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Integrated photonic convolution acceleration
core for wearable devices
Baiheng Zhao1, Junwei Cheng1, Bo Wu1, Dingshan Gao1, Hailong Zhou1
and Jianji Dong1,2*

With the advancement  of  deep learning and neural  networks,  the computational  demands for  applications in  wearable
devices  have  grown  exponentially.  However,  wearable  devices  also  have  strict  requirements  for  long  battery  life,  low
power consumption, and compact size. In this work, we propose a scalable optoelectronic computing system based on
an integrated optical convolution acceleration core. This system enables high-precision computation at the speed of light,
achieving 7-bit  accuracy while maintaining extremely low power consumption. It  also demonstrates peak throughput of
3.2  TOPS (tera  operations  per  second)  in  parallel  processing.  We have  successfully  demonstrated  image  convolution
and the typical  application of  an interactive first-person perspective gesture recognition application based on depth in-
formation. The system achieves a comparable recognition accuracy to traditional electronic computation in all blind tests.
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 Introduction
Wearable  devices,  characterized  by  their  portability  and
strong human interaction capabilities,  have long repres-
ented  the  future  of  technology  and  innovation1.  Within
the  realm  of  wearable  devices,  numerous  recognition
tasks  rely  on machine vision,  such as  vehicle  detection2,
human  pose  recognition3−6,  and  facial  recognition2,7−9.
These  applications  primarily  rely  on  the  forward
propagation  of  deep  learning  algorithms  to  accomplish
classification  and  recognition  tasks.  However,  as  the
complexity of these applications increases10,  the demand
for  computational  power,  low  power  consumption,  low
heat  generation,  and high efficiency  in  wearable  devices
becomes increasingly challenging to traditional electron-
ic  computing  because  Moore's  Law  is  reaching  its

limits11. As a result, alternative solutions are imperative.
In  recent  years,  research  on  optical  neural  networks

(ONNs) has  emerged  as  a  potential  breakthrough  solu-
tion  to  address  the  bottlenecks  of  electronic
computing12,13.  By  mapping the  mathematical  models  of
neural  networks  to  analog  optical  devices,  ONNs  can
achieve computational capabilities superior to electronic
computing  because  optical  transmission  networks  offer
the potential for ultra-low power consumption and min-
imal  heat  generation14.  This  makes  them  well-suited  for
meeting the energy consumption and heat dissipation re-
quirements of  wearable  devices.  Several  ONN  architec-
tures have  been  reported  in  current  researches,  includ-
ing  diffractive  spatial  light  networks  (DNNs)15−17,
wavelength division multiplexing (WDM) based on fiber 
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dispersion18,19,  and  array  modulation  using  Mach-
Zehnder  interferometers  (MZIs)20−23.  While  diffractive
optical  network  elements  have  a  large  scale  of  neurons,
they are typically  bulky and not suitable for integration,
and  the  refresh  rate  is  low.  Fiber  dispersion-based
wavelength division multiplexing schemes also face chal-
lenges  in  the  miniaturization  of  long  fiber  and  precise
control of  delay  dispersion  in  large-scale  networks.  Al-
though MZI devices can be implemented for on-chip in-
tegration, their relatively large footprint does not provide
a  significant  advantage  for  large-scale  expansion.  None
of these methods offer substantial advantages in meeting
the requirements of future wearable devices. In contrast,
the  array-based  approach  using  micro-ring  resonator
(MRR) devices exhibits several advantages that are well-
aligned with the breakthrough requirements in wearable
device research.  MRR arrays  are  compact  and  easily  in-
tegrated, allowing for high-precision and complex calcu-
lations through one-to-one assignment during paramet-
er configuration24−26. This makes them suitable for small-
size and large-scale applications, meeting the demands of
current wearable device research.

In  this  work,  a  viable  solution  has  been  proposed  to
address  the  power  consumption  and  computational
speed  limitations  in  wearable  devices.  The  solution  is
based on  an  integrated  photonic  convolution  accelera-
tion core (PCAC) with a reconfigurable MRR array that
has self-calibration functionality27.

