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Data-driven polarimetric imaging: a review
Kui Yang1†, Fei Liu1†*, Shiyang Liang3†, Meng Xiang1, Pingli Han1,
Jinpeng Liu1, Xue Dong1, Yi Wei4, Bingjian Wang2, Koichi Shimizu3* and
Xiaopeng Shao1,5*

This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of prac-
tical  applications.  The  widespread  international  research  and  activity  in  polarimetric  imaging  techniques  demonstrate
their broad applications and interest.  Polarization information is increasingly incorporated into convolutional  neural  net-
works  (CNN)  as  a  supplemental  feature  of  objects  to  improve  performance  in  computer  vision  task  applications.
Polarimetric imaging and deep learning can extract abundant information to address various challenges. Therefore, this
article  briefly  reviews  recent  developments  in  data-driven  polarimetric  imaging,  including  polarimetric  descattering,  3D
imaging,  reflection removal,  target  detection,  and biomedical  imaging.  Furthermore,  we synthetically  analyze the input,
datasets, and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and
disadvantages. We  also  highlight  the significance  of data-driven  polarimetric  imaging in  future  research  and  develop-
ment.
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 Introduction
Polarization  is  a  fundamental  physical  property  of  light
that  expresses  the characteristics  of  vector  shear  wave1,2.
When  light  interacts  with  objects  or  media,  it  exhibits
various characteristics  and  representations  of  polariza-
tion that correspond to the intrinsic characteristics of the
material. This unique quality is an additional dimension
of  information  that  has  many  applications  in  various
fields,  such as  polarimetric  descattering3−9, 3D shape re-
construction10−13,  reflection  removal14,15,  target
detection16−20,  biomedical  imaging21−23, pathological  dia-

gnosis24−29,  remote  sensing30−33, and  semantic  segmenta-
tion34−36. Furthermore, harnessing the features of polariz-
ation opens  new  possibilities  for  research  and  techno-
logy development.

The conventional polarization method is limited in ac-
curately  capturing  and  utilizing  information  owing  to
complicated  interactions  in  the  transmission  process.
Moreover,  convolutional  neural  networks  (CNN)  excel
at  nonlinear  expression  and  information  extraction
based  on  large  datasets,  making  them  better  suited  for
modeling and interpreting polarization information than
traditional algorithms, which can bridge the gap between 
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theory and practice37−41.
To overcome the lack of a physical theoretical  model,

the use  of  deep  learning  technology  to  optimize  the  in-
formation processing procedure has been proposed. Sev-
eral experiments  have  proven  its  advantages  in  extract-
ing  potential  features  from  images  and  determining  the
relationship  between  information  transmission  systems
based on  massive  datasets.  However,  intensity  informa-
tion is  commonly used in existing data-driven methods,
which lose  other  three-dimensional  information.  In  ad-
dition, the  unicity  of  information  would  make  the  ima-
ging performance suffer from various challenges; for ex-
ample,  in  target  detection  tasks,  spoofing  targets  and
camouflaged targets  can reduce the accuracy rate;  in se-
mantic segmentation,  water  hazards  and  metallic  sur-
faces are the key challenges in the segmentation of  road
scenes; in pathological diagnosis, the only color informa-
tion in medical images would increase the risk of misdia-
gnosis; and for transparent objects, parts of imaging pro-
cesses would be challenging to implement, such as 3D re-
construction  and  segmentation  in  the  intensity  field.
Therefore,  the  introduction  of  additional  light-field
physical information, such as polarization, is gaining in-
creasing  attention  as  a  supplemental  feature  of  objects
for  improved  performance  in  higher-level  visual  tasks,
expanding  beyond  intensity-only  coverage.  Therefore,
polarimetric  imaging  and  deep  learning  will  contribute
to future  research  and  development.  This  review  sum-
marizes the existing methods of combining polarimetric
imaging and  deep  learning  and  demonstrates  the  cur-
rent gains visually and comprehensively.

The  remainder  of  this  study  is  organized  as  follows:
First, we  review the  recent  trends  in  data-driven polari-
metric imaging  from  four  aspects.  Second,  seven  exist-
ing  research  fields  are  categorized  and  analyzed  with
their corresponding  algorithms.  Third,  we  discuss  vari-
ous algorithmic approaches used in each field.  Next,  we
discuss three critical aspects of their existing datasets and
loss  functions  and  their  advantages  and  disadvantages.
Next,  we  discuss  the  strengths  and  weaknesses  of  the
practical applications  of  data-driven  polarimetric  ima-
ging and  possible  opportunities  to  address  these  chal-
lenges.  Finally,  we provide conclusions,  highlighting the
importance  and  potential  of  data-driven  polarimetric
imaging  in  various  applications  and  research  areas  that
could extend the  current  uses  of  data-driven  polarimet-
ric  imaging  and  provide  insights  to  advance  its  future
development.

 Data-driven polarimetric imaging

 Short history
Polarimetric imaging, first observed by Sir Isaac Newton
and Christiaan  Huygens  in  the  17th  century,  is  a  tech-
nique used to capture and analyze the polarization prop-
erties of light. Moreover, they noticed that light could be
separated into two polarized lights when interacting with
calcite  crystals.  In  the  19th  century,  scientists  such  as
Malus and Fresnel made significant contributions to the
understanding of polarization. Since its inception, polari-
metric imaging has progressed and been applied in three
essential fields  in  the  20th  century:  polarization  micro-
scopy,  which allows scientists  to study the birefringence
properties  of  materials  under  polarized  light,  remote
sensing  and  polarimetry,  enhancing  the  detection  and
discrimination  of  objects  based  on  their  polarization
characteristics; medical imaging; and tissue optical prop-
erties. In recent years, digital cameras and other innovat-
ive imaging  techniques  have  become  capable  of  captur-
ing valuable information on surfaces, materials, and bio-
logical samples.  Recent  developments  in  computer  vis-
ion have  enabled  the  incorporation  of  polarization  in-
formation into  various  tasks,  offering  potential  advant-
ages over traditional RGB imaging.

Deep learning,  a  subfield  of  machine  learning,  is  in-
spired  by  the  human  brain.  Artificial  neural  networks
emerged during the 1940s and 1950s. Research on neur-
al  networks  continued during  the  1960s  and 1980s,  and
perceptron and  backpropagation  algorithms  were  de-
veloped. However,  neural  networks  face  limitations  ow-
ing to computational constraints and insufficient data. In
the early 2000s, traditional machine learning techniques,
such as support vector machines and decision trees, out-
performed deep learning in many tasks, leading to a de-
cline in interest in deep learning. After 2010, the propos-
al of a new network structure and improvements in com-
putational  power  propelled  the  advancement  of  deep
learning.  Key  developments  during  this  decade  include
the use of CNN for computer vision and recurrent neur-
al networks for natural language processing. With ongo-
ing research, deep learning continues to evolve into more
efficient  training  algorithms,  model  architectures,  and
applications across various domains, making it  a central
part of the AI field of artificial intelligence.

