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Femtosecond laser-induced periodic structures:
mechanisms, techniques, and applications
Yuchan Zhang1†, Qilin Jiang1†, Mingquan Long1, Ruozhong Han1,
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Zhenrong Sun1, Jianrong Qiu3 and Hongxing Xu1

Over the past two decades, femtosecond laser-induced periodic structures (femtosecond-LIPSs) have become ubiquit-
ous in a variety of materials, including metals, semiconductors, dielectrics, and polymers. Femtosecond-LIPSs have be-
come a useful  laser processing method,  with broad prospects in adjusting material  properties such as structural  color,
data storage, light absorption, and luminescence. This review discusses the formation mechanism of LIPSs, specifically
the LIPS formation processes based on the pump-probe imaging method. The pulse shaping of a femtosecond laser in
terms of the time/frequency, polarization, and spatial distribution is an efficient method for fabricating high-quality LIPSs.
Various LIPS applications are also briefly introduced. The last part of this paper discusses the LIPS formation mechan-
ism, as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applica-
tions.
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Introduction
Femtosecond lasers  have  ultrashort  pulse  durations  and
high  peak  powers1. The  interaction  between  femto-
second  laser  and  matter  has  the  advantages  of  minimal
thermal  effect  and  no  material  selectivity2,3.  Compared
with nanosecond  and  other  long-pulse  lasers,  femto-
second lasers could induce more regular and deeper peri-
odic  structures  on  different  types  of  materials,  such  as
metals,  semiconductors,  dielectrics,  and  polymers,
without being overwhelmed by huge thermal effects4−14.

Laser-induced  periodic  structures  (LIPSs)  have  been
intensively  studied  since  1965  when  Birnbaum  et  al.
found  LIPSs  on  the  surface  of  germanium  and  gallium
arsenide15,16.  Over  the  past  two  decades,  ultrafast  laser
technology  has  developed  rapidly.  Femtosecond  LIPSs
(femtosecond-LIPSs) have  become ubiquitous  in  a  vari-
ety  of  materials,  including  metals,  semiconductors,
dielectrics,  and  polymers4−9,17−31.  The  periods  of  LIPSs
change significantly with the laser fluence and the num-
ber of overlapping pulses. Based on the ratio of the period 
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Λ > 0.5λ
Λ < 0.5λ

(Λ)  to  the  laser  wavelength  (λ),  LIPSs  are  divided  into
low-spatial-frequency  LIPSs  (LSFLs, )  and
high-spatial-frequency  LIPSs  (HSFLs, )4,  as
shown  in Fig. 1.  However,  the  formation  mechanism  of
femtosecond-LIPSs does not yet have a clear explanation.

Femtosecond-LIPSs have  become  a  useful  laser  pro-
cessing method,  with broad prospects  for  adjusting ma-
terial properties9,32−38 . HSFLs on the surfaces and interi-
ors  of  dielectrics  demonstrate  birefringence  effects,
which  have  been  used  in  data  storage  and
waveplates34,36,38.  LIPSs  produce  a  significant  dispersion
of incident light and have been used to prepare pure and
bright  structural  color  surface32,35.  Composite  structures
with LIPSs  can  enhance  light  absorption  and  lumines-
cence and adjust the wetting properties of a material sur-
face33,37,39.  The  anisotropic  electrical  properties  of  LIPSs
are an emerging research topic40,41.

The main  contents  of  this  review  are  as  follows.  Sec-
tion Several models of LIPS formation discusses the form-
ation mechanism of LIPSs. Section Ultrafast dynamics of
LIPS  formation  based  on  pump-probe  imaging presents
the ultrafast  dynamics  studied  by  the  pump-probe  ima-
ging  method.  The  pulse  shaping  of  a  femtosecond  laser
in  the  temporal –frequency  domain,  polarization,  and
spatial distribution is an efficient method for fabricating
regular LIPSs  with  high  efficiency,  as  described  in  Sec-
tion Efficient  fabrication  of  high-quality  LIPSs  with
shaped  ultrafast  laser  pulses.  Section Femtosecond  laser
direct  writing  of  <100  nm  nanostructures introduces
promising  methods  for  laser  processing  nanostructures
with  feature  sizes  smaller  than  100  nm. In  the  Section
Applications of LIPSs, we briefly introduce LIPS applica-
tions in  the  fields  of  data  storage,  structural  color  sur-
faces,  light  absorption  and  luminescence  enhancement,

and  the  adjustment  of  conductive  properties.  The  last
section presents the outlook on the LIPSs. storage, struc-
tural  color  surfaces,  light  absorption  and  luminescence
enhancement, and the adjustment of conductive proper-
ties. The last section presents the outlook on the LIPSs. 

Several models of LIPS formation
The formation  of  periodic  nanostructures  after  irradi-
ation with  a  single  laser  beam  is  an  interesting  phe-
nomenon.  In  particular,  the  periods  of  femtosecond-
LIPSs change significantly with the laser fluence and the
number of overlapping pulses, which renders the forma-
tion mechanism  of  LIPSs  more  complicated  to  determ-
ine.  Numerous experimental,  theoretical,  and numerical
studies  have  been  performed,  and  several  models  have
been  proposed  to  explain  the  formation  of
LIPSs9,16−18,20,21,25,42, which are described below. 