Combined  with  field  programmable  gate  array  (FP-
GA)  control,  we  utilized  this  system to  conduct  parallel
convolution for  edge  detection  experiments.  Sub-
sequently, we shifted our focus to a typical application in

the wearable device domain: first-person perspective ges-
ture  recognition  tasks.  This  system  enables  high-speed
computation with 7-bit precision when PCAC chip load-
ing weights, and achieves the same accuracy as tradition-
al electronic computation in blind testing for gesture re-
cognition. It provides an effective approach for wearable
devices to  achieve  complex  computational  tasks  accur-
ately and efficiently while ensuring low power consump-
tion and miniaturization.

 Results

 The principle
Figure 1 illustrates the principle of the convolutional ac-
celeration system.  The  proposed  convolution  accelera-
tion  system  is  capable  of  performing  the  multiplication
and addition operations of a matrix A of M×N and a vec-
tor B of N×1. The vector B is composed of N channels of
light signals with different wavelengths. These signals are
encoded using an intensity modulator array, where each
channel is loaded with a different intensity of light signal.
Specifically, for convolving an image with a 4×4 convolu-
tional kernel, we take the image and arrange its elements
in  groups  of  four  at  each  row,  transposing  them  into
column vectors.  These  column  vectors  serve  as  the  en-
coded  information  input  to  the  modulators,  which  are
then  fed  into  the  PCAC  chip.  Within  the  PCAC  chip,
each  column vector  is  multiplied  and  summed with  the
corresponding  four  MRRs  in  each  row,  producing  the
convolution operation results. The input data then slides
down by  one  stride  step,  and  the  next  set  of  four  ele-
ments is  extracted and transposed as the next input sig-
nal,  continuing  the  operation  with  the  PCAC  chip.  We
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Fig. 1 | Schematic of a computing system based on the integrated convolution acceleration core (PCAC) chip.
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repeat this process and encode all the extracted data into
four data  streams,  which  serve  as  the  input  for  the  in-
tensity  modulators.  The  multiplexed  signals  are  then
coupled into the PCAC chip through optical fiber. In the
PCAC chip, the M×N MRR array is utilized, where each
element of matrix A corresponds to an MRR operating at
a different resonant wavelength.  Under the operation of
our developed self-calibrated MRR array,  the final  com-
putation result  is  obtained  by  weighted  summation  us-
ing balanced photodetectors (BPDs),  yielding the differ-
ence of optical power as the output vector C. The convo-
lution result can be obtained by recovering the data with
the assistance of FPGA. During the data recovery and re-
construction process,  since each input column vector in
the PCAC chip undergoes a simultaneous multiplication
and accumulation operation with all  rows of the convo-
lutional kernel,  the  results  of  the  computational  opera-
tions need to be summed along the diagonal to obtain a
single  element  of  the  actual  convolution result,  and this
represents the completion of one convolution operation.
It is worth noting that due to the one-to-one correspond-
ence between the MRR array and the matrix elements, it
is theoretically possible to simultaneously configure mul-
tiple convolution kernels and perform convolution oper-
ations  on  data  streams  representing  multiple  images.
This scalability provides excellent support for large-scale

parallelism in  optoelectronic  computation.  Further  de-
tails  of  the  experiments  will  be  discussed  in  subsequent
sections.

 The fabrication and characterization of PCAC chip
Figure 2(a) shows the PCAC chip, which is fabricated us-
ing a  typical  220  nm silicon-on-insulator  (SOI)  integra-
tion process,  a  standard  technique  in  chip  manufactur-
ing. This proof-of-concept chip has a compact size of 2.6
mm × 2.0 mm, comprising a 4×4 array of MRR synapses,
forming the  core  of  the  computing  system.  These  syn-
apses  play  a  crucial  role  in  the  chip's  computational
power. Additionally, a thermally tunable MRR with TiN
(titanium nitride) heaters acts as the computational con-
trol module  of  the  PCAC  chip.  This  tunable  MRR  en-
ables precise manipulation of the resonance wavelength,
a critical aspect for accurate calculations. To facilitate ac-
curate  voltage  control  of  the  MRR synapses,  meticulous
design considerations  have  been  incorporated.  We  im-
plement  specifically  tailored  FPGA circuit  for  the  chip's
requirements,  along  with  a  high-resolution  digital-to-
analog  converter  circuit  capable  of  programmable
voltage outputs  at  a  remarkable  16-bit  resolution,  en-
ables fine-grained control of the MRR synapses. In order
to ensure stability and reliability, the chip incorporates a
thermo-electric  cooler  (TEC)  module  at  its  base.  This
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Fig. 2 | (a) Detailed photos of the packaged layout chip show the MRR array in the center, with the photonics chip on the right combined with the

leads of the customized printed circuit board (PCB) for computation and control. On the left, there is an optical input/output port using a fiber V-

groove, and the entire assembly is mounted on a TEC for heat dissipation. (b) The micrograph of the MRR array and detailed photo of a single