Until the 21st century, the combination of deep learn-
ing and  polarimetric  imaging  has  become  more  pro-
nounced. In the mid-2010s, data-driven techniques were
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applied  to  polarimetric  imaging.  Machines  and  deep
learning have been used for tasks, including object recog-
nition in  polarimetric  images.  Subsequently,  researchers
explored  the  potential  of  deep  learning  for  processing
and analyzing  polarimetric  data  in  more  diverse  do-
mains because  deep  learning  helps  extract  valuable  in-
formation from polarization data. Additionally, the syn-
ergy  between  deep  learning  and  polarimetric  imaging
continues to  evolve  with  advancements  in  models,  al-
gorithms,  and applications,  forming the  significant  field
called  “data-driven  polarimetric  imaging ”,  which  is  the
novel  method  that  combines  the  learning  method  and
polarimetric  imaging.  Data-driven  polarimetric  imaging
can revolutionize  various  fields  and  represents  a  prom-
ising  interdisciplinary  research  area  and  technological
innovation.  A  diagram of  this  short  history  is  shown in
Fig. 1.

 Trends
Data-driven  polarimetric  imaging  is  a  novel  approach
aimed at compensating for the defects and difficulties of
a  single-information interpretation model.  Recently,  the
advantages of combining polarimetric imaging and deep
learning  have  been  applied  in  several  fields,  and  dozens
of algorithms  based  on  data-driven  polarimetric  ima-
ging  have  been  proposed,  covering  several  application
areas. This section describes more recent trends in data-
driven  polarimetric  imaging  from  four  perspectives.
Schematics of  the  trends  in  existing  data-driven  polari-
metric imaging are shown in Fig. 2.

With the exploration of data-driven polarimetric ima-
ging, the  application  fields  and  utilization  of  polariza-
tion information have gradually increased. Regarding the
input and  use  of  polarization  information,  directly  cap-
tured  images  from  detectors,  such  as  division  of  focal
plane (DoFP) images42−45 or 0°, 45°, 90°, and 135°46−52 po-
larization images, are the most common inputs. It should
be  noted  that,  despite  having  four  components,  the  last
one is often neglected in practical applications, leading to
the predominant use of only the initial three parameters.
This  is  because,  theoretically,  the  last  parameter  can  be
derived from  the  first  three,  thereby  reducing  the  diffi-
culty  in  image  acquisition.  In  addition,  polarimetric
parameter features  were  calculated  to  represent  the  po-
larization information  more  intuitively,  such  as  the  de-
gree  of  polarization  (DoP)  and  angle  of
polarization(AoP)52−57,  [S0, S1, S2]52,55,58,59,  Mueller matrix
images60−63 and  other  combinations  of  these  elements.
Features  based  on  the  corresponding  physical  model
during different  tasks  were  also  computed to  guide net-
work  training,  such  as  zenith  and  azimuth  angle  maps
derived  from  specular  and  diffuse  reflection64,65 in  3D
shape reconstruction tasks.

Furthermore, physical  modes  are  crucial  during  net-
work training, such as polarimetric descattering models,
three-dimensional  imaging  models,  Fresnel  equations,
Mueller matrix  interpretation  models,  and  other  tradi-
tional polarization models. The preliminary methods are
often  end-to-end  architectures43,46,47,56,64,66−70,  suggesting
that  the  polarization  information  is  input  into  the
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network  to  generate  the  desired  outputs  directly;
however, the physical models are gradually guided46,47,49,71

or  integrated  into  network  training48,72−74.  Furthermore,
the  physical  model  and  its  inverse  process  can  form  a
self-supervised closed  loop  to  achieve  better  perform-
ance. Furthermore, data-driven polarimetric imaging en-
ables the physical interpretability of networks compared
with  conventional  deep  network  methods.  Polarimetric
parameters  were  initially  adopted  to  perform  different
tasks without exploring the hidden mechanisms. In more
in-depth  research  on  data-driven  polarimetric  imaging,
the  estimation  of  specific  physical  parameters  based  on
the  nonlinear  representation  of  deep  networks36,58 and
the physical interpretation of network layers63 have been
gradually studied.  This  process  contributes  to  future  re-
search and  development.  Based  on  the  polarimetric  in-
formation fused into the network, other physical proper-
ties of light have also been introduced in network train-
ing, such as spectrum172 and phase71,75. Finally, the applic-
ation fields tend to be semantic tasks based on convolu-
tional enhancement or restoration imaging. Initially, im-
age processing was the main field applied by data-driven
polarimetric  imaging,  such  as  descattering
imaging46−49,66,70,72,76,  denoising45,77,78,  demosaicing43,44,68,
dynamic  range  enhancement79,  reflection  removal53,73,74,
low-light  imaging42,50,  and  even  3D  reconstruction
shape64,65,67,71,80,81. Next,  semantic  tasks  appeared  gradu-
ally  similar  to  semantic  segmentation56,57,69,82,83, camou-
flage  object  detection84,  classification60,61,  pathological
diagnosis62,63,85,86,87.

 Applications of data-driven polarimetric
imaging
According  to  the  application  field,  existing  data-driven
polarimetric imaging methods can be classified into sev-
en categories: polarimetric descattering, 3D shape recon-
struction, reflection  removal,  restoration  and  enhance-
ment of  polarization  information,  target  detection,  bio-
medical imaging  and  pathological  diagnosis,  and  se-
mantic segmentation, as shown in Fig. 3.

 Restoration and enhancement of accurate
polarization information
Accurate  polarization  information  is  the  foundation  of
imaging and its applications. In the real world, theoretic-
al constraints  and  technological  limitations  lead  to  dis-
tortion of polarization information. Additionally, the po-

larization  parameters  of  the  nonlinear  operators  are
sensitive to  noise.  Consequently,  the  effective  restora-
tion  and  enhancement  of  polarization  information  are
crucial  for  subsequent  applications.  In  this  section,  we
analyze the limitations of polarimetry techniques and re-
view the existing restoration and enhancement of accur-
ate polarization information methods.

 Polarimetry techniques
Polarimetry techniques are crucial in obtaining polariza-
tion information. Several sub-polarized direction images
(0°, 45°, 90°, and 135° or 0°, 60°, and 120°) must be cap-
tured to obtain the polarization characteristics  based on
the Stokes vector model. However, the obtaining and cal-
culating process,  which  acquires  polarization  informa-
tion indirectly, introduces extra imaging noise to sharply
reduce  the  accuracy  of  the  polarization information.  To
date, there are four typical methods for measuring polar-
ization images:  division  of  time/rotating  elements,  divi-
sion of  amplitude88−90,  division of  aperture91,92, and divi-
sion of the focal plane93−95.