Scattering light model
After  irradiation  with  continuous  and  long-pulse  lasers,
LSFLs perpendicular or parallel to the polarization direc-
tion formed on the surfaces of semiconductor materials,
where  the  periods  were  nearly  equal  to  the  laser
wavelength, λ.  It  was  proposed  that  these  LSFLs  were
caused by the interference between the incident light and
scattered light from the ablated surface16,18,43, as shown in
Fig. 2.  When the  laser  was  perpendicular  to  the  sample,
period Λ was equal to laser wavelength λ. When the laser
was obliquely incident at  an angle θ,  period Λ = λ/  (1 ±
sin θ), where  +  and  –  represent  the  forward  and  back-
ward  scattered  light,  respectively44. This  model  was  re-
fined and  developed  by  Sipe  et  al.  They  performed  de-
tailed  theoretical  studies  and  found  that  the  generation
of  periodic  structures  depended  significantly  on  the
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Fig. 1 | Scanning electron microscopy (SEM) images of (a) LSFLs on silicon8,  and (b) HSFLs on ZnSe induced by 800 nm femtosecond laser.

Figure reproduced with permission from: (a) ref.8, Optica Publishing Group, under the Optica Open Access Publishing Agreement; (b) ref.9, Amer-

ican Physical Society.
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roughness  of  the  material  surface16.  Rough  structures
with  a  height  significantly  smaller  than  the  laser
wavelength resulted in a periodic distribution of the laser
field itself. The incident angle and polarization direction
highly influenced  the  period  and  orientation  of  the  LS-
FLs.  This model has often been used to explain classical
LSFLs induced by nanosecond or continuous wave (CW)
lasers.

Over the last two decades, scattering models have been
developed  and  improved  to  explain  the  formation  of
femtosecond-LIPSs45,46.  According  to  the  Drude  model,
the dielectric  constants  of  semiconductors  and  dielec-
trics  depend  on  the  numerical  density  of  free  electrons
excited  by  femtosecond  laser.  According  to  the  Sipe
model,  the  periodic  deposition  of  laser  energy  depends
on  the  surface  roughness  and  dielectric  constants.  The
formation of femtosecond-LIPSs on semiconductors and
dielectrics  was  studied  by  comprehensively  considering
the  Sipe  and  Drude  models22,23,47,48,  and  developed  into

the  Sipe-Drude  model22.  The  numerical  density  of  free
electrons  and  dielectric  constants  varied  with  the  laser
fluence,  wavelength,  and  pulse  number,  which  further
tuned the periods of LIPSs, as shown in Fig. 2. 

Surface plasmon polariton model
Under  femtosecond  laser  irradiation,  a  large  number  of
free electrons are excited, forming a plasma layer on the
surface  of  a  material.  The  femtosecond  laser  further
causes the collective oscillation of the surface plasma and
forms  surface  plasmon  polaritons  (SPPs),  as  shown  in
Fig. 3(a). The excitation of SPPs causes a periodic distri-
bution of the laser field and energy deposition in the free
electrons.  The  lattice  is  heated,  melted,  or  even  ablated
via electron–phonon coupling, which further induces the
formation  of  LIPSs8,21,25,48,50−62.  However,  in  the  case  of
vertical incidence (Fig. 3(b)), the wave vector of the SPPs
is always  larger  than  that  of  the  incidence  light.  There-
fore,  grating  structures42 or  a  single  nanogroove25,52 are
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fabricated  on  the  sample  surface  in  advance,  and  the
scattered light can provide an additional wave vector, Δk,
which satisfies  the  vector  matching  condition  and  in-
duces SPP excitation, as shown in Fig. 3(c)21.
  
a

c

d

b

ω

Metals

0

E

2 μm

2.5

Photon

k

Δk
SPP

Fig. 3 | (a)  Schematic  illustration  of  SPPs.  (b)  Dispersion  curves  of

SPPs and light  in  air.  (c) SPP excitation  on ZnO surface in  the  ex-

cited state  launched by a  groove.  (d) The SEM image of  the nano-

structures  on  the  ZnO  surface  irradiated  by  800  nm  femtosecond

laser, where the LSFLs originated from the nanogroove or the abla-

tion edge, as shown as the red arrows. Figure reproduced with per-

mission from: (b) ref.49, AIP Publishing; (c, d) ref.21, American Chem-

ical Society.
 

The  SPP model  was  used  to  explain  the  formation  of
LSFLs  on semiconductors.  The  periods  are  expressed  as
follows21
 

Λ =
λ

λ
λSPP

±sin(θ)
,

λSPP = λ × Re

(√
ε + εd
εεd

)
, (1)

where λSPP is the SPP wavelength, θ is the angle of incid-
ence, ε is the dielectric constant of the metal, and εd is the
dielectric  constant  of  the  dielectric.  Under  femtosecond
laser irradiation, a large number of free electrons are ex-
cited,  resulting  in  a  significant  change  in  the  dielectric
constant,  according  to  the  Drude  model.  The  SPP
wavelength and LSFL period can be calculated based on

the  dielectric  constant  in  the  excited  state,  which agrees
well  with  the  experimental  results  for
semiconductors42,51,52.  The  LSFL  periods  induced  by
femtosecond laser  pulses  on semiconductors and metals
are always smaller than the SPP wavelengths. With more
laser  pulse  irradiation,  the  LSFL-assisted SPP is  coupled
with  the  laser  field,  forming  a  positive  feedback  effect,
and leading to the formation of shorter-period LSFLs21. 

