New website getting online, testing
    • 摘要: 针对龙门架机器人末端执行机构只具有三个正交方向上的平移自由度的工作特性,参照传统手眼标定的两步法,设计了一种直接对3D视觉传感器的点云坐标系与机器人执行机构的工具坐标系进行手眼标定的方法。该方法只需要操作机器人进行两次正交的平移运动,采集三组标定板图片和对应点云数据,并通过执行机构的工具中心点(TCP)接触式测量出标定板上标志点的基坐标值,即可解算出手眼关系的旋转矩阵和平移矢量。该方法操作简单,标定板易于制作且成本低。采用XINJE龙门架机器人与3D视觉传感器搭建实验平台,实验结果表明,该方法具有良好的稳定性,适合现场标定,标定精度达到±0.2 mm。

       

      Abstract: Aiming at the working characteristics of the end-effector of the gantry robot with only three translational degrees of freedom, a method for calibrating the point cloud coordinate system of the 3D vision sensor and the tool coordinate system of the robot actuator is designed, on the basis of the traditional two-step method of hand-eye calibration. In this method, only three calibration target pictures and three sets of point clouds are collected by two orthogonal translation movements of the robot, the rotation matrix and translation vector of the hand-eye relationship can be calibrated by measuring the base coordinates of mark points on the target through the TCP contact of the actuator. The method is simple to operate, and the calibration target is easy to make with low cost. The XINJE gantry robot and 3D vision sensor of structured light was used to build an experimental platform for experiments. The results show that the method has good stability and is suitable for field calibration, with calibration accuracy within ±0.2 mm