The  division  of  time/rotating  elements  is  the  most
common  method,  depending  on  the  time-sequential
activity.  The  polarizers  and  retarders  were  rotated,  and
measurements  were  made  at  different  positions  of  the
polarimetry  elements.  Furthermore,  the  time  gap
between operations may cause misregistration of polariz-
ation  images  in  a  dynamic  scene  or  the  motion  of  the
camera  case.  The  division  of  amplitude  could  capture
multiple  images  simultaneously;  however,  the  inherent
drawback is  that  the  intensity  of  images  would decrease
to less than a quarter of the intensity of the original sig-
nal, which causes the image contrast to decrease sharply
and  amplify  the  image  noise.  Moreover,  misregistration
must be solved.  The aperture captures images simultan-
eously using four coaxial cameras with different polariza-
tion directions. Distinctly, it is expensive and has a fixed
misregistration.  The  division  of  the  focal  plane  is  the
method used  in  real-time  polarimetric  imaging,  even  in
dynamic  scenes.  However,  instantaneous  field-of-view
errors (i.e., mosaicking and low-resolution problems) af-
fect  the  calculation  of  polarization  parameters. Table 1
presents a comparison of the polarimetric elements.

After  capturing  the  images  using  the  aforementioned
polarimetric  techniques,  Stokes  vectors  were  adopted  to
display  the  polarization  characteristics.  The  relationship
between  them  can  be  characterized  by  the  follow
equation: 
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Iφ = (S0 + S1cos2φ+ S2sin2φ)/2 , (1)

where Iφ is  the  image  with  the  polarization  direction φ.
Then, the Stokes vectors can be calculated from the sub-
polarization direction images96,97:
 

S0 =
1
2
(I0 + I45 + I90 + I135) =

2
3
(I0 + I60 + I120) ,

S1 = I0 − I90 =
4
3

(
I0 −

1
2
I60 −

1
2
I120

)
,

S2 = I45 − I135 =
2
√
3

3
(I0 − I120) ,

S3 = I45, π2 − I135, π2 =
2
√
3

3
(
I0, π2 − I120, π2

)
, (2)

where S0, S1, S2, S3 are the components of Stokes vectors.
The parameters [S0, S1, S2] are the most common repres-
entations  of  the  linear  polarization  components. S3

shows  the  circular  polarization  component.  Therefore,
the polarization  characteristic  parameters  can  be  ob-
tained using Eq. (3):
 

P =

√
S21 + S22 + S23

S0
, PL =

√
S21 + S22
S0

,

PC =
S3
S0
, ϕpol =

1
2
arctan

(
S2
S1

)
, (3)

ϕpol

where P, PL, PC are  DoP,  degree  of  linear  polarization
(DoLP), degree of circular polarization (DoCP), respect-
ively.  is the AoP.

Furthermore,  the  Mueller  matrix  is  another  common
but comprehensive parameter that describes the modula-
tion  of  light  after  interaction  with  a  material  or
media98−100.  The  Mueller  matrix  contained  16  elements
using a 4×4 matrix. The Stokes vector of the output light
Sout can be expressed by the Mueller matrix after the in-
cident light Sin propagates through the medium as follows:  

Sout0

Sout1

Sout2

Sout3

=

 m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33




Sin0
Sin1
Sin2
Sin3

 , (4)

where m00 represents the transformation of intensity and

 

Pathological diagnosis

Species classification

Spoofing target

Camouflaged target

Pseudo-color target

Target

detection

Biomedical imaging and

pathological diagnosis

Data-driven

polarimetric imaging

Semantic

segmentation

Polarimetric

descattering

3D shape

reconstruction

Reflection

removal

Polarization

channels

Hypers-

pectral

imaging

Remote sensing

Medicine

Transparent object

Scene in wild

Underwater

descattering

Dehazing

Remote sensing

Indoor object

Scene in wild

Transparent

object

Human face

MMPD

Holographic

amplitude &

phase

Stokes

vectors

Low-light

imaging

Restoration and

enhancement of

polarization

information

HDR reconstruction

MMPD denoising

Polarimetric

parameters

denoising

Demosaicing

lndoor & outdoor

Real & synthetic

Fig. 3 | Applications of data-driven polarimetric imaging.

Yang K et al. Opto-Electron Sci  3, 230042 (2024) https://doi.org/10.29026/oes.2024.230042

230042-6

 



the other 15 elements encode the vectorial  properties  of
the object.  Furthermore,  Mueller  matrix  polar  decom-
position  (MMPD)101,  Mueller  matrix  transformation
(MMT)102,  Mueller  matrix  anisotropy  coefficients
(MMAC)103,  and  other  decompositions  of  the  Mueller
matrix104−106 have been proposed to quantitatively charac-
terize the properties of an object.

The  estimation  of  these  parameters,  which  represent
different polarizations, is always based on nonlinear op-
erations, which  are  unavoidable  when  introducing  er-
rors  and noise.  To achieve the desired performance,  the
calculated polarization parameters must be refined or re-
stored to  obtain  highly  accurate  information.  In  addi-
tion,  obtaining  precise  polarization  information  can  be
challenging when operating  in  special  imaging  environ-
ments, such as  low light  and noise,  or  with special  ima-
ging devices.  In  these  scenarios,  the  disturbed  polariza-

tion parameters amplify errors and negatively affect sub-
sequent imaging performance.

In summary, the acquisition device for raw sub-polar-
ization images,  the  use  of  nonlinear  operators  to  calcu-
late  polarization  characteristic  parameters,  and  special
imaging  environments  also  decrease  the  inaccuracy  of
the polarization information. Therefore, polarization in-
formation with  high  accuracy  must  be  restored  and  en-
hanced. In this section, we examine photostarvation, mo-
saicking, and noising to demonstrate the restoration and
enhancement of polarization information, as depicted in
Fig. 4.

 Restoration and enhancement of polarization
information methods
In  photostarved  environments,  imaging  always  suffers

 
Table 1 | Comparisons of various polarimetric elements.
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Division of time
● Robust

● Small system size and inexpensive
● Easiest to implement

● Not suitable for dynamic scenes
● Not simultaneously imaging

● Probable linear misregistration

Division of amplitude ● Simultaneous imaging

● Largest system size
● Expensive and complex
● Nonlinear misregistration
● Loss of image intensity