Model of nanoplasmonic enhancement of laser field
The  groove  widths  of  HSFLs  induced  by  femtosecond
laser pulses are usually smaller than 100 nm, whereas the
depth can  reach  hundreds  of  nanometers  to  micromet-
ers.  The  widths  of  these  periodically  arranged
nanogrooves are  significantly  smaller  than  the  diffrac-
tion  limit  of  the  laser17,20,63−72. Figure 4(a) shows  20  nm-
thick  nanosheet-like  nanostructures  with  a  period  of
~λ/2n in fused silica (refractive index n) induced by lin-
early  polarized 800 nm femtosecond laser  pulses.  It  was
proposed  that  these  nanosheets  were  produced  by  the
asymmetrically  localized  laser-field  enhancement  of  the
nanoplasma20, as shown in Fig. 4(b).

The  periodic  distribution  of  the  nanoplanes  evolved
from  a  random  distribution  of  nanoplasma  over  many
shots owing to the memory mechanism and mode selec-
tion.  The  period, λ0/2n, is  the  minimum  spacing  re-
quired in planar metal waveguides to support this mode
with the field maxima at the metal–dielectric interface20.

Another  mechanism  that  has  been  proposed  for  the
formation  of  HSFLs  in  fused  silica  is  photon –plasmon
scattering17. By adjusting the pulse  energy and cumulat-
ive  pulse  number  of  the  800  nm  femtosecond  laser,  the
HSFLs period  varied  from  140  to  320  nm.  This  phe-
nomenon  was  interpreted  in  terms  of  the  interference
between  the  incident  light  field  and  the  electric  field  of
the bulk plasma wave, resulting in the periodic modula-
tion of the electron concentration and structural changes
in the fused silica17. 

Other models
In recent  years,  several  other  models  have  been  pro-
posed to explain the formation of LIPSs, such as self-or-
ganization24,26,73,  evanescent  waves74, and  Coulomb  ex-
plosions75,76.  During the femtosecond laser irradiation of
SiC,  ZnSe,  and  ZnO  crystals,  the  generation  of  second
harmonics  induces  the  formation  of  HSFLs9,77,78.  The
ripples  of  LSFLs  on  metal  surfaces  gradually  split  and
evolve into HSFLs with an increase in femtosecond laser
pulse irradiation79,80.
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During the femtosecond laser  irradiation of  semicon-
ductor materials  such  as  Si  and  ZnS,  the  surface  plas-
mon  layer  supports  two  types  of  SPPs:  those  at  the
plasma –air  interface  and  those  at  the  plasma –substrate
interface81. The local laser fluence and accumulated pulse
number are key factors affecting the formation of LSFLs
and HSFLs. Two SPP waves interfere with each other to
form standing  waves  that  induce  the  formation  of  HS-
FLs82,83. A femtosecond laser was obliquely incident on a
stainless steel  surface  and  induced  two  periodic  struc-
tures, LSFLs and HSFLs, which were caused by forward-
and  backward-propagating  SPPs,  respectively84. Numer-
ical  simulation  results  using  the  finite-difference  time-
domain (FDTD) method indicated that the coherent su-
perposition  of  the  scattering  far-field  (propagation)  of
the microstructured surface and refracted fields induced
LSFLs,  while  the  scattering  near-field  (evanescent)  and
refracted fields induced HSFLs85. 

Ultrafast dynamics of LIPS formation
based on pump-probe imaging
The phenomena of femtosecond-LIPSs are very rich, and
the  formation  mechanisms  are  very  complicated.  Are
LIPSs  caused  by  the  periodic  deposition  of  laser  energy
or  by  self-organization  during  laser  excitation,  melting,
and solidification? The propagating SPP model has been
widely  accepted  to  explain  the  formation  of  LSFLs  on
semiconductor  and  metal  surfaces,  however  several  key
issues remain to be addressed. First, the SPPs on the sur-
faces  of  gold  and  silver  are  very  strong86,  however  it  is
difficult  to  form  regular  LSFLs  on  these  noble  metals10.
Second,  the  periods  of  the  LIPSs  on  metal  surfaces  are
significantly  smaller  than  the  SPP  wavelengths49,87.  The

further development of new methods is required to solve
these problems.

Scanning electron microscopy (SEM) and atomic force
microscopy  (AFM)  are  typically  used  to  observe  LIPSs.
The resolutions of these methods are very high, however
they cannot be used to study the dynamics of LIPS form-
ation.  Pump-probe  spectroscopy  is  an  effective  method
to  study  the  kinetics  of  femtosecond  laser  ablation88.
However,  transient  images  of  LIPSs  cannot  be  observed
directly19,79.  Therefore,  we  developed  a  collinear  pump-
probe  imaging  method  to  study  the  transient  processes
of  LIPS  formation25,49,52,55,56,89.  The  spatial  resolution  is
300  nm  and  the  temporal  resolution  is  0.6  ps.  To  show
clearly  the  changes  in  the  surface  microstructure,  the
same  spot  was  observed  at  three  different  times:  before
the arrival of the pump pulse, at the designed delay time,
and after the ablation spot solidified.

Figure 5 shows the optical microscope (OM) images of
the  transient  LSFLs  on  the  Si  surface  at  different  delay
times52. The LSFL period was 680 ± 15 nm, and the dir-
ection was parallel to the nanogroove. The annular struc-
tures were caused by the diffraction effect of the concave
lens. Surprisingly, periodic ripples quickly emerged. The
transient  ripples  were  clear  at  a  delay  time  of  4.0  ps,
which  indicated  that  these  ripples  were  due  to  surface
melting, excluding  other  thermodynamics  such  as  abla-
tion and  hydrodynamics.  The  AFM  measurements  fur-
ther showed  that  the  height  fluctuation  in  the  LSFL  re-
gion was less than 0.6 nm, and had no spatial periodicity.
The LSFL period was predicted based on the SPP model,
and it coincided with the experimental results. The form-
ation of LSFLs on silicon was due to the periodic energy
deposition  caused  by  the  SPP  excitation,  rather  than
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self-organization processes.
The  pump-probe  imaging  experiments  were  further

