro-LEDs obtained from this
PL  spectrum  can  be  used  for  screening. Figure 4(a)
shows  the  high-efficiency  micro-PL  scan  obtained  with
the pulsed laser beam on the wafer containing the micro-
LED. As shown in Fig. 4(b, c), the defective chip could be
quickly  located  using  the  laser  inspection  system  by
measuring the  PL  intensity  of  micro-LEDs.  The  PL  in-
tensity of  the  good chip  and  the  PL  intensity  of  the  de-
fective chip are shown in Fig. 4(a)44.

 Laser repair technology and mass transfer
strategies

 Laser repair technology
The yield requirement for full-color micro-LED displays
should exceed 99.999%. However, traditional repair tech-

nologies for micro-devices demand considerable human
and material  resources,  and  the  low  efficiency  and  un-
avoidable  artificial  errors  during  this  process  result  in  a
low  product  yield.  Thus,  laser  repair  technology,  which
has the advantages of adjustable light output power, spot
size, and penetration depth, has attracted great attention
in  the  manufacturing  of  full-color  micro-LED  displays.
Additional challenges include the fracture of metal elec-
trodes, poor contact, and damage to chips during manu-
facturing. Therefore,  laser-based  metal  melting  or  clad-
ding and the replacement of damaged micro-LED pixels
are in demand.

Using lasers with a high power density, metal surfaces
can  be  heated  and  melted.  Subsequently,  through  the
rapid heat conduction and heat flow modes of the mater-
ial matrix, the melting metals can be quickly solidified to
repair  cracked electrodes.  For  example,  Gui  et  al.99 used
the laser direct writing technology to fabricate nanoscale

 

Laser: 350 fs, 520 nm,

200 kHz

Motorized Z-stage

Single laser shot

Sapphire

Microscopic surface images

Wafer condition

after LLO

process

Chip condition

after LLO

process

Pulse energy

Ep

Peak flence Φ0 0.20 J/cm2 0.34 J/cm2 0.48 J/cm2

1.0 μJ

No lift-off

Free lying

sapphire

Intact GaN Sapphire

Sapphire

(a) (b) (c)

1.6 μJ 2.3 μJ

Fragmented

Sapphire

Scan direction 2

Scan direction 1

p-GaN

n-GaN n-GaN

Sample

InGaN/GaN

MQWs
GaN buffer

GaN buffe
r

15 μm

Motorized XY

stage

f-theta lens

Galvanometer

scanner

a b c

Fig. 3 | (a) Schematic of the femtosecond laser LLO technology machining setup. (b) The femtosecond laser LLO technology process, with single

shots directed to the GaN surface for analysis of the beam characteristics shown on the left and the scanning pattern of the beam across the sap-

phire side in a uniform cross-pattern for lift-off experiments shown to the right. (c) Microscopic images of the wafer and chip surface after apply-

ing the two-step LLO process with increasing laser power. Figures reproduced with permission from: (a–c) ref.66, John Wiley and Sons, under a

Creative Commons Attribution License.

 

P
L
 i
n
te

n
s
it
y
 (

a
.u

.)

Wavelength (nm)

350 375 400 425 475 500 525450 550

Good chip

Defective chip

Detected defective chips

On micro-LED wafer

Defective chips detected

through PL measurements

a b c

Fig. 4 | (a) PL intensity of good and defective chips detected by a micropulse laser. Inset: schematic illustrating adhesion is measured: after a 1.5

× 1.5 cm2 GaN piece on sapphire and a functional layer on a polyimide substrate are attached, the force generated by detaching these samples

is measured. (b) Mapping image of the detected PL intensity after micropulse laser irradiation. (c) Optical microscopy image of defective chips on

a real micro-LED wafer found using a PL intensity map. Figures reproduced with permission from: (a–c) ref.44, Springer Nature, under a Creative

Commons Attribution License.