MRR. (c) The transmission spectra of the MRR array. Different voltages (800–1800 mV, 100 mV/step) are applied to the third MRR. Similar res-

ults can be obtained when the voltage is applied to other MRRs. (d) The transmission rate of a single IM on the chip under voltage tuning. These

curves represent the normalized W-V mapping. (e) The transmission rate of a single MRR on the chip under voltage tuning. These curves repres-

ent the normalized W-V mapping.
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TEC module plays a pivotal role in maintaining a stable
temperature environment  for  the  chip,  further  enhan-
cing the accuracy of its computations. On the left side of
the chip, an optical signal output module is meticulously
designed, featuring fiber optic packaging for seamless in-
tegration with external systems.

Moving  to  the  microscopic  level, Fig. 2(b) offers  an
up-close view of the MRR synapses within the array. Ad-
ditionally, an  enlarged  microscopic  photograph  show-
cases  the  intricate  details  of  a  single  MRR.  To  facilitate
efficient electrical  and  optical  input/output  (I/O)  con-
nections,  the  chip's design  incorporates  advanced  pack-
aging techniques. Both wire bonding and fiber array have
been thoughtfully integrated, ensuring reliable and high-
performance I/O connections for both electrical and op-
tical signals. Figure 2(c) illustrates the tuning curve of the
pass-through  end  of  an  MRR  as  a  function  of  applied
voltage.  Increasing  the  voltage  on  the  MRR  leads  to  a
redshift in  the  resonance  wavelength.  It  can  also  be  ob-
served  that  when  changing  the  resonance  peak  of  one
MRR, the  transmission  spectra  of  the  other  MRRs  re-
main almost unchanged. This indicates that the crosstalk
between the MRRs in the array during precise  tuning is
negligible.  To ensure the computational precision of the
PCAC chip, we have developed a self-calibration proced-
ure that works in conjunction with the circuit  hardware
to  monitor  and  calibrate  the  weights  of  the  on-chip
MRRs27.  This calibration process enables us to achieve a
precision of 7 bits during the actual loading process (spe-
cific evaluation criteria can be found in ref.28).

Based  on  this  method,  we  have  established  a  look-up
table  for  the  weight-voltage  mapping  of  the  modulator
and MRR array. For modulator calibration, the laser op-
erating wavelength is chosen away from the MRR reson-
ance peak for one path of the MRR array. The reference
voltage of  the  MRR  array  is  fixed,  and  the  voltage  ap-
plied to the modulator is incrementally adjusted in a step
of  0.1  V.  The  optical  power  of  the  pass-through  end
(THRU)  is  detected  using  a  balanced  photodetector
(BPD), allowing the construction of a P-V curve that rep-
resents  the  relationship  between  power  and  modulator
voltage.  After  differential  and normalization operations,
a  weight-voltage  (W-V) curve  is  established  that  de-
scribes  the  relationship  between  input  data  weights  and
modulator  voltage. Figure 2(d) displays  the W-V curve
obtained  from  the  calibration  of  one  path  of  the  PCAC
chip's  modulator.  For  MRR  array  calibration,  the  laser
operating wavelength is adjusted to a region close to the

resonance wavelength  of  each  MRR.  The  modulator  in-
put  voltage  is  kept  constant  while  the  MRR  tuning
voltage  is  adjusted,  causing  each  MRR  to  redshift  with
the laser wavelength. Throughout this process, the optical
power of the pass-through end is continuously detected,
enabling the construction of a P-V curve that represents
the relationship between power and MRR tuning voltage.
After  differential  and  normalization  operations,  a W-V
curve  is  established  that  describes  the  relationship
between  convolutional  kernel  weights  and  modulator
voltage. Figure 2(e) illustrates  the W-V curve  obtained
from the calibration of one MRR in the PCAC chip.