carried out to investigate the role of SPPs and thermal ef-
fects  on  the  formation  of  LIPSs  on  noble-metal
surfaces49. Under  the  irradiation  of  the  second  femto-
second laser pulse, transient periodic ripples were clearly
observed on  the  gold  film,  but  no  obvious  ripples  re-
mained  after  the  surface  solidified.  The  surface  defects
produced  by  the  first  laser  pulse  launched  SPPs  on  the
Au film, which caused further modulated energy depos-
ition  and  induced  transient  LIPSs.  However,  because  of
the  small  electron –phonon  coupling  coefficient  of  Au,
the  slow  heat  process  and  strong  melting  effect  caused
the ripples  to  disappear.  When  the  Au  film  was  im-
mersed in water,  the LIPSs were retained because of the
high  cooling  rate  of  the  molten  layers49. These  experi-
mental results indicated that the SPPs played an import-
ant role in the formation of LIPSs, while the thermal ef-
fect greatly influenced whether the transient ripples were
retained after the molten surface solidified49 .

However, the period dependence of the LSFLs on met-
al surfaces was much different from the SPP model87,90,91.
The SPP wavelengths were calculated by using the dielec-
tric  constants  of  silver,  gold,  copper,  and  aluminum  in
the  ground  states,  which  were  significantly  larger  than
the periods of LSFL ripples10,49,92. The d-band electrons in
gold and silver could be excited to states above the Fermi
surface93,94. The  free-electron  density  and  plasma  fre-
quency  both  increased  with  laser  fluence,  resulting  in
longer SPP wavelengths. The LSFL periods were very dif-
ferent  from those  of  the  SPP model,  which  is  a  difficult
problem to solve.

LSFLs  are  typically  induced  by  multiple  laser  pulses.
The  material  at  the  laser  focus  is  partially  ablated  after

each laser  pulse  irradiation,  which  makes  the  formation
mechanisms more difficult to understand because of the
effects of  the  scattered  light  and  grating  coupling  feed-
back. Therefore, theoretical and experimental studies on
the  LSFLs  induced  by  a  single  femtosecond  laser  pulse
provide fundamental information on the origin of LSFLs
on metal surfaces52,95−97.

Figure 6 shows the  evolution of  the  LSFLs formed on
an Au film. The transient LSFLs began to appear at 45 ±
10  ps,  and  become  more  numerous  and  clearer  over
time25.  Between 400 and 600 ps, the ripples appear to be
the most distinct and regular. The ripples are perpendic-
ular to the laser polarization with a period of 740 ± 10 nm.

Figure 7 shows  that  the  LSFL  period  increased  from
685 nm to 770 nm when the fluence increased from 0.73
to  3.42  J/cm2 25,  which  was  similar  to  the  results  for  Si,
GaP,  and  ZnO  crystals51,52,98,99.  The  SPP  wavelength  of
gold was  780  nm  for  800  nm  light,  which  was  signific-
antly larger  than  the  experimental  value.  With  increas-
ing  laser  fluence,  free-electron  density  became  larger,
which  led  to  longer  SPP  wavelength  and  LSFL  period.
Obviously,  there  is  a  great  deviation  between  the  SPP
theory and the experimental results.

The dielectric constant is a key factor affecting the SPP
wavelength21,25.  The  dielectric  constant  in  the  ground
state  was  usually  used  to  study  SPP  on  metal  surfaces,
which was an important factor that caused the deviation
between  the  SPP  theory  and  the  experimental  results.
Therefore,  Cheng  et  al.  proposed  and  studied  in  detail
the effects of hot electron localization and d-band trans-
itions on the dielectric constant and SPP wavelength for
gold at the highly excited states during femtosecond laser
irradiation25. The  LSFL  period  calculated  by  the  de-
veloped SPP model decreased from 780 nm to 685 nm as
the  fluence  increased  to  0.75  J/cm2.  However,  as F was
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laser polarization direction. Figure reproduced with permission from ref.52,  Optica Publishing Group, under the Optica Open Access Publishing

Agreement.

Zhang YC et al. Opto-Electron Sci  1, 220005 (2022) https://doi.org/10.29026/oes.2022.220005

220005-6

 



further increased to 2.5 J/cm2, the LSFL period increased
to 756 nm. The developed SPP model accorded well with
the  experimental  results,  indicating  that  SPP  excitation
was  the  key  during  the  formation  of  LSFLs  on  metal
surfaces.

The  electronic  band  structures  and  optical  properties
of Ag and Ni are significantly  different,  and can repres-
ent noble and common metals, respectively. The depend-
ence of the transient LSFL periods of Ag and Ni films on
the  laser  fluence  was  studied  using  the  collinear  pump-
probe  imaging  method56.  The  experimental  results

agreed well  with  the  theoretical  values  based  on the  de-
veloped SPP theory. Thus, the developed SPP model ex-
plains  the  formation  mechanism  of  LSFLs  on  different
types of metal surfaces.

Noncollinear  pump-probe  imaging  techniques  have
also  been  applied  to  observe  the  formation  of  LSFLs.
Murphy et al. reported the formation of LSFLs on silicon
irradiated  with  multiple  pulses100. Using  optical  diffrac-
tion  microscopy,  Kafka  et  al.  detected  the  formation  of
LSFLs on Cu films irradiated with a  single  femtosecond
pulse54. Garcia-Lechuga  et  al.  used  a  moving-spot  mul-
tiple-pulse  irradiation  approach,  and  observed  the  birth
and growth of individual ripples on a silicon surface101. It
was demonstrated that the formation of LIPSs was initi-
ated  by  free  carrier  generation,  leading  to  non-thermal
melting, liquid-phase  overheating,  and  rapid  solidifica-
tion into the amorphous phase. 