● Highly mechanical flexibility required

Division of aperture
● Simultaneous imaging

● Robust

● Expensive
● Loss of field of view
● Fixed misregistration

Division of focal plane
● Simultaneous imaging

● No misregistration
● Small and portable

● Loss of spatial resolution
● Mosaicking problem
● Fabrication difficult

● Expensive
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from a  low  signal-to-noise  ratio,  which  affects  the  ima-
ging  quality,  making  low-light  imaging  challenging.  In
polarimetric imaging,  the  accuracy  of  polarization  in-
formation is  degraded.  Existing  methods  consider  de-
noising,  correction  of  color  bias,  and  exposure  time  in
intensity  imaging107,108.  However,  the  difference  between
polarimetric and conventional intensity imaging has not
been fully considered. Based on the power of being data
driven,  Hu  et  al.  presented  a  one-to-three  (intensity,
DoLP, and AoP) hybrid network called IPLNet to simul-
taneously enhance the image quality of intensity and po-
larization  information42,  as  shown  in Fig. 5(a). The  en-
hanced  RGB  image  generated  by  the  chromatic  RGB
subnetwork  is  divided  into  three  channels,  and  each
channel is  fed  into  the  polarization  subnetwork  to  pre-
dict  the  polarization  information.  Enhanced  results  and
corresponding  comparisons  with  mainstream  methods
are  shown  in Fig. 5(b) with  corresponding  values  of
structural  similarity  index  (SSIM)  of  each  image.
However, many  parameters  are  generated  in  this  net-
work,  which  sharply  reduces  the  operational  efficiency.
The  image  color  is  also  inaccurate.  Therefore,  Xu  et  al.
first performed initial denoising and color deviation cor-
rection of  four  polarization  orientation  images  by  net-
work  named  ColorPolarNet  and  used  the  polarization
difference  network  to  enhance  intensity  details,  DoLP,
and  AoP  maps50. The  results  demonstrate  that  the  pro-
posed  methods  have  faster  processing  speed  and  better
performance regarding signal  fidelity,  contrast  enhance-
ment,  and  color  reproduction50,109. Compared  with  IPL-
Net, ColorPolarNet  demonstrates  slightly  superior  per-

formance and achieves higher peak signal-to-noise ratio
(PSNR),  SSIM  and  patch-based  contrast  quality  index
(PCQI)  in  terms  of S0,  DoLP,  and  AoP.  Additionally,
ColorPolarNet  achieves  notably  lower  color  difference
(CD), indicating reduced distortion compared to IPLNet.
In processing speed, ColorPolarNet (2.88 s) is more than
twice as fast as the IPLNet model (6.10 s).

Division  of  the  focal  plane  polarimeter  is  one  of  the
most common polarimetric imaging sensors that can in-
stantaneously capture dynamic polarization information.
Each individual pixel with different polarization orienta-
tions is  situated in a 2×2 superpixel,  recording only one
from the  four  essential  intensity  measurements;  there-
fore,  demosaicing  and  reconstruction  of  full-resolution
and accurate polarization information are indispensable.
Zhang et  al.  proposed a  convolutional  demosaicing net-
work  called  the  PDCNN  to  learn  end-to-end  mapping
between  coarse  interpolation  results  and  full-resolution
polarization  images68, which  is  the  first  typical  demosa-
icing architecture, as shown in Fig. 6(a). The bicubic-in-
terpolated results  are  used  as  the  input,  which  intro-
duces an  interpolation  bias,  resulting  in  inaccurate  re-
constructed results. After comparison with several main-
stream methods, the reconstruction results of DoLP and
AoP outperformed those of other methods,  as shown in
Fig. 6(b) and 6(c) with corresponding values of PSNR of
each  image110−113.  Zeng  et  al.  proposed a  four-layer  end-
to-end  fully  convolutional  neural  network  that  directly
learns mapping from DoFP to three polarization proper-
ties:  intensity,  DoLP,  and  AoP43.  However,  the  noise  in
the AoP images remained significant. Wu et al. provided
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a more physically  relevant  loss  function for  the angle  of
linear polarization (AoLP) reconstruction, establishing a
two-stage  lightweight  approach  for  reconstructing  the
intensity and polarization information in real time44. The
improved version meets the demand for real-time infer-
ence. Wen et al.114,  Sargent et al.115,  Sun et al.116 and Pis-
tellato  et  al.117 also proposed  the  data-driven  demosa-
icing methods to ensure the fidelity of polarization signa-
tures and enhance image resolution. Besides deep learn-
ing-based methods,  other  approaches  also  yield  favor-
able results in this domain, such as the sparse tensor fac-
torization-based model,  which  introduces  a  combina-
tion of tensor factorization and sparse coding for the first
time118.

Because the  polarimetric  parameters  are  always  de-
rived  from  the  measured  intensities  through  nonlinear
operators,  which  would  amplify  the  noise  for  the  AoP,
removing noise  to  precisely  restore  the  polarization  in-
formation is a significant task107,119,120. CNN have distinct
advantages regarding extracting image features and hid-
den structures;  thus,  they are suitable for image restora-
tion  and  enhancement  in  noisy  environments.  Li  et  al.
employed deep neural networks to significantly suppress
the noise in polarimetric images and enhance the image

quality45.  However,  all  channel-wise  features  are  treated
equally,  resulting  in  a  lack  of  flexibility.  Inspired  by  the
attention  mechanism,  Liu  et  al.  proposed  an  attention-
based residual  neural  network  to  remove  noise  and  re-
store the  polarization  information  of  polarimetric  im-
ages77,  as Fig. 7.  Therefore,  the  proposed  methods  can
suppress  noise  more  effectively  and  restore  polarization
information  more  accurately,  as  shown  in Fig. 7(b)109.
Additionally, SSIM is used to compare the quality of im-
ages obtained by different methods. Focusing on the de-
noising of Mueller matrix images, Yang et al. built a deep
residual U-Net that incorporated channel attention with
many  paired  low-  and  high-SNR  Mueller  matrix
images78. The ground truth is obtained based on the low
equally weighted  variance  (EWV),  which  can  be  ex-
pressed as: 

EWV =
220
N

(
σ2 + m00

4

)
, (5)

σ2where  is the variance of Gaussian noise and N denotes
the number of states of polarization. The larger the value
of N, the  higher  is  the  signal-to-noise  ratio.  The  pro-
posed method can effectively resolve the conflict between
the measurement accuracy and acquisition time.

The  fused  images  contain  more  information  than
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single physical  properties  because  the  mixed  informa-
tion describes  various  characteristics.  The  fusion  of  po-
larization  and  intensity  is  the  most  common  method
used  in  practical  applications121−125.  The  intensity  image
describes the reflectivity and transmissivity of the object,
whereas the polarization image describes the texture de-
tails, material properties, shape, shading, and roughness.
These two  types  of  images  provide  complementary  in-
formation  from  different  aspects  to  obtain  images  with
rich  physical  features  and  improve  the  performance  of
practical tasks. Conventional fusion methods are challen-
ging to  handle  various  scenes  because  a  manually  de-
signed  fused  factor  is  adopted.  Based  on  the  excellent
performance of CNN, Zhang et al. proposed an unsuper-
vised deep network called PFNet to fuse the intensity and
DoLP  images126. The  feature  extraction  module  trans-
forms the images of S0 and DoLP into high-dimensional
nonlinear feature maps using two Dense Blocks, and the
concatenation  operator  is  used  to  fuse  the  feature  maps
to  reconstruct  the  fused  image  using  the  reconstruction
module. The architecture of PFNet is shown in Fig. 8(a).
Therefore, the  method  based  on  deep  learning  outper-
forms  other  state-of-the-art  methods,  as  shown  in Fig.
8(b)122−125. SSIM is used to compare the quality of images
obtained by  different  methods.  Contrarily,  they  modi-
fied  the  architecture  to  enhance  performance.  A  Dense
Block is used to encode the input images and the fusion
subnetwork rather than a concatenation operator to fuse
the feature  maps127. New loss  function strategies  are  ad-
opted,  such  as  the  loss  between  fused  and  input  images
and  the  loss  between  fused  and  encoded  features.  The
proposed  architecture  can  also  be  used  for  infrared  and
visible image fusion, and multi-focus image fusion.