 Operation for convolution and edge detection
In order  to  verify  the  convolutional  computing  capabil-
ity of the PCAC chip within our system, we conducted a
series of experiments using the widely recognized "cam-
eraman"  image  as  a  standard  test  case. Figure 3(a)
provides  a  comprehensive  overview of  the  experimental
setup,  illustrating  the  key  components  involved  in  this
proof-of-concept study.  During the  experiment,  we em-
ployed a 3×3 MRR array as a convolutional kernel weight
loading  device,  perfectly  matching  the  size  of  the  3×3
convolutional  kernel  used.  The  input  image,  a  grayscale
image  with  dimensions  of  256×256  pixels,  was  initially
flattened  into  a  one-dimensional  vector.  To  achieve
high-speed  processing,  we  adopted  an  intensive  parallel
processing  approach,  where  every  three  elements  of  the
vector were  grouped  together  and  loaded  onto  the  in-
tensity  modulator  (IM).  This  allowed  us  to  stream  the
data into the system in a synchronized manner. Once the
data was serialized, it was channeled into the PCAC chip,
which  served  as  the  core  processing  unit.  Within  the
PCAC chip, each ring was dedicated to a specific convo-
lutional  kernel.  The  input  values  were  fed  through  the
pass-through end  (THRU)  and  underwent  multiplica-
tion and addition (MAC) operations along each row. Ul-
timately, the results of the convolutional operations were
transmitted  to  a  balanced  photodetector  via  the  drop
port (DROP), where optical power was acquired for fur-
ther  analysis. Figure 3(b) shows  the  original  image  used
in the edge detection test, which is a 256×256 pixels im-
age of a cameraman. To better understand the impact of
the  convolutional  kernels, Fig. 3(c) shows  three  specific
types  used  for  edge  detection:  Bottom  sobel,  Top  sobel,
and  Left  sobel.  These  kernels  were  designed  to  detect
vertical  and  horizontal  edges  within  the  image. Figure
3(d) visually  presents  the  outcome  of  applying  these
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three  edge  detection  operations,  representing  the  result
of  a  single  convolutional  operation.  The  experimental
results provided  substantial  evidence  to  support  the  ef-
fectiveness of  utilizing  the  PCAC  chip  within  an  opto-
electronic system for parallel convolutional computing.

 Application of first-person depth-based gesture
recognition using PCAC chip
In this part,  we further explore its performance in prac-
tical  applications  for  devices.  First-person  perspective
gesture recognition is one of the most widespread applic-
ations  for  wearable  devices,  such  as  virtual  reality  (VR)
and  augmented  reality  (AR)  glasses,  Remote  Healthcare
Monitoring devices29.  Taking this  into account,  we have
developed  a  digital  gesture  recognition  application  that
incorporates depth information, specifically designed for
wearable devices. This application is capable of recogniz-
ing  hand  gestures  representing  digits  from  0  to  9.  We
utilized  the  EgoGesture  dataset30, released  by  the  Insti-
tute  of  Automation,  Chinese  Academy  of  Sciences  in
2017. Each gesture was represented by 1500 training im-
ages and 300 testing images, resulting in a total of 18000
images as  our  dataset.  We  trained  the  artificial  intelli-
gence  model  on  a  computer. Figure 4(a) illustrates  the
main  structure  of  the  convolutional  neural  network
(CNN)  used  in  our  application.  Depth  images  captured
by the SR300 depth camera were used as input data, with
a gesture image size of 32×32×1. The first layer consisted
of 16 convolutional kernels, each with a size of 3×3. The

convolutional operations were performed entirely by the
PCAC  chip.  Similar  to  the  previous  experiments,  input
images  were  reshaped  into  three  rows  of  data  and
streamed into  the  PCAC  chip,  where  they  were  convo-
luted  with  the  loaded  kernels.  After  one  convolutional
layer, the output size became 30×30×16. With the assist-
ance of  a  computer  system,  the  output  data  were  pro-
cessed by the activation function (ReLU) and then injec-
ted into a pooling layer for downsampling. Subsequently,
two more convolutional layers, maximum pooling layers,
and fully connected layers were applied,  resulting in the
final recognition of the 0–9 numeral gestures. Figure 4(b)
displays  a  bar  graph  showing  the  recognition  results  of
the ten gestures calculated by the PCAC chip. The hori-
zontal axis represents the ten gestures, while the vertical
axis represents  the  probability  of  recognizing  each  nu-
meral.  In  the  10  recognition  samples  for  digits  0–9, ex-
cept for digits 2, 3, and 8, where there are probability dis-
tributions with both main and secondary peaks, the rest
of the digits show single peak recognition. This indicates
that the PCAC chip enables accurate recognition tasks. It
is  worth  noting  that  for  electronic  computation,  the
model achieves a recognition accuracy of 91.14% in blind
testing. Similarly,  when  using  the  PCAC  chip  for  opto-
electronic computation, all the blind test images yield the
same  recognition  accuracy  as  those  obtained  through
electronic computation. The graph demonstrates that the
PCAC chip  successfully  implemented convolutional  op-
erations  and  achieved  accurate  recognition  of  depth-
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based numeral gestures.
To  further  investigate  the  performance  of  the  PCAC