Efficient fabrication of high-quality LIPSs
with shaped ultrafast laser pulses
 

Temporally shaped ultrafast laser-induced high-
quality LIPSs
To efficiently fabricate uniform and regular LIPSs, three
main  challenges  should  be  addressed:  enhancement  of
periodic deposition of laser energy, reduction of residual
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heat,  and  avoidance  of  debris  deposited  on  the  ablation
spots8.  A temporally shaped ultrafast laser is an efficient
tool for fabricating regular LIPSs102. By changing the sub-
pulse interval,  pulse  number,  and  sub-pulse  energy  dis-
tribution of the burst pulse train, the regularity and uni-
formity  of  LIPSs  were  obviously  improved,  and  the
structural color was more vivid103,104.

Double  temporally  delayed  femtosecond  laser  beams
can efficiently induce uniform LSFLs in semiconductors,
metals and dielectrics105,106. A femtosecond laser was fur-
ther shaped  into  symmetrical  three-  and  four-pulse  se-
quences  for  the  fabrication  of  double-grating  structures
and HSFLs on fused silica107.

By controlling the voltage of each element of the spa-
tial  light  modulator  (SLM)  via  computer  programming,
the phase and/or amplitude of the laser spectrum can be
modulated, and the 4f zero-dispersion pulse-shaping sys-
tem can generate shaped laser pulses with arbitrary tem-
poral  distributions8. Specifically,  the  number  of  sub-
pulses,  interval  between  adjacent  subpulses,  and  pulse
energy of each subpulse can be flexibly adjusted.

Regular  LSFLs  on  silicon  were  processed  using  a  4f
configuration  zero-dispersion  pulse-shaping  system8.  A
Gaussian pulse is shaped into pulse trains with an inter-
val of 16.2 ps by using periodic π-phase step modulation.
The transient LIPSs started appearing on the Si surface at
a delay time of 4 ps52, which was shorter than the inter-
val  between  adjacent  sub-pulses.  Thus,  the  transient
LIPSs  have  started  to  appear  under  the  illumination  of
the two main subpulses.  When the subsequent  subpulse
reached the sample  surface,  the  transient  LIPSs  induced
by the previous subpulses enhanced the excitation of the
SPPs, as well as the periodic distribution of the laser field.

When  the  subsequent  small  sub-pulses  reached,  the
surface layer remained at a very high temperature. It was
further excited and partially ablated, taking away some of
the  remaining  heat  (ablative  cooling  effect).  Moreover,
the ablated plume was further excited by the subsequent
subpulses, and the debris was further ionized and vapor-
ized,  resulting  in  fewer  deposited  particles.  Therefore,
regular and uniform LSFLs  were  induced on the  Si  sur-
face using a shaped pulse of 16.2 ps8, as shown in Fig. 8.

The fabrication efficiency, depth, and regularity of the
LSFLs when using shaped pulses of 16.2 ps were signific-
antly better than those using Gaussian femtosecond laser
pulses8.  The  scan  velocity  for  fabricating  regular  LSFLs
was  2.3  times  faster,  while  the  LSFLs  depth  was  2  times
deeper, and the diffraction efficiency was 3 times higher

than  that  of  LSFLs  using  Gaussian  femtosecond  laser
pulses. 

Spatially shaped femtosecond laser-induced LIPSs
with high efficiency
Arbitrary  spatial  intensity  distribution  of  femtosecond
laser  pulses  can  be  modulated  by  loading  a  computer-
generated hologram (CGH) on a SLM, and LIPSs can be
processed in parallel with high efficiency108. For example,
Hayasaki et  al.  successfully  realized  the  parallel  pro-
cessing  of  microstructures  by  loading  a  mixed-phase
Fresnel lens on the SLM109,110.

Maskless flexible  spatial  shaping  based  on  spatiotem-
poral interference can modulate the interference intens-
ity  distribution  into  arbitrary  patterns111.  It  was  verified
using  a  Michelson  interferometer,  where  the  phase  of
one laser beam was controlled via SLM.

Lin et  al.  developed  a  correction  method  for  the  spa-
tial  distortion  and  light  intensity,  which  could  greatly
improve the accuracy of the spatial pattern and uniform-
ity  of  the  light  intensity  simply  by  changing  the  phase
map loaded on the SLM112. This method was used to effi-
ciently process  colorful  two-dimensional  codes  on  silic-
on and  shark-skin-like  structures  with  superhydro-
phobic properties on stainless steel112,113.

The laser focal point of a cylindrical lens is only a few
to tens of micrometers wide, while its length is on the or-
der  of  1 –10  mm114,115.  Compared  with  ordinary  circular
lenses, the  efficiency  of  femtosecond-LIPSs  can  be  im-
proved by a factor of 103–104 by using cylindrical lenses,
which have been demonstrated in materials such as silic-
on  and  graphene  oxide11,57,116−118.  This  method  is  very
simple, and has important implications for the industrial
application of femtosecond-LIPSs in the future. 