Lai SQ et al. Opto-Electron Sci  2, 230028 (2023) https://doi.org/10.29026/oes.2023.230028

230028-7

 



Ni/Au wire grids as transparent conductive electrodes in
LEDs.  Kuntoglu  et  al.100 proposed developing  an  ad-
vanced and efficient method for the surface treatment of
coatings; this method would adjust the process paramet-
ers of coatings, improve the absorption coefficient of the
material matrix, increase the cooling rate of molten met-
al, improve the hardening effect, and reduce the residual
stress in materials. To avoid burning loss (component se-
gregation  caused  by  the  uneven  distribution  of
elements),  Zhang et  al.101 used the laser-melting techno-
logy  to  investigate  the  effects  of  aging  temperature  and
aging time on the microstructure, mechanical properties,
and corrosion resistance  of  the  metal  alloys.  Laser-clad-
ding can achieve an improved material  strength,  greater
beam area,  lower  cost,  and better  thermal  fatigue resist-
ance  owing  to  the  combination  of  the  matrix  and
powder.  For  example,  Gnanamuthu  et  al.102 first pro-
posed  the  laser  cladding  technique  on  a  metal  matrix,
which  could  be  used  to  repair  chips,  Imam  proposed  a
spatial damage  positioning  method  in  laser  repair  pro-
cesses  using  an  autonomous  robot103.  Therefore,  laser
melting or  cladding technologies  are  suitable  for  the re-
pair of micro-LED displays, owing to their advantages of
low  cost,  high  stability,  and  excellent  electrode  repair
effects.

In addition  to  electrode  breakage  and  the  poor  con-
tact  of  defective  micro-LEDs,  as  well  as  the  accuracy  of
fabrication  processes,  such  as  lithography  and  ICP-RIE,
can also reduce the performance. However, it is difficult
and  expensive  to  improve  the  performance  of  damaged
micro-LEDs; thus  replacing  damaged  pixels  with  quali-
fied devices in the display module is a superior alternat-
ive.  To  prevent  the  micro-LEDs  in  the  undamaged  area
from being affected, the location of the damaged or miss-
ing micro-LEDs should be accurately detected during the
laser repairing process.  Laser parameters,  such as power
density and laser spot size should therefore be controlled.
In  addition,  a  high-precision  visual  detection  system
must  be  employed  to  determine  the  coordinates  of  the
defective micro-LEDs  so  as  to  satisfy  the  ultrahigh  re-
quirements of the detection algorithm in an advanced re-
pair machine. The PL based laser detection system could
capture the  emitted  photoluminescence  and  create  im-
ages or  maps  of  the  material  under  inspection.  Con-
sequently, the damaged or missing micro-LEDs could be
identified and located by  using  the  signal  processing  al-
gorithms or image enhancement methods to improve the
visibility  of  defect  regions.  To  address  these  challenges,