Because of the limitations of the response function of

the camera, a digital camera always captures only a lim-
ited  fraction  of  the  range,  resulting  in  low-dynamic-
range images with over- or underexposed areas that can-
not reflect real-world scenes in high-dynamic-range im-
ages128,129. Ting et al. studied the relationship between po-
larization parameters and the exposure time of a pixel in
a  polarization  image  and  trained  the  reconstruction
framework to  recover  a  high-dynamic-range  image  us-
ing polarization images79.

Other  applications  of  restoration  and  enhancement
are based on data-driven polarimetric  imaging.  The po-
larization  parameters  and  other  physical  properties  are
interconvertible. Liu et al. used a deep neural network to
transform  holographic  images  reconstructed  from  a
single  state  of  polarization  into  images  equivalent  to
those captured using a  single-shot  computational  polar-
ized  light  microscope75.  Si  et  al.  fed  Stokes  images  to  a
well-designed deep learning network to generate Mueller
matrix-based parameter  images,  such  as  linear  retard-
ance and diattenuation parameters58.

 Polarimetric descattering
Clear vision in scattering media is critical for various ap-
plications such as industrial and civil fields130, traffic sur-
veillance  systems131,  automatic  drives132,  remote
sensing133, rescue operations134, seabed mapping135, mon-
itoring of  marine  species  migration and coral  reefs,  and
scene  analysis136.  However,  when  capturing  images  in  a
scattered environment,  the  visibility  of  objects  is  typic-
ally  sharply  degraded,  which  is  caused  by  the  scattering
of  suspended  particles  such  as  clouds,  water,  haze,
smoke, smog, fog, and mist in the air, soil particles, float-
ing excrement of marine animals, algae, and mineral salt
in underwater scenes. The backscattered light was mixed
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with the object signal during its propagation towards the
camera.  Because  the  physical  properties  of  imaging  in
haze and underwater  environments  are  similar,  we ana-
lyzed  the  dehazing  and  descattering  processes  based  on
deep learning and polarimetric imaging.

 Polarimetric imaging model in scattering media
Based on the atmospheric transport model137,138,  image I
captured  by  the  camera  after  propagation  in  scattering
media consists  of  two  components:  (1)  direct  transmis-
sion  signal D,  which  represents  the  light  that  an  object
reflection  is  scattered  by  the  media  during  propagation
towards the camera; and (2) backscattered light A, which
denotes the light backscattered by the particles in the ob-
ject  light  line  of  sight  without  an  object  signal139.  The
model can be expressed as: 

I = D+ A . (6)
First,  as the light reflected from the object propagates

towards the camera via the medium, the object radiance
suffers from  absorption  and  scattering,  yielding  a  de-
graded signal. This process is described as follows: 

D = Lobjecte−βz , (7)

where z is the distance between the object and the cam-
era; β is the degraded coefficient, and Lobject is the origin-
al  object  signal  not  attenuated  by  the  scattering  media
along the line of sight. The transmitted process e–βz is the
delay of exponential function, which also expressed as t.

Second,  backscattered  light A is an  undesired  com-
ponent that veils the object light to reduce the contrast of
the image. The backscattered light can be expressed as: 

A = A∞
(
1− e−βz) , (8)

where A∞ is the saturated backscattering light as the dis-
tance increases. We aimed to reconstruct the original ob-
ject signal Lobject by combining Eq. (6) and (7). Then, Lob-

ject can be expressed as: 

Lobject =
I− A

1− A/A∞
, (9)

I⊥ I∥

as  a  result,  the estimation of  two unknown components
A and A∞ is key to reconstructed Lobject. Schechner et al.
proposed a polarization descattering model based on an
atmospheric scattering model. The proposed method ob-
tains  two  orthogonally  polarized  images,  and 
through two orthogonal polarization states of the polar-
izer139.  This  method assumes that  the  air  light  is  usually
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partially  polarized,  whereas  the  object  is  not  polarized.
Thus, the captured images can be described by: 

Ii =
D
2
+ Ai, i ∈ [⊥, ∥] . (10)

Because the object is not polarized, the DoP of the im-
ages is  equal  to  that  of  the  backscattered  light.  Further-
more, the  backscattered  light  is  estimated  using  the  po-
larization model: 

Â =
IP
PA

, (11)

where PA and P are  the  DoPs  of  the  backscattered  light
and captured  images,  respectively.  The  saturated  backs-
cattering light A∞ is the mean of the background region
selected in the image where there is no object and the PA

is  calculated  by  the  selected  region  which  is  the  DoP of
total  backscattering  light.  Finally,  the  reconstructed
Lobject can be expressed as: 

Lobject =
I− A

1− A/A∞
=

I (1− P)
1− IP/A∞PA

. (12)

A polarimetric  imaging model  is  a  physical,  low-cost,
and effective method for restoring clear images in a scat-
tering  environment.  However,  the  method  is  based  on
the following assumptions:

1) The backscattered light at infinity is uniform, but in
the real world, clouds, the solar radiation angle, and oth-
er factors may influence the distribution.

2)  The DoP of  the object  is  not  polarized,  but  it  does
not make sense.

3)  The  DoP  of  the  backscattered  light  is  constant;
however, it must be spatially variable.

4) The polarized direction of the image is equal to that
of the backscattered light and the object signal, but there
are possible differences.

5)  The  degraded  coefficients  of  backscattering  light
and object signal are similar;  however,  Akkaynak et al.’s
study  has  proved  that  attenuation  coefficient  of  object
signal depends on the distance z, reflectance ρ, spectrum
of  ambient  light E,  spectral  response  of  the  camera Sc,
and beam attenuation coefficients  of  the  water  body βb;
however,  the  backscattering  light  is  related  to E, Sc, βb

and scattering of the water body b84,140,141.
Several improved  methods  focusing  on  this  insuffi-

ciency have been proposed. For example, Huang et al. es-
timated the polarization difference image (PDI) of an ob-
ject  signal  using  feasible  region  fitting  to  overcome  the
limitations of  the  second  assumption.  Hu  et  al.  estim-
ated the spatial distributions of the DoP of an object and

backscattered  light  by  extrapolation  fitting  to  overcome
the  first  and  third  assumptions.  However,  selecting  the
fitting function when the light was irregular was challen-
ging142.  Wei  et  al.  considered the difference between the
AoP  of  backscattering  light  and  the  object  signal,  using
independent  component  analysis  (ICA)  to  estimate  the
object signal  with nonuniform polarization characterist-
ics to avoid the limitation of assumptions (3) and (4)143.
These  methods  are  based  on  physical  models  that  lack
the  robustness  and  effectiveness  of  a  single  method  in
complex scenes because accurate estimation of key para-
meters may not be achieved. However, the latent factors
influencing image quality have not been explored.