Polarization shaped femtosecond-LIPSs
By using  a  liquid  crystal  SLM  and/or  Q-plate,  a  femto-
second  Gaussian  laser  beam  could  be  modulated  into
vortex  light,  radially  polarized  or  angularly  polarized
beam119−122,  and  used  to  directly  fabricate  complex  LIPS
patterns77,121−129. Two laser  beams with  s  and p  polariza-
tions  were  collinearly  focused  on  the  SiC  surface,  and
nanostructures with different morphologies were fabric-
ated  by  adjusting  the  energy  ratio  of  these  two  laser
beams77.  Radially  and  angularly  polarized  femtosecond
lasers  were  focused  on  transparent  materials  and  HSFL
patterns  consistent  with  the  polarization  distribution
were fabricated125. 
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Efficient fabrication of complex femtosecond-LIPS
patterns by multi-beam interference
Multibeam interference  is  an  efficient  etching  techno-
logy  for  processing  regular  periodic  patterns,  where  the
light  intensity  distribution  in  the  interference  field  is
usually  imprinted  on  the  materials.  By  combining  laser
interference  technology  with  femtosecond-LIPSs,  many
complex LIPS  patterns  were  fabricated  with  high  effi-
ciency  and  quality  by  simultaneously  controlling  the
light  intensity  distribution  and  polarization
distribution37,130.  Experimental  and  theoretical  results
showed that the longer-period structure was determined
by  the  intensity  distribution,  whereas  the  LIPS  pattern
was determined by the polarization distribution131.

Two-beam femtosecond laser interference was used to
fabricate grating structures. By changing the laser polar-
ization direction,  interesting  complex  periodic  struc-
tures  covered  with  LIPSs  have  been  efficiently
fabricated130,132.  Recently,  large-area  regular  LSFLs  were
efficiently  fabricated  on  a  silicon  wafer  using  double-
beam femtosecond  laser  interference  focused  by  cyl-
indrical lens. The space of the double-beam interference

fringes  was  an  integer  multiple  of  the  SPP  wavelength,
thereby  effectively  exciting  the  resonance-enhanced
SPPs.  The  fabricated  nanogratings  were  very  regular,
uniform, and  smooth,  and  the  resolution  of  the  diffrac-
tion  light  was  almost  the  same  as  that  with  commercial
gold  gratings57.  Using  a  similar  method,  a  large  area  of
regular and uniform LIPSs was processed on the surface
of quartz glass118.

A wide  variety  of  composite  LIPSs  such  as  hexagon-
ally  distributed  nanogratings,  hexagonal  nanoflowers,
and  nanorings  were  efficiently  fabricated  on  wide-
bandgap  SiC  and  ZnO semiconductors  by  changing  the
polarization  combination  of  the  three  beams37,131,  as
shown in Fig. 9. The four-beam interference method was
further  developed,  and  composite  LIPSs  such  as  square
nanostructures, symmetric  petal  structures,  and  asym-
metric helix-like structures were prepared on the surface
of a ZnO crystal133. 

Femtosecond laser direct writing of <100
nm nanostructures
Because of the diffraction limit, the size of the laser focus
is typically a few hundred nanometers. The resolution of

 

a

c d

e

Λ=774±5 nm

1.289±0.008 μm−1

10 μm

500 nm

1 μm

b

−2.0

1.0

0.8

0.6

0.4

0.2

0
−1.5 −1.0 −0.5 0

Frequency (μm−1)

In
te

n
s
it
y
 (

a
.u

.)

0.5 1.0 1.5 2.0

Fig. 8 | (a–b) SEM pictures of LSFLs induced by the shaped pulse trains with an interval of 16.2 ps. (c) The cross section of LSFLs. (d) The 2D

fast Fourier transform of (b). (e) Spectra of the 2D Fourier transform along the x-axis. Figure reproduced with permission from ref.8, Optica Pub-

lishing Group, under the Optica Open Access Publishing Agreement.

Zhang YC et al. Opto-Electron Sci  1, 220005 (2022) https://doi.org/10.29026/oes.2022.220005

220005-9

 



laser processing with high numerical aperture objectives
is  also  on  the  order  of  hundreds  of  nanometers.  The
groove  widths  of  HSFLs  on  semiconductor,  dielectric,
and  metal  surfaces  induced  by  a  femtosecond  laser  are
typically  less  than 50 nm and less  than 1/10 of  the  laser
wavelength, opening  up  new  avenues  for  laser  pro-
cessing with feature sizes smaller than 100 nm134−138. Liao
et al. reported a single nanohollow channel with a width
of  40  nm  in  porous  glass  using  femtosecond  laser-in-
duced  HSFL  technology.  It  was  used  in  nanofluidics  in
the field  of  single-molecule  detection  and  biochip  pre-
paration. By  precisely  controlling  the  laser  focus,  flu-
ences,  and  scanning  speed,  straight  nanogrooves  with
widths smaller  than  100  nm  were  prepared  on  the  sur-
faces of fused silica and sapphire crystals135.

A  single  nanogroove  with  a  width  of  30  nm  and  a
double-groove structure with an interval of 150 nm were
fabricated on a ZnO crystal surface immersed in water by
precisely controlling  the  800-nm  femtosecond  laser  flu-
ence and scanning speed136, as shown in Fig. 10. Double-
groove  grating  structures  and  single-groove  grating
structures  with  different  spacings  were  fabricated,  with
groove  depths  ranging  from  200  to  300  nm  and  groove
widths  smaller  than 40  nm.  Nanosquare  structures  with
dimensions of 150 nm × 150 nm and 150 nm × 250 nm
were fabricated by direct writing twice along the vertical
direction.

By controlling the laser polarization always perpendic-
ular to the scanning direction, curved nanogrooves with
widths  smaller  than  20  nm  and  curvature  radii  smaller
than 100  nm were  fabricated  on a  silicon surface139.  Lin
et al. processed curved nanogrooves with a feature size of
12  nm  on  silicon  surfaces  using  800  nm  femtosecond
laser  direct  writing  with  orthogonally  polarized  dual
beams27. 