Taha et al. proposed a defect detection method based on
the  spatial  dependence  of  the  defect  pattern104.  The
method clusters  patterns of  defective chips according to
their  spatial  dependence  across  all  wafer  diagrams  and
identifies  the  most  dominant  defect  patterns  on  the
wafer. Bai  et  al.  proposed  an  advanced  vision  repair  al-
gorithm  with  adjustable  detection  speed  and  accuracy
function on the XY-axis105.  With noncontact micropulse
laser  scanning  technology,  micro-LEDs  can  be  excited
with a  high-energy  focusing  laser  beam,  and  the  differ-
ences  in  PL  signals  can  be  obtained  and  analyzed;  thus,
the  position  of  defective  micro-LEDs  can  be  detected.
Once the  defective  micro-LEDs  are  identified  and  loc-
ated,  it  is  essential  to  remove  and  replace  the  defective
chips.  Cok  et  al.  proposed  a  redundant  pixel  design
method that  places  parallel-connected redundant  pixels;
the  redundant  pixels  replace  the  function  of  damaged
pixels106. Park et al. proposed a stamp transfer technique
with significant advantages, such as high efficiency, high
accuracy,  and no damage to the micro-LED44.  However,
laser  trimming  and  re-bonding  technologies  have  been
regarded as  the  most  promising  methods.  Laser  trim-
ming technology  melts  and  evaporates  the  focused  sur-
face area of materials in which defective micro-LEDs are
located;  the  defective  micro-LEDs  are  trimmed  using
lasers and glued at the corresponding position using the
re-gluing method.  In  addition,  the  laser-assisted  bond-
ing  with  compression  process  proposed  by  Choi  et  al.
completes  the  adhesion  of  the  micro-LED  array,  thus
proving the feasibility  of  repair107.  Moreover,  Choi  et  al.
also  verified  the  feasibility  of  laser-assisted  bonding,
which  has  attracted  considerable  attention  owing  to  its
low-carbon and  environmental  protection  characterist-
ics107−109. Figure 5 shows the  scanning  electron  micro-
scope (SEM) and electroluminescent images of defective
chips and  the  sketch  of  the  laser-based  micro-LED  re-
pair  method52,88. Figure 5(b) shows  an  array  with  both
active and inactive pixels. The initial process depicted in
Fig. 5(c) seeks  to  locate  the  position  of  defective  pixels
and remove  all  defective  pixels  through  the  laser  trim-
ming  process.  Then,  according  to  the  location  of  the
damaged bare  chip,  a  separate  process  is  used  to  as-
semble the micro-LED onto a temporary carrier.

 Mass transfer
Mass transfer  typically  refers  to  the  diffusion  and  con-
vection of a large number of molecules or particles from
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one region to another.  In the field of micro-LEDs, mass
transfer technology,  which  requires  the  transfer  of  mil-
lions of  micro-LEDs from sapphire to another substrate
or a drive circuit board using high-precision equipment,
has  promoted  the  development  of  many  technologies,
such  as  pick-and-place,  fluid  self-assembly  (FSA),  and
laser-based mass  transfer,  etc.  However,  these  technolo-
gies  involve  two processes,  as  shown in Fig. 6:  substrate
separation and  chip  take-up.  The  specific  transfer  pro-
cess  is  as  follows:  (a)  substrate  separation,  in  which  the
chip is separated from the source substrate by force; and
(b) substrate transfer, in which the separated micro-LED
chips are transferred from the source substrate to a spe-
cific position on the target substrate with high precision
using the transfer equipment.

 Comparison of mass transfer strategies
Two bottlenecks  hinder  the  development  of  micro-LED
mass transfer. First, the thickness of the epitaxial layer of
micro-LEDs  is  only  3%  that  of  traditional  LEDs;  for
smaller micro-LEDs,  ultrahigh  precision  transfer  is  re-
quired.  Second,  the  transfer  of  millions  of  micro-LEDs

requires high  transfer  efficiency;  thus,  traditional  meth-
ods  with  low transfer  efficiency,  low accuracy,  and high
cost cannot meet the requirements of micro-LEDs111. Re-
searchers  have  proposed  many  strategies  to  achieve  a
high-yield and low-cost fabrication of micro-LED-based
displays.  The  development  of  mass  transfer  technology
for micro-LEDs is shown in Fig. 750,85,106,112−115.