chip in  computational  tasks,  we  conducted  a  more  de-
tailed  analysis  of  the  experimental  results. Figure 5(a)
compares the experimental results obtained by perform-
ing convolutional calculations using PCAC and the the-
oretical  results  obtained  using  digital  computers  for  the
recognition  of  Gesture  2.  The  scatter  points  exhibit  a
tight distribution  along  the  diagonal  line,  which  corres-
ponds  to  the  theoretical  expectations. Figure 5(b) dis-
plays a histogram showing the probability distribution of
the offsets (experimental values minus theoretical values)
for all data points. The histogram exhibits a distribution
similar to a Gaussian distribution, with the highest prob-
ability  of  offset  near  zero. Figure 5(c) shows the  recor-
ded offsets  for  each calculation sample  during the  com-
putation  process.  The  offsets  are  mostly  distributed
around zero  and  exhibit  a  stable  and  uniform  distribu-
tion without significant fluctuations. Figure 5(d) and 5(e)
provide visual  comparisons  between  the  theoretical  res-
ults (computed by a computer) and the experimental res-
ults (obtained using the PCAC chip) after the first-layer
convolutional operation  specifically  for  the  gesture  rep-

resenting  the  numeral  2.  Apart  from some variations  in
background color caused by experimental noise, the res-
ults obtained by the PCAC chip for  convolutional  com-
putations  are  nearly  identical  to  those  obtained  by  the
computer.  In  summary,  the  analysis  reveals  that  the
PCAC  chip  demonstrates  high  accuracy  and  stability  in
computational tasks when compared to theoretical calcu-
lations. The visual comparisons also confirm the consist-
ency between the results obtained by the PCAC chip and
those obtained by a conventional computer. These find-
ings underscore  the potential  of  the  PCAC chip as  a  vi-
able alternative  for  accelerating  and  improving  recogni-
tion and classification tasks.

 Discussion

 Energy efficiency estimation
Benefiting from the compact size of MRR resonators, the
PCAC  chip  achieves  high  integration  density  within  a
footprint of just 0.2 mm2. In the meantime, it enables ba-
sic multiplication and addition operations with same re-
cognition  results  as  electronic  computation.  For  a  4×4
scale PCAC  chip  with  four  parallel  channels,  the  foot-
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print increases to approximately 5 square millimeters, al-
lowing  for  parallel  convolution  operations  and  efficient
processing  of  more  complex  computational  recognition
tasks.  However,  despite  these  advantages,  the  PCAC
chip  design  still  has  limitations  and  potential  areas  for
improvement.

Firstly,  the  eternal  pursuit  of  photonic  computation
lies  in  processing  data  with  high  speed  and  low  power
consumption.  In  our  concept  verification  setup,  the
power  consumption  is  primarily  attributed  to  the  laser,
silicon  photonic  chip,  modulator,  TEC,  and  digital
backend. Based on the components utilized in our meas-
urement setup, the estimated power consumption in the
computation system is approximately 7.716 W, resulting
in a total power consumption of around 40.973 W. Con-
sequently,  80%  of  the  power  is  attributed  to  these
benchtop  instruments. Table 1 shows  the  details  of

power consumption.
Using  phase-change  materials  as  thermal  shifters  can

further  optimize  the  energy  efficiency  of  the  system.
With  the  development  of  tunable  optical  frequency
combs31−33,  replacing  lasers  with  microcombs  as  light
sources  can  significantly  reduce  power  consumption.
This  will  unlock  the  full  potential  of  the  optoelectronic
computing system, offering higher scalability, higher in-
tegration, and lower power consumption. It is important
to note that  with the development of  hybrid integration
and monolithic integration techniques, advancements in
light sources,  silicon photonic  circuits,  and related  elec-
tronic  components  (including  modulators,  drivers,
trans-impedance amplifiers (TIA), digital-to-analog con-
verters  (DAC),  and analog-to-digital  converters  (ADC))
can  be  integrated  onto  the  same  motherboard  or  even
onto  a  single  chip.  This  integration  trend  has  the
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Table 1 | Estimated power consumption of the proof-of-concept system.