Applications of LIPSs
Femtosecond-LIPSs provide a mask-free, high-efficiency
processing  method  for  tuning  material  properties.  This

method has  been used in  many fields,  with  applications
that  include  structural  colors8,32,35,  birefringent  optical
components34,36,38,  optical  absorption  and
luminescence33,37,39, and electrical properties40. 

Structural colors
Structural colors originate from the interference, diffrac-
tion, or scattering produced by micro/nanostructures on
the  surface  of  a  material32.  LIPSs  have  been widely  used
to  produce  structural  colors  on  metals,  semiconductors
and transparent materials8,35,118,140−151.

The properties  of  such  structural  colors  are  determ-
ined by  the  period,  depth,  and orientation of  the  LIPSs.
LIPSs  with  periods  in  the  range  of  400 – 1500 nm  were
prepared on  the  surface  of  stainless  steel  using  femto-
second  lasers  with  different  wavelengths140.  These  LIPSs
demonstrated completely different colors under each dif-
fraction order, such that the structural color of the stain-
less  steel  surface  could  cover  most  of  the  color  gamut.
The  same  LIPSs  displayed  different  colors  at  different
angles118,142,148.  Therefore,  surfaces  with  different  colors
were  prepared  by  controlling  the  orientation  of  the
LIPSs.  Liu  et  al.  proposed  to  control  the  orientation  of
LIPSs  in  real  time  using  a  femtosecond  laser  double-
pulse  sequence  with  orthogonal  polarization  and  equal
pulse energy and fabricated LIPSs with arbitrary orienta-
tions  on  silicon  surfaces  that  were  not  affected  by  the
scanning  path147.  This  is  of  great  significance  for  multi-
layer encryption, anti-counterfeiting, and so on.

The brightness and purity of the structural colors were
affected  by  the  regularity  and  depth  of  the  LIPSs.  The
high-efficiency preparation of high-quality LIPSs has at-
tracted increasing attention. Zhang et al.8 fabricated very
regular and  deep  LSFLs  on  a  silicon  surface  using  tem-
porally shaped pulses via a 4f zero-dispersion system and
demonstrated  very  bright  and  pure  structural  colors,  as
shown  in Fig. 11.  Vivid  structural  colors  on  fused  silica
surfaces  were  prepared  with  high  efficiency  using  the
double-beam  interference  of  femtosecond  laser  focused
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by  cylindrical  lens118.  Chemical  etching-assisted  LIPSs
are also an effective method for  producing bright  struc-
tural colors148,150. 

Birefringent optical components and information
storage
HSFL nanostructures inside fused silica exhibit birefrin-
gence  effects  comparable  to  those  of  quartz
crystals34,36,152,153 and  have  been  used  in  the  storage  of
multi-dimensional  data,  as  shown  in Fig. 12.  Zhang  et
al.154 demonstrated that HSFLs could encode the intens-

ity  and  polarization  state  of  light  at  multiple  levels  and
successfully retrieved digital  files  that  were  optically  en-
crypted into five dimensions. Experiments indicated that
HSFLs in silica glass have high stability and rewritability,
meeting some requirements for developing high-density
data  storage38.  Recently,  Wang  et  al.  demonstrated  100-
layer  5D  optical  data  storage  based  on  femtosecond
laser-induced birefringence  with  a  high  readout  accur-
acy  and  no  bit  error  rates155 ,  as  shown  in Fig. 12.  At
present,  the  limitations  of  optical  storage  technology  lie
mainly in efficient writing and fast and accurate reading.
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The  writing  speed  has  been  increased  to  225  kB/s153−155,
which is mainly a result of the higher laser power and re-
petition  frequency  with  pulse  energy  modulation,  as
shown in Fig. 12.

Mechanisms  and  applications  based  on  femtosecond
laser-induced birefringence  have  been  extensively  stud-
ied,  including  various  polarization-sensitive
elements70,156−158 such  as  polarization  beam  splitters159,
polarization  diffraction  gratings160, and  polarization  op-
tical  vortex  rotation  converters123.  HSFLs  fabricated  in
amorphous silicon161,162, silicon carbide163 and indium tin
oxide  (ITO)  thin  films164,165 exhibit  birefringence  effects
two  orders  of  magnitude  higher  than  those  of  quartz
glass, demonstrating  that  high-refractive-index  materi-
als can be used to fabricate birefringent elements. Large-
area  HSFLs  have  been  efficiently  fabricated  on  a  glass
surface coated with an ITO thin film using femtosecond
laser  direct  writing  focused  via  a  cylindrical  lens166.  The

optical retardation reached 44 nm, which was eight times
that  of  the  HSFLs  processed  directly  on  a  bare  glass
surface.
 

Enhancement of optical absorption and
photoluminescence
The  optical  properties  were  significantly  tuned  after
forming  complex  micro-nanostructures  covered  with
LIPSs  on  the  surfaces  of  metals,  semiconductors,  and
dielectrics33,35,37,39,118,167−174. “Black ”  silicon  has  been  ex-
tensively studied and was shown to exhibit ultra-low re-
flectivity and  very  high  absorption  in  the  UV –NIR  re-
gion as  a  result  of  nanostructures  fabricated  by  femto-
second lasers33,39,171,172.