The principles  of  mass  transfer  technologies,  includ-
ing  stamp  transfer  printing,  Roll-to-roll  transfer,  FSA
mass transfer, and laser-induced forward transfer (LIFT)
technologies, are illustrated in Fig. 8116−119. The pick-and-
place technology  operates  under  the  mechanical  prin-
ciple of  van  der  Waals,  as  well  as  electrostatic  and  elec-
tromagnetic  forces.  The  micro-LEDs  can  be  picked  up
and  placed  using  the  transfer  head.  The  pick-and-place
technology  can  be  classified  into  electrostatic  stamp,
magnetic  stamp, elastomer stamp, and roll-to-roll  based
on  the  applied  force  during  the  process.  In  addition,
mass transfer efficiency is related to the size of the trans-
fer head. However, there are many requirements for mi-
cro-LEDs during  the  pick-and-place  process.  For  ex-
ample, micro-LEDs should be incorporated with iron or
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Fig. 5 | (a)  SEM images of  pixel  damaged by  dry  etching.  (b)  Electroluminescent  images of  the  micro-LED array  fabricated  with  50  ×  50  μm2
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nickel during the magnetic stamping, and bridges should
be  fabricated  between  micro-LEDs  and  the  substrate
during  electrostatic,  magnetic  and  elastomer  stamping,
which affect  the  electroluminescence  properties  of  mi-
cro-LEDs118,119.  For  representative  FSA  mass  transfer
technologies, such as magnetic and FSA, the process is as
follows:  while  placing a  large  number of  micro-LEDs in
the system, the magnetic or fluid forces move the micro-
LEDs  at  a  specified  speed  and  then  counter-assemble
them  with  the  substrate120. FSA  mass  transfer  technolo-
gies  have  the  advantages  of  high  efficiency  and  low
cost121.  However,  it  is  difficult  to  control  the fluid force,
and  the  yield  of  micro-LEDs  using  FSA  technology  is
low,  which  increases  the  complexity  and  cost  of  defect
repair122. Owing to their distinct advantages of high effi-
ciency, good selectivity, and high yield, two-dimensional
materials-based  layer  transfer  (2DLT)  and  laser-driven
transfer  technologies  are  prospects  for  industrialization.
The 2DLT technology,  which could achieve  a  top-down
fabrication to yield vertical RGB micro-LEDs, allows for
epitaxy of ultrathin RGB LEDs onto 2D material-coated
substrates  via  either  remote  or  van  der  Waals  epitaxy.
The process is followed by the mechanical release of LED
layers from  2D  materials,  subsequent  reuse  of  the  sub-
strate  and  stacking  of  these  micro-LEDs  via  the  use  of
adhesive  polymer  layers123.  As  for  the  laser-based  mass
transfer,  there  are  chemical  and  physical  interactions
between  the  laser  beam and  films,  which  generate  force
to  transfer  the  micro-LEDs  because  of  ablation  or  heat
release.  Selective  transfer  can  be  achieved  through  the
mask or  focusing  spot  arrays,  which  have  great  advant-
ages  for  defect  repair.  Uniqarta,  Coherent  and  QMAT
LTD. has proposed a laser-based LIFT technology, which
can achieve  an  ultrahigh  transfer  efficiency  of  100  mil-
lion  units  per  hour124. The  micro-LEDs  can  be  trans-
ferred to non-flat substrates without affecting their oper-
ational  characteristics  and  the  distance  between  each
chip  (chip  spacing)  has  the  potential  to  be  extremely

small  as  compared  to  other  mass  transfer  technologies.
Therefore, 2DLT  and  laser-driven  transfer  are  con-
sidered as the most promising micro-LED mass transfer
technologies. A comparison of mass transfer strategies is
summarized in Table 2.

 Laser-assisted mass transfer
With  the  development  of  new  technologies,  lasers  have
become  an  indispensable  industrial  tool  for  “tool-free ”
high-precision manufacturing. In 1972, Kontrowitz et al.
proposed  a  laser  propulsion  technology  that  uses  UV
photons to  excite  electrons,  resulting  in  the  ablative  de-
composition of  materials,  and  infrared  photons  to  real-
ize electron vibrational and rotational excitation, leading
to thermal  decomposition.  Traditional  stamping  meth-
ods are  affected  by  differences  in  the  modulus  of  elasti-
city, heat conduction,  and thermal expansion of materi-
als.  Therefore,  the  noncontact  advantages  of  laser-as-
sisted  mass  transfer  remarkably  broaden  its  application
range125−129.  Laser-based  mass  transfer  involves  picking
up  micro-LEDs  using  a  transfer  head  and  selectively
transferring micro-LEDs  using  laser  irradiation.  Insert-
ing  a  sacrificial  layer  of  photothermal  material  between
the  chip  and  the  transparent  substrate  is  necessary  for
the  protection  of  the  micro-LEDs.  Laser-based  mass
transfer  technologies  can  be  divided  into  laser  ablation
and direct  laser  thermal  release.  During  the  laser  abla-
tion mass transfer process,  the sacrificed layer is ablated
under the  laser  irradiations,  and  the  generated  gas  im-
pacts  the  chip,  thus  releasing  and  transferring  micro-
LEDs.  Direct  laser  thermal  release  refers  to  the  thermal
decomposition  of  the  intermediate  material  under  the
laser irradiation, which detaches and transfers the micro-
LEDs. Figure 9 shows  the  principle  of  LIFT,  laser  direct
writing  (LDW),  thermomechanical  selective  laser-as-
sisted die transfer (tmSLADT), and selective laser lift-off
(SLLO) mass-transfer  technologies;  detailed  comparis-
ons are listed in Table 3.