 

Components Voltage(V) Current(A) Power(W)

Lasers ~10×10-3×4=0.04

On ring heaters V̄ ≈ 2 ~5×10-3 ~0.01×16=0.16

Intensity modulator1 V̄ ≈ 7 0.266 1.862

Intensity modulator2 V̄ ≈ 6.5 0.278 1.807

Intensity modulator3 V̄ ≈ 7 0.272 1.904

Intensity modulator4 V̄ ≈ 7.5 0.259 1.943

System’s power consumption 7.716
TEC for PCAC chip 6.145 0.53 3.257

CPU ~30

Total power consumption 40.973
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potential  to  significantly  reduce  power  consumption.
Therefore,  the  power  and  integration  performance
demonstrated in this work have the potential for further
enhancement, although there is still a long road ahead.

 Throughput estimation
Furthermore, as  a  key  metric  for  evaluating  computa-
tional  hardware  performance,  throughput  is  defined  as
the  number  of  operations  per  second  (OPS)  performed
by  a  processor  in  high-performance  computing  (HPC)
domain. The  throughput  of  photonic  computing  hard-
ware can be calculated using Eq. (1)20: 

T(OPS) = 2m× N2 × r , (1)

where T represents  the  throughput  in  OPS  (operations
per  second)  excluding  the  time  spent  on  off-chip  signal
loading  during  photonic  computation, m is  the  number
of layers implemented by the photonic computing hard-
ware, N2 is the size of the on-chip weight library, and r is
the  detection  rate  of  the  photodetector  (PD).  Since  the
PCAC chip can naturally perform multiplication and ad-
dition (MAC) operations, and each MAC operation con-
sists  of  one  multiplication  and  one  addition  operation,
one  MAC  operation  corresponds  to  two  operations.
With  a  typical  photodetection  rate  of  100  GHz,  our
PCAC concept validation chip (N2=4×4) can achieve 3.2
TOPS, which  still  lags  behind  leading  electronic  pro-
cessors  such  as  Google's  tensor  processing  unit  (TPU)34

and  other  chips.  However,  due  to  the  chip's  strong
scalability, in  future  large-scale  chips  of  16×16  dimen-
sions with auxiliary optical frequency combs as multiple
light sources is possible to reach the theoretical computa-
tional power of 51.2 TOPS. This will enable outstanding
performance in complex computational tasks with ultra-
high  integration  and  ultra-low  power  consumption,
helping to  alleviate  the  high  cost  of  electronic  comput-
ing  while  ensuring  high  computational  power.  It  serves
as an effective solution for breakthroughs in the field of
wearable devices.  Although, there are various challenges
in photonic computing that include limitations posed by
components  such  as  ADCs,  DACs,  modulators,  PDs,  in
terms of  their  speed  and  bandwidth.  While  these  chal-
lenges  are  not  the  primary  focus  of  our  current  work,
they  are  certainly  within  the  broader  scope  of  the  field.
We  believe  that  with  concerted  efforts  from  the  entire
photonic computing community, these challenges can be
addressed  and  overcome.  As  the  field  progresses,  it  is
reasonable  to  expect  advancements  that  will  lead  to

breakthroughs  in  addressing  the  speed  and  bandwidth
limitations of photonic components.