Various composite  LIPSs  have been efficiently  fabric-
ated  on wide-bandgap SiC and ZnO semiconductors  by
the  multi-beam  interference  of  femtosecond  lasers174,176.
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These composite  nanostructures  exhibited  greatly  en-
hanced light absorption in the UV–NIR region, as well as
an intense blue emission when excited by infrared femto-
second  lasers.  Compared  with  the  smooth  surface  of
ZnSe  crystals,  the  blue  light  intensity  of  the  composite
nanostructures  excited  by  a 1200 nm femtosecond  laser
was enhanced by 30–100 times175, as shown in Fig. 13. 

Electrical properties improved by LIPSs
Recently,  the  effect  of  LIPSs  on  the  electrical  properties
of  ITO40,41,177 and  the  superconducting  material
niobium178,179 has  received  increasing  attention.  ITO
films are  widely  used  as  transparent  conductive  materi-
als in solar cells, sensors, and displays. An ITO film with
LIPSs  exhibited  good  anisotropic  conductivity  and,  if
fabricated  under  appropriate  conditions,  could  even
achieve  unidirectional  conductivity,  as  shown  in Fig.
1441.  Moreover,  the  transmittance  in  the  near-infrared
region was greatly enhanced40,41,177. These results demon-
strate the potentials of femtosecond LIPSs for efficiently
fabricating large-scale transparent nanowires180.

Cubero  et  al.178,179 analyzed the  effect  of  laser  irradi-
ation on the critical current value of superconductors by
measuring hysteresis loops, and proved that LIPSs could
change the superconducting properties  of  niobium. The
secondary electron emission from a copper surface with
LIPSs  was  effectively  reduced181,  which  was  very
effective  in  suppressing  secondary  electron  emission  in
accelerators. 

Other applications
After  femtosecond  laser  processing,  the  entire  ablation
area is  covered  with  nanostructures,  which  can  effect-

ively increase the surface roughness and reduce the con-
tact area with the droplet. This is an efficient method to
alter  the  hydrophilicity  and  hydrophobicity  of  sample
surfaces,  and  has  been  successfully  demonstrated  on
various  materials  including  metals,  semiconductors,
dielectrics, and polymers182−192.

Femtosecond-LIPSs were optimized on steel, titanium
alloy, and atomic layer deposition cemented carbide sur-
faces. The friction coefficient and the wear were reduced
significantly, which  revealed  the  great  potential  for  tri-
bological applications193−199. 

Outlook
In  this  paper,  the  formation  mechanisms,  high-quality
and high-efficiency  processing  methods,  and  applica-
tions of LIPSs were reviewed. We believe that the follow-
ing problems that may be worth further investigation. 

Formation mechanisms of LIPSs
The  formation  mechanism  of  LIPSs  has  always  been  a
hot  topic  in  this  field.  The  scattered  light  model  and
propagating SPP  model  are  continuously  being  de-
veloped  and  refined  and  have  been  used  to  explain  the
formation  of  LSFLs  on  dielectrics,  semiconductors,  and
metals. However, the formation mechanism of LSFLs re-
quires further experimental and theoretical studies, espe-
cially ultrafast dynamics.

HSFLs are typically formed after irradiation with mul-
tiple pulses.  Their  formation  mechanism  is  more  com-
plex and  difficult  to  determine  than  that  of  LSFLs,  re-
quiring  extensive  experimental  and  theoretical  studies,
including  numerical  simulations  of  the  dynamics  using
the  COMSOL  and  FDTD  methods.  In  recent  years,
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various far-field super-resolution imaging methods have
been  reported200−202. Combining  the  pump-probe  meth-
od with  far-field  super-resolution  imaging  is  very  inter-
esting  and  may  be  helpful  in  revealing  the  formation
mechanism of HSFLs irradiated by a femtosecond laser.
 

Patterns with features of <30 nm obtained by direct
writing
The groove  width  of  HSFLs  is  only  tens  of  nanometers,
which  provides  a  new  method  of  nanofabrication  using
ultrafast laser direct writing. However, before this can be
widely applied, there are still many problems to be solved
such as the slow scanning speed and poor uniformity of
the  nanogrooves.  In  the  last  decade,  multi-dimensional
laser shaping  technologies  in  time/frequency  and polar-
ization have been rapidly developed108,203.  Synchronizing

laser direct writing and multi-dimensional laser shaping
in real time will ensure that the nanogrooves grow along
the direction of the direct laser writing, improve the loc-
al  optical  field  enhancement,  and  reduce  the  residual
heat  of  ablation.  This  is  expected  to  efficiently  fabricate
high-quality nanopatterns with features less than 30 nm.
 

LIPSs based on multi-dimensional laser shaping
and its applications
Large-area LIPSs fabricated with high quality, efficiency,
and  stability  can  greatly  promote  their  applications  in
many fields. By developing pulse-shaping methods based
on the 4f configuration zero-dispersion system or Fabry-
Perot interferometer204, the regularity and depth of LIPSs
can  be  effectively  improved,  which  will  improve  the
phase  retardation  and  writing  speed  and  reduce  the  bit
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error rate when reading out. Combining time/frequency
shaping  and  spatial  shaping  can  improve  the  regularity
and  depth  of  LIPSs  fabricated  with  high  efficiency,
thereby improving the purity and brightness of the struc-
tural colors.  By  simultaneously  controlling  the  polariza-
tion and spatial distribution of the laser field, nanostruc-
tures  with  designed  patterns  and  specific  nanogroove
distributions  can  be  processed  with  high  efficiency.
Combining time/frequency domain shaping and polariz-
ation  shaping  can  improve  the  quality  and  efficiency  of
far-field  nanofabrication  and  allow  LIPS  applications  in
new fields such as metasurfaces and microelectronics.
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