 
Table 2 | Comparison of mass transfer technologies.

 

Technology Force
Placement rate

(units h1)
Chip size (μm)

Transfer precision
(μm)

Chip spacing Extendibility

Pick-and-place
Van der Waals, Electrostatic and

electromagnetic
>1 M >10 1.5 Large Low

FSA Gravity and capillary 50 M >5 1–1.5 Small Low

Roll-to-roll Roll stamp >30 M <100 3 Medium Low

2DLT Van der Waals / >4 / Small High

LEAP Laser 100 M–500 M >10 1 Small High
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 1) Laser ablation
Laser  ablation  of  GaN  leads  to  Ga  deposition  and  gas
generation.  The  deposition  of  Ga  can  be  cleaned  with
water or diluted hydrochloric acid, and the generation of
gas,  which  could  impact  the  micro-LEDs,  results  in  the
separation of chips and the substrate, thus realizing mass
transfer. Based  on  the  above  principles,  significant  pro-
gress  has  been  made  in  the  research  on  laser-assisted
mass  transfer.  LIFT  was  first  proposed  in  2002130; sub-
sequently,  after the continuous testing and modification
of process parameters, Mathews et al.131 developed LDW
technology on the basis of LIFT by using a 355-nm laser
(three times the frequency of an Nd:YAG excimer laser)
to irradiate a polymer called “double adhesive” tape (Mi-
croposit).  InGaN  LEDs  were  successfully  released  and
transferred  using  this  method  without  affecting  their
performance. Matt et al.132 proposed the thermomechan-
ical  selective  laser-assisted  die  transfer  (tmSLADT),  in
which the dynamic release layer (DRL) was a single layer
of  in-house  developed  material  that  would  create  a
blister while being adequately soft as to release the com-
ponent. Kim et al.124 developed the selective LLO (SLLO)
process,  which  uses  266-nm DPSS laser  irradiation;  this
method successfully achieved the selective transfer of mi-
cro-LEDs  from  the  sapphire  substrate.  However,  laser
ablation generates a shock wave on the chip, which may
be  reflected  off  the  receiver  and  cause  deflection  of  the
micro-LEDs.

The  laser-based  simultaneous  transfer  and  bonding
(SITRAB)  technology,  which  performs  transfer  and

bonding simultaneously, is shown in Fig. 10. During the
laser-based SITRAB processes, the adhesive is developed
in the form of a paste and a film; the appropriate type of
adhesive  can  be  applied  depending  on  the  application
(such as SnAg and In solders). Laser-based SITRAB mass
transfer technology could achieve high-yield and cost-ef-
fective  transfer.  Thus,  LEDs  with  different  colors  and
sizes  could  be  transferred  to  make  full-color  displays
with the epoxy-based solvent-free pastes133−136.