 Scalability
To  further  improve  the  computational  performance  of
PCAC chips, ensuring scalability is an extremely import-
ant  requirement.  The  main  source  of  losses  in  PCAC
chip  arises  from  the  coupling  gratings.  Therefore,  the
scalability  of  PCAC  chip  is  not  primarily  limited  by  its
loss performance.  Instead,  it  is  predominantly  determ-
ined by the free spectral range (FSR) of each MRR. Since
each  MRR  requires  individual  tuning,  and  precision  is
essential to avoid resonance overlap during thermal tun-
ing for high-precision computations, the scalability with-
in  a  given  operational  wavelength  range  is  somewhat
constrained. This  constraint  emerges  as  we  conduct  ex-
periments within  a  specific  wavelength  range.  Our  fu-
ture endeavors are aimed at addressing this limitation by
designing  MRR  with  larger  FSR.  This  design  approach
will  enable  the  development  of  larger-scale  PCAC chips
operating  with  a  greater  range  of  wavelengths,  thereby
delivering enhanced  computational  performance.  Ulti-
mately,  this  advancement  will  expand  the  horizons  for
exploring more  complex  applications  in  the  field,  offer-
ing a broader spectrum of possibilities.

 Wearable application potential
Finally, it is important to note that in this work, we have
only  showcased  one  application  scenario  for  wearable
devices. In this work, we have successfully demonstrated
the  capabilities  of  optical-electrical  computation  in  a
practical context by implementing first-person perspect-
ive  gesture  recognition  tasks  using  the  PCAC  chip  and
accompanying  algorithms  (We  have  provided  a  demo
video in the attachment that showcases the real-time in-
teraction of  this  application).  Unlike  previous  tests  lim-
ited to MNIST handwritten digit recognition (with small
input images  and  a  few  convolutional  kernels),  our  ap-
plication involves larger input images (32×32 pixels) and
a  more  intricate  network  structure  (with  a  first-layer
convolution containing 16 kernels). These factors pose a
greater challenge to the sustained high-precision compu-
tational  capability  of  the  photonic  chip.  The  successful
completion  of  the  recognition  task  demonstrates  the
photonics  hardware's  capacity  to  handle  such  complex
tasks.  Compared  to  the  previous  tasks  involving  simple
MNIST digits  or  edge  detection,  this  work  holds  higher
practical value due to its ability to address more intricate
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recognition  tasks.  However,  the  photonic  convolution
acceleration  core  computational  system  presented  here
can be  applied  to  various  scenarios  involving  convolu-
tion operations.  Especially  when  considering  the  inher-
ent advantages  of  photonics  such  as  low  power  con-
sumption and minimal heat generation, which align per-
fectly with  the  requirements  of  wearable  devices.  Build-
ing  upon  the  previously  mentioned  approaches,  further
optimizations can be pursued to enhance integration, en-
ergy efficiency, and scalability. These improvements aim
to achieve  higher  computational  power  while  maintain-
ing  efficiency  and  compactness.  We  believe  that  this
computational system has the potential to play a signific-
ant  role  in  a  broader  range  of  wearable  device
applications.

 Conclusions
In  this  work,  we  propose  a  convolutional  acceleration
processor based on an MRR array and have successfully
fabricated a prototype PCAC chip. When combined with
the  computational  control  module  programmed  on  an
FPGA, the PCAC chip is capable of performing convolu-
tion operations with a maximum precision of 7 bits. We
demonstrate the  application  of  the  PCAC  chip  in  com-
plex gesture recognition tasks, specifically in first-person
depth information gesture recognition. With parallel and
precise convolution  operations,  we  obtain  the  same  re-
cognition results as traditional electronic computation in
all blind  tests,  achieving  a  high  level  of  recognition  ac-
curacy.  The  outstanding  performance  in  accomplishing
complex  recognition  tasks  and  high-precision  forward
propagation tasks  opens  up  new  possibilities  for  intuit-
ive human-machine  interaction.  Furthermore,  the  ad-
vantages  of  optical  computation,  including  reduced
power  consumption  and  faster  data  processing,  make
this application  particularly  important  in  the  develop-
ment of wearable devices. Accurate and efficient gesture
recognition  enables  seamless  control  and  interaction
with the device, enhancing user experience and conveni-
ence.  Additionally,  the  compact  and  easily  integrable
nature  of  the  device  provides  opportunities  for  higher
computational  power  and  lower  power  consumption  in
future large-scale  expansions.  These advantages offer  an
effective solution to address the challenges of heat dissip-
ation  and  integration  in  wearable  devices  when  dealing
with complex,  high-precision,  multi-scenario  computa-
tional  recognition  tasks.  It  paves  the  way  for  efficient
computation  by  effectively  surpassing  the  limitations  of

electronic processors.
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