Deep learning methods based on CNN are adept at ex-
tracting hidden  features  and  fitting  the  nonlinear  rela-
tionships between backscattering light and object signals.
Thus, it is a promising choice for descattering and dehaz-
ing. Polarimetric data-driven descattering methods com-
bine  polarization  information  and  deep  learning.
Moreover,  the  existing  model  can  guide  the  training  of
the  descattering  network  to  combine  its  advantages.
Three  different  pipelines  were  used  in  the  data-driven
polarization  descattering  method.  First,  the  end-to-end
architecture  without  the  physical  model,  which  always
uses  the  polarization  images  to  feed  into  the  network.
Second,  the  physical-model-guided  network  methods,
which  are  guided  by  the  existing  or  proposed  but  non-
participation  in  network  training;  Third,  the  physical-
model-integrated  network  methods,  which  integrate  the
physical model into the network to train the descattering
network together.  The  following  section  provides  a  de-
tailed explanation of these three perspectives.

 End-to-end descattering network
The end-to-end architecture is a common structure that
enhances image quality  and relies  on higher-order  non-
linear representations. The descattering process of a net-
work  is  the  fitting  of  the  descattering  transmission  of  a
high-order function, which has been successfully applied
to complete  scattering  removal  using  intensity  informa-
tion136,144−146. In recent studies, the introduction of polar-
ization information has proven that the input of polariz-
ation images into the network can improve the quality of
qualitative and quantitative evaluations. This section dis-
cusses the polarization end-to-end descattering network.

In 2020, Hu et al. first employed a deep learning tech-
nique in polarimetric underwater imaging46, as shown in
Fig. 9(a),  which  is  a  typical  end-to-end  descattering
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architecture.  The  three  dimensional  inputs  of  different
linear polarization orientations with 0°, 45°, 90° are fed into
an end-to-end polarimetric dense network (PDN) rather
than intensity  images,  which  contains  three  main  com-
ponents: Shallow  Feature  Extraction  (SFE)  used  to  ex-
tract shallow polarization features, Residual Dense Block
(RDB) as the basic structure to connect with each other,
and  concatenated  by  Dense  Feature  Fusion  (DFF).  The
third crucial  component  was  utilized  to  fuse  all  the  fea-
tures and output the descattering results. A dataset con-
taining abundant polarization image pairs was built using
a commercial DoFP camera, and a water tank filled with
milk was used to capture turbid and clear object signals.
The same network structure, based only on intensity im-
ages, was trained to verify the significance of the polariz-
ation information. Compared with the intensity network
and existing  methods,  the  polarization network demon-
strated higher values of  image contrast  (IC),  measure of
enhancement  (EME),  PSNR,  and  SSIM,  which  indicate
higher image quality6,147, as shown in Fig. 9(b).

Another  end-to-end  architecture  was  proposed  by

Zhang  et  al.,  which  contained  four  pairs  of  networks
consisting  of  polarized  and  gray  versions.  Furthermore,
this  method assumes  that  the  intensity  and  polarization
images are  information  streams,  two  types  of  informa-
tion flows in their respective networks, and join together
at the end of the model. Furthermore, the addition of po-
larization  information  to  gray  information  and  feeding
these  two  parts  into  fused  networks,  called  DENSE-U-
NET  BLOCK,  at  the  forefront  of  the  network  could
achieve better  results  than  the  front  or  end  of  the  net-
work70.  The  experiments  with  different  turbidity  levels
performed better  than  the  other  methods  and  demon-
strated the excellent robustness of the proposed method.

In remote  sensing,  the  scattering  medium  signific-
antly  impacts  on  the  results  of  object  reconstruction,
even producing  speckle  patterns.  Obtaining  the  corres-
pondence  between  the  original  object  and  the  imaging
process is  challenging and crucial.  Li  et  al.  combined an
object’s polarization information with a modified U-net-
based deep learning  network (MU-DLN) to  retrieve  the
original object’s information influenced by the scattering
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medium66. Data were acquired using a Monte Carlo sim-
ulation  system  and  deep  learning  technology  to  learn  a
physical model  of  the  scattering  process.  The  experi-
mental results show that the object’s information for the
Q-component can be reconstructed very well because of
the  suppression  of  scattering  light  and  highlighting  of
ballistic light.  Several  fixed  optical  thickness  environ-
ments  are  tested  to  reflect  the  superiority  of  the  trained
MU-DLN.

 Physical-model-guided descattering network
The  physical-model-guided  descattering  network  is
trained  to  remove  the  scattering  effect  guided  by  the
physical model but does not participate in network train-
ing. Based on the physical model, the theoretical feasibil-
ity was proven before guiding the design of the network
architecture.  Therefore,  the  middle  stage  of  combining
the  physical  priors  and  models  is  instructive  for  further
fusing the physical model into the design of the network
pipeline.

Guided by a physical imaging model, Ren et al. trained
a  lightweight  dehazing  CNN  to  rapidly  process  turbid
images, comparing it  with conventional  dehazing meth-
ods and  introducing  additional  circular  polarization  in-
formation148.  Furthermore,  this  is  the  first  time  circular
polarization  information  has  been  fed  into  a  network.
Two unknown parameters in the polarimetric descatter-
ing  model  resulted  in  an  underdetermined  function  by
directly generating these parameters. Therefore, the pro-
posed  method  combines  these  two  parameters  into  a
single formula to avoid an underdetermination problem
and minimize  the  reconstruction  error.  The  new  para-
meter K is expressed as:149
 

K =
(I− A∞)/ t+ A∞ − 1

I− 1
. (13)

Lobject =KI− K+ 1The Eq. (12) can be rewritten as an ,
after  which  the  descattering  process  is  viable  once  the
parameter K is obtained. Tests were conducted in differ-
ent  turbid  environments  to  verify  the  feasibility  of  the
proposed method, and the results indicated the effective-
ness  and  high  efficiency  of  the  lightweight  architecture.
Subsequently,  Ding  et  al.  adopted  a  multi-polarization
fusion adversarial  generative  network to enhance turbid
images47.  Compared  with  the  conventional  model,  the
proposed method introduces an angle of  polarization to
calculate the backscattered light, expressed as: 

Â =
I0 − I[1− P]/2

PAcos2ϕA
, (14)

ϕAwhere the  is AoP of backscattering light computed by
the selected background region. They built the first color
polarization image datasets in the natural underwater en-
vironment,  which  selected  the  visually  better  enhanced
results among  the  results  produced  by  several  conven-
tional methods150−154. Compared with the underwater res-
ults by  four  supervised  data-driven  polarimetric  meth-
ods mentioned above,  the experimental  results  in labor-
atory  simulated  by  the  milk  have  huge  improvement;
however, the natural results are improved to a lesser ex-
tent because  the  complicated  environment  would  in-
crease the diversities of known or hidden parameters and
then  result  in  the  networks  become  more  generalized
with higher  robustness  but  lower  performance in  a  spe-
cific example.