To  solve  the  problems  which  occur  during  the  mass
transfer process  in  digital  printing  under  certain  condi-
tions, the LIFT technique is used as shown in Fig. 11(a).
In  principle,  almost  any  material  that  can  be  deposited
on a transparent substrate can be printed using LIFT. As
the effectiveness of the process depends on the light ab-
sorption  and  mechanical  properties  of  the  transferred
material, the transfer of organic or biological materials is
often impractical  because of  deterioration.  One solution
to  this  problem  is  to  insert  an  active  intermediate  layer
between  the  printed  material  and  the  donor  substrate.
Figure 11(b, c) shows  a  schematic  of  the  tmSLADT  and
fluid  LIFT  process,  which  was  originally  developed  for
depositing metal patterns but was soon thereafter exten-
ded to a variety of inorganic materials.

In the laser-induced backward (LIBT) process, the dir-
ection  of  propagation  of  the  sediment  is  usually  at  an
angle  of  180°  from  the  direction  of  the  incident  laser
pulse (hence the term “backward”). As shown in Fig. 12,
a small  volume from the  donor  is  transferred  to  the  re-
ceiving substrate by absorbing a laser pulse that has been

 

Put forward the

concept of laser drive

Laser ablation
Laser athermal

releasing

LIFT

 Metal/polymer layer “Double adhesive" tape Dynamic release layer GaN

SLLOtmSLADTLDW

Fig. 9 | Schematic of the principles of LIFT, LDW, tmSLADT and SLLO mass-transfer technologies.
 

Table 3 | Comparison of laser-based mass transfer technology.
 

Technology Laser type Temporary substrate Principle Target

LIFT Excimer laser (193 nm) Fused quartz Laser thermal releasing Metal/polymer layer

LDW Excimer laser (248 nm) Fused quartz Laser ablative “Double adhesive” tape

tmSLADT UV laser pulse Fused quartz Laser ablative dynamic release layer Dynamic release layer

SLLO Laser (266 nm) / GaN decomposition GaN
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Fig. 10 | (a) Process flow of laser-based SITRAB and (b) tiling SITRAB process. Figures reproduced with permission from ref.135, John Wiley and

Sons, under a Creative Commons Attribution License.
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Fig. 11 | Sketch of the laser ablation-based LEAP mass transfer processes. (a) The LIFT process with the “donor” consists of a transparent

substrate coated with a thin metal layer to be printed. A focused laser pulse is absorbed in the metal layer leading to local heating, and the result-

ing pressure at the interface provides the conditions for the transfer of the “flyer” part of the layer material. Finally, the transferred pixel land on

the receiver. (b) tmSLADT with a DRL: the explosion of the DRL provides the driving force of the material transfer. (c) Schematic of LIFT of fluids:

the laser pulse evaporates the solvent, which forms a gas bubble whose radius increases until its pressure equals the ambient pressure. Finally,

the bubble collapses and a droplet separates from the jet filament.
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absorbed  by  the  transparent  receiver  and  the  donor  at
the  interface  between  the  donor  and  the  absorption
carrier110.
 2) Direct laser release
Laser-assisted thermal  release  also  affects  the  perform-
ance  of  micro-LED  displays.  To  relieve  this  impact,
blister-based  laser-induced  forward  transfer  (BB-LIFT)
technology  was  developed  which  consists  of  a  DRL and
an  adhesive  layer  to  bond  the  chip.  The  structure  is
shown in Fig. 13115; the DRL generates gas under irradi-
ation  from  a  532-nm  Nd:YAG  laser.  The  irradiation
forms a blister, thus reducing the impact on the chip, de-
forming the remaining DRL, and gently pushing the chip
to  the  receiving  substrate.  The  DRL  cannot  be  restored
after  laser  ablation,  which  is  disposable  and  expensive.
To solve this problem, reusable BB-LIFT technology has
been  developed  to  replace  the  DRL  with  a  microcavity
containing a metal layer, thus increasing the elasticity of
the  adhesive.  With  the  irradiation  of  an  808-nm  laser
beam, the metal layer and air in the cavity are heated and
expanded, which plays a role similar to that of the blister.
When  the  laser  irradiation  stops,  the  temperature  and
volume of  the metal  cavity  are  restored to  their  original
state. Moreover, the thermomechanical selective laser-as-
sisted  mold  transfer  process  was  also  developed  using
double  DRL  technology,  and  problems  during  the  laser
ablation and  thermal  release  processes  were  consider-
ably improved115.