 Physical-model-integrated descattering network
The physical-model-integrated  descattering  network  in-
tegrates  the  descattering  model  into  the  network  as  the
backbone to guide the descattering process, which intro-
duces  constraints  compared  to  the  physical-model-
guided descattering network. Therefore, the main task of
the  network  is  to  generate  or  refine  specific  parameters
before  they  are  utilized  to  generate  improved  results.
Furthermore, the physical model and its inverse process
can form  a  self-supervised  closed  loop  to  achieve  im-
proved performance.

To  further  combine  the  physical  formation  model
with deep learning methods, some researchers have em-
bedded  existing  dehazing  approaches  into  the  proposed
pipeline.  Zhou  et  al.  proposed  a  robust  polarization-
based  dehazing  architecture  with  a  generalized  physical
formation model that requires no specific clues to estim-
ate the required physical parameters or handcrafted pri-
ors48. Figure 10(a1) and 10(a2) show the  network  archi-
tecture and  corresponding  example  with  evaluation  in-
dex(PSNR and multi-scale  SSIM).  The  transmitted  light
D (T in Fig. 10(a1)) and original scene radiance Lobject (R
in Fig. 10(a2))  can  be  calculated  using  the  following
equations: 

D = PI− IPA

PT − PA
and Lobject =

DA∞

A∞ − (I− D)
, (15)

where PT and PA define the DoP of the transmitted light
and backscattered  light,  respectively,  which  are  estim-
ated  by  the  subnetworks.  The  symbols I and P are  the
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haze image and its DoP, respectively, which can be calcu-
lated from the polarized images. The DoPs of the object
signal and  scattered  light  can  be  generated  by  subnet-
work g1 before estimating the transmitted light using the
imaging model. The refined light transmitted by subnet-
work g2 is  utilized  to  calculate  the  original  scene  radi-
ance, in  which  the  saturated  backscattered  light  is  ob-
tained  by  subnetwork g3. Finally,  the  refined  subnet-
work g4 was adopted to generate the refined results. The
raw polarization direction images join each subnetwork.

The generation  of  the  synthetic  dataset  was  instruct-
ive. Clear images with depth and semantic segmentation
maps  must  be  provided  for  the  generation  process.  The
Foggy Cityscapes-DBF  dataset  was  eligible,  and  reason-
able  values  of  the  corresponding parameters  were  set  to
generate  the  synthetic  dataset155−157.  Gaussian  noise  was
introduced to  make  them spatially  variant  and conform
to real-world  scattering  conditions  to  improve  the  ro-
bustness of the network158,159.

Contrarily,  Shi  et  al.  processed  a  polarization-based
self-supervised dehazing network called PSDNet to elim-
inate  the  influence  of  haze  on  images72. Figure 10(b1)
and 10(b2) show the proposed network architecture and

corresponding  results,  with  assessment  criteria(IC  and
entropy-based  no-reference  image  quality  assessment
(ENIQA)) which  consist  of  three  subnetworks  to  com-
pute the  object  radiation,  transmitted  light,  and  backs-
cattered  light.  The  pipeline  processed  a  self-supervised
closed  loop  to  optimize  the  network.  The  end-to-end
descattering  network  is  part  of  the  total  pipeline,  which
effectively reduces the scale of the network and enhances
performance. Additionally, a secondary product with an
accurate transmission map was produced, which may be
helpful for  other  computer  vision  tasks,  such  as  3D  re-
construction. Several experiments demonstrated that the
proposed architecture can effectively improve the visibil-
ity of object details and is highly robust for the scene.

R(·)

Because it  is hard to capture the ground truth corres-
ponding  to  the  object  in  the  underwater  environment,
unsupervised learning polarimetric underwater methods
were proposed. Zhu et al.  synergistically make use of an
untrained  network  and  polarimetric  imaging  formation
model  to  recover  images  from  scattering  in  underwater
scenarios  without  requiring  additional  datasets49.  There
are two stages during the network training. First, the raw
input  images  are  input  to  the  network  to  generate
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M (·)
the  optimized  image.  Furthermore,  using  the  imaging
formation  model  to recalculate  the  degraded  im-
age. After the circular process, the loss of raw image and
calculated image is adopted to optimize the network: 

[R (·;w∗) ,Θ∗] =

argmin
w,Θ

∥M{R(I(x, y);w),Θ} − I(x, y)∥22 , (16)

where w is the weights, Θ is parameters of image forma-
tion model including {α, η, ps°, S∞}. These parameters are
estimated using a neural network, where the initial value
is selected by traditional methods. Specificly, α is a com-
pensation factor for the water absorption is set to 0.99 as
the subject was placed in a comparably shallow position
with  pure  water  in  the  underwater  environment,  where
the influence on the absorption of natural light could be
ignored. η is a bias factor and ps° is degree of the scatter-
ing  light,  where  the  range  of η is  from  1  to  1/ ps°.  The
measurement  value  of ps° is  set  to 0.8333 and η=1.13  to
meet the range of 1 ≤ η ≤ ps°. S∞ is the scattered light ra-
diation at  an  infinite  distance  estimated by  the  intensit-
ies of the brightest region of the no object.

The proposed methods not only overcome the acquisi-
tion  of  polarization  characteristics  of  the  environment
and object  in  the  conventional  process  but  also  minim-
ize  the  dependency  on  datasets  even  when  training  on
only  one  image.  Moreover,  the  mismatch  between  the
model  and  a  real  scene  lacking  environmental  priors  is
significantly  reduced. Figure 11(a) and 11(b)49 show  the
proposed  architecture  and  a  visual  comparison  among
the  different  descattering  methods147,160−163 together  with
statistical index  of  image  contrast.  The  method  repres-
ents  a  pioneering  attempt  in  the  realm  of  unsupervised
descattering imaging.  However,  its  capacity  for  enhan-
cing imaging outcomes remains somewhat limited.

Yang et al. trained a network to inpaint backscattered
light  with  different  polarization  orientations,  which  was
used  to  calculate  the  DoP  and  AoP  of  the  background
light76. Furthermore,  this  is  another unsupervised meth-
od that does not require clear ground truth. The primary
task of the proposed method is to calculate the complete
backscattered light. After removing the region of the ob-
ject in the captured polarized images using the GrabCut
algorithm, the incomplete image, randomly erasing a re-
gion, is  input  to  the  network  to  generate  a  mission  re-
gion  before  using  a  filtering  method  that  compares  the
gray value of one pixel with those in other nearby pixels
and replacing the singular point with the averaged value
in a 7×7 square. Furthermore, a clear image is calculated
using the following modified function: 

Lobject =
I− (A/ε)

1− (A/εA∞)
, (17)

where the ε is bias factor. Consequently, the object radi-
ance was  optimized  and  recovered  based  on  the  under-
water image recovery process. The proposed method has
a much lower cost for preparing the training datasets and
demonstrates  the  capability  of  recovering  underwater
images  under  different  nonuniform  optical  fields.  The
flow chart, proposed architecture of the Yang et al. meth-
od76, corresponding results, and comparisons with exist-
ing methods142,147,164,165 are shown in Fig. 12.