Laser-assisted  thermal  release  can  be  classified  into
direct and indirect types. Karlitskaya et al.136 proposed an
indirect method to achieve thermal release using a 1064-
nm frequency-doubled  Q-switched  Nd:YAG  laser  to  ir-
radiate  silicon on a  substrate.  The heat  generated in the
silicon transfers  to  the  sacrificial  layer,  and  the  photo-
thermal  material  decomposes  and  produces  N2 gas,
which causes shock waves that impact the chip, separat-
ing the micro-LEDs and substrate. In contrast to the in-
direct  thermal  release  method,  laser  irradiation  directly
acting on  GaN  causes  the  photothermal  material  to  de-
compose,  thus  producing  gas  or  adhesive  failure  which
has been well applied in mass transfer technology. Based
on  the  thermal  effect  of  materials,  BAR  technology  was
developed  by  QMAT LTD.  This  technology  detects  bad
points before transfer and records the results on a com-
puter. In the subsequent transfer process, the bad points
are not transferred because of their location information
file reading and only the LEDs are selectively transferred,
thereby improving the yield. This technology can realize

a  transfer  rate  of  one  billion  units  per  hour,  under  a
speed pulse of 100 kHz to 1 MHz.

 Other laser-based mass transfer technologies
Lasers  also  assist  in  the  stamp  transfer  process.
Saeidpourazar  et  al.137 introduced  a  laser-driven  micro-
transfer placement  technology  based  on  automatic  mi-
cro-transfer  printing;  the  laser  beam  strikes  the  contact
surface  between  the  device  and  the  seal,  and  the  “ink ”
(commonly Si  or  GaAs)  on  the  device  absorbs  the  en-
ergy and causes a rise in local temperature. Owing to the
different  thermal–mechanical  responses  of  the  seal  and
ink, their  contact  surface  generates  local  stress  and  de-
formation. The driving force generated by the deforma-
tion  is  greater  than  the  adhesive  force  between  the  seal
and device, causing the device to disengage from the seal.
The  specific  process  of  this  technology  is  shown  in
Fig. 1436,114.

However, because polydimethylsiloxane (PDMS) can-
not maintain its shape for a long time or adapt to device
transfer  with  different  morphologies,  shape-memory
polymers (SMPs) have been used to replace PDMS138−140.
SMPs  respond  to  stimuli  such  as  light  and  temperature
changes,  and  their  shape  change  is  controllable.  Laser-
driven  SMP  transfer  technology  uses  a  laser  to  heat  the
SMP and controls  its  temperature by adjusting the laser
parameters.  First,  the  SMP  is  uniformly  heated  and
pressed  onto  the  microdevice,  keeping  it  picked  and
waiting  for  cooling  to  fix  a  temporary  shape.  Then,  the
SMP  with  the  picked  device  is  transferred  to  the  top  of
the target substrate, and the deformed part is restored to
its original state by laser heating to release the device. Se-
lective  release  can  be  achieved  using  local  laser
irradiation.

 Laser patterning and morphology
modification for QD-CCF
Full-color technologies  such  as  VR/AR,  heads-up  dis-
play, and  Metaverse  are  key  challenges  in  the  develop-
ment  of  high-quality  displays.  Currently,  RGB  micro-
LED mass transfer, monolithic integration, and QD-CCF
technologies  are  promising  methods  for  achieving  full-
color  micro-LED  displays.  However,  the  issues  of  high
cost, low accuracy, low efficiency, and bottlenecks in the
fabrication of  red  micro-LEDs have  hindered the  devel-
opment and application of RGB micro-LED mass trans-
fer technology. As regards monolithic integration, sever-
al  limitations  depend  on  the  growth  or  fabrication
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process,  including  the  stability  and  efficiency  of  QDs
QD-CCF140−142. Nevertheless, as one of the most compet-
itive semiconductor  materials,  QDs  still  attracted  wide-
spread  attention  owing  to  their  advantages  of  low  cost,

easy  preparation,  and high performance;  thus,  QD-CCF
technology  has  been regarded as  the  future  of  full-color
micro-LED displays.  In  addition,  PQDs have  a  high ab-
sorption  coefficient  and  can  be  prepared  in  situ,  unlike
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traditional CdSe and InP QDs, making them an import-
ant material for the QD-CCF of micro-LEDs143.

To  facilitate  the  anion  exchange  reaction  of  mixed-
halogen  PQDs  and  reduce  their  instability  during  long
working  hours,  modification,  design,  and  performance
improvement methods are very important. Lin et al. pre-
pared CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-
micro  particles  using  atomic  layer  deposition144;  Wu  et
al. proposed all-inorganic encapsulation methods to im-
prove the stability of perovskite nanocrystals29; and Lin et
al.  compared  liquid,  solid,  and  hybrid  types  of  PQDs,
which presented performance  improvements  for  realist-
ic  applications145.  Unlike  conventional  light  irradiation,
many experimental parameters of laser irradiation can be
accurately  adjusted;  thus,  laser-based  techniques  have
great significance for the application of PQDs. Zhang et
al. found  that  UV-to-near-infrared  fs-laser  pulse  treat-
ments  increase  the  PL  quantum  yield  of  CsPbBr3 per-
ovskite  QDs  from  71%  to  95%,  which  was  attributed  to

the  decreased  defect  density  after  laser  exposure146.  Wei
et al.  and  Tan  et  al.  used  the  fs-LDW  technique  to  in-
duce  the  localized  crystallization  of  perovskite  in  glass,
which produced a complex three-dimensional pattern of
PQDs supported by highly stable oxide glass147,148.  Wang
et al.  used a 100-mJ·cm−2 pulsed excimer laser to form a
CsPbBr3 perovskite  film  with  the  advantages  of  a
smooth,  uniform  morphology  with  no  obvious  pores;
thus, the  stability  of  this  film  is  higher  than  that  pre-
pared by using the spin coating method149.  In summary,
lasers can be used to regulate PQD film morphology, the
performance  of  micro-LED  devices,  the  patterning  of
QD-CCF, etc., as shown in Fig. 15150−156.

 Conclusions
In this study, we reviewed the development of full-color
micro-LED  displays  and  the  laser-based  technologies
used during  their  fabrication,  including  processing,  de-
tection,  repair,  mass  transfer,  and  QD-based  full-color
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displays. With  the  increasing  demand  for  highly  mini-
aturized and integrated  display  technologies,  many  uni-
versities and enterprises worldwide have made outstand-
ing contributions  to  this  field;  thus,  the  technical  diffi-
culties related  to  micro-LEDs  are  gradually  being  over-
come. The preparation efficiency,  accuracy,  and yield of
micro-LED-based full-color displays can be significantly
improved  by  adopting  laser-based  technologies.  During
the preparation process, lasers can be used for wafer sli-
cing,  nanostructure  shaping,  annealing,  bonding,  and
lift-off processes  with  highly  efficient  and  precise  fea-
tures.  In  the  detection  and  selective  repair  processes,
lasers can be used as excitation sources, and their highly
efficient  and  nondestructive  features  can  help  improve
results. In  addition,  lasers  can  release  micro-LEDs  pre-
cisely  at  specified  positions.  Therefore,  compared  with
the  roll-to-roll  and  pick-and-place  methods,  laser-based
mass  transfer  technology  has  great  advantages.  During
the  preparation  of  QD-based  color-conversion  layers,
lasers are used for calibration in the application of super-
inkjet printing technology, and laser-based surface modi-
fication of the color-conversion layer is essential for op-
timizing the  performance  of  full-color  displays.  We  be-
lieve  that  these  technological  advances  will  lead  to  the
rapid  development  and  application  of  full-color  micro-
LED displays in daily life.
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