Data-driven  polarization  descattering  methods  have
been gradually introduced into physical models to guide
network training, which resolves the limitations of tradi-
tional methods.  Data-driven  methods  learn  more  com-
prehensive  features  and  adjust  them  for  more  complex
media. Furthermore,  it  improves  the  training  perform-
ance  and  provides  another  training  process  for  a
self-supervised  closed  loop  to  optimize  the  network.
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Additionally,  the  physical  model  in  the  network  may
generate  extra  parameters  that  are  probably  helpful  for
other tasks, such as depth maps, backgrounds, and inher-
ent  coefficients  of  media.  The  acquisition  of  dataset  is
key for  network  training  in  scattering  media.  The  syn-
thetic  and  generated  methods  may  solve  the  problem
despite remaining crucial and challenging in the future.

 Three-dimensional shape reconstruction
By  analyzing  the  interactions  between  light  and  surface
geometry,  we  can  reconstruct  the  3D  shapes  of
objects166,167, where  polarization  is  crucial.  Natural  illu-
mination  becomes  partially  polarized  after  reflection
from  an  object’s  surface.  Polarized  reflection  implies
shape  information  because  the  Fresnel  equations  relate

the  DoP,  AoP,  and  micro-surface  zenith  and  azimuth.
An intrinsic drawback of deriving a shape from polariza-
tion  is  the  ambiguous  estimation  of  surface  orientation.
The suitable arctangent function in the model results in a
multivalued azimuth, commonly known as azimuth am-
biguity.  Cues  from  various  aspects,  such  as
geometry168−170,  spectrum171,172,  photometry173−176.
However, relying only on a physical-based imaging mod-
el, recovering the shape with high accuracy remains chal-
lenging  under  nonlaboratory  conditions.  The  excellent
nonlinear representation ability of deep neural networks
can narrow the gap between ideal and real-world condi-
tions.  This  section  reviews  the  existing  3D  shapes  from
polarization methods combined with deep learning (DL).
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 Principles of polarization 3D shape reconstruction
The surface shape changed the polarization states of the
incident illumination, providing the possibility of recov-
ering the shape from polarization. In polarization detec-
tion,  polarization  information  can  be  obtained  using  a
camera  and  a  rotated  linear  polarizer  mounted  in  front
of it or a camera with a pixelated polarizer. The captured
image intensity varied sinusoidally. 

I
(
ϕpol

)
=

Imax + Imin

2
+

Imax − Imin

2
cos

(
2ϕpol − 2ϕ

)
,

(18)
where ϕpol denotes the angle of polarizer axis relative to a
chosen  reference  orientation, ϕ denotes  the  azimuth
angle of micro-surface of an object, Imax and Imin refer to
the  observed  maximum  and  minimum  intensity  during
ϕpol from 0  to  π.  A whole  2π period of  sinusoidal  func-
tion results in a π ambiguity. For instance, if ϕ=ϕpol,  the
maximum intensity is obtained. However, the minimum
intensity  corresponds  to  two azimuth angles,  i.e. ϕ±π/2.
The π-ambiguity problem is the one of shape from polar-
ization.

The polarization state of the reflected light directly de-
pends  on  the  reflection  type  occurring  over  the  surface,
which  is  primarily  specular  or  diffuse  reflection,  as
shown in Fig. 13.

The  Fresnel  equations  describe  how  incident  light
changes when  propagating  in  media  with  different  re-
fractive indices. When specular reflection dominates, the
DoP  of  the  specular  reflection  is  calculated  using  the
Fresnel reflection coefficients: 

Ps =
R⊥ − R∥

R⊥ + R∥
. (19)

Combined with the Fresnel function, it has the expres-
sion in Eq.(20)177: 

Ps =
2sin2θcosθ

√
n2 − sin2θ

n2 − sin2θ− n2sin2θ+ 2sin4θ
, (20)

where n denotes  the  refractive  index, θ refers  to  the
zenith angle, assuming that ηi =1 because in most condi-
tions  light  is  incident  from  air.  The  refractive  index  of
specular  surface  is  denoted ηt = n.  Because  the  azimuth
angle is perpendicular to the phase of the specular polar-
ization178,  leading to the π/2 shift of azimuth angle. This
is  another  ambiguity  problem regarding shape owing to
polarization.

n̂ = n (1+ iκ)

Material  object  reconstruction  is  more  complicated
than that of regular specular surfaces. The refraction in-
dex  of  metal  is  a  complex  number  defined  as

,  where κ is  the  attenuation  coefficient.
And then Eq. (20) can be derived as: 

Psm =
2ntanθsinθ

tan2θsin2θ+ |n̂|2
. (21)

Diffuse reflection originates from the light refracted by
the  shallow  surface  of  an  object,  in  which  it  is  partially
polarized owing to the irregular interactions between the
light and the interior particles. Therefore, the DoP of dif-
fuse reflection is determined by the Fresnel transmission
coefficients.  The  relationship  between  the  DoP  and  the
Fresnel coefficients of diffuse reflection is defined as: 

Pd =
T∥ − T⊥

T∥ + T⊥
=

R⊥ − R∥

2− R⊥ − R∥
. (22)

Under these conditions, light is refracted to the air in
the object. Therefore ηt =1, i.e. the refraction index of air,
and ηi =n, i.e., the refraction index of diffuse surface. Eq.
(23) can then be derived as: 

Pd =

(
n− 1

n

)2

sin2θ

2+ 2n2 −
(
n+ 1

n

)2

sin2θ+ 4cosθ
√
n2 − sin2θ

.

(23)
ϕGiven  the  azimuth  angle  and  zenith  angles θ,  the

normal vector of shape surface at any point could be ex-
pressed as179: 
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n (u) = [nx (u) , ny (u) , nz (u)]T

= [sinϕ (u) sinθ (u) , cosϕ (u) sinθ (u) , cosθ (u)]T ,
(24)

where nx(u), ny(u), nz(u) are  the  normal  vectors  of  ele-
ment surface u. The normal vector can be expressed us-
ing the surface gradient, as shown in Eq. (25) 

n (u) = 1√
p(u)2 + q(u)2 + 1

[
−p(u)2 −q(u)2 1

]T
,

(25)

p (u) = ∂zx (u) q (u) = ∂zy (u)
∇z (u) =

[
p (u) q (u)

]Twhere , ,  i.e.,
.  Finally,  the  surface  shape

z(u) was reconstructed.
The shape of  the polarization differs  according to the

type  of  reflection.  Compared  to  specular  reflection,  the
DoP and zenith  angles  for  diffuse  reflection  are  one-to-
one maps.  However,  diffuse reflection makes the recon-
struction process challenging because of the lower signal-
to-noise ratio and higher dependence of the DoP on the
refractive  index.  For  specular  reflection,  the  mirror-like
surface  maintains  a  relatively  uniform  direction  and
phase,  thus  avoiding  the  influence  of  random  noise.
However,  specular  reflection  leads  to  more  ambiguous
problems  than  diffuse  reflection  does.  Moreover,  it  is
challenging to find an object when the viewing direction
exceeds  the  reflection  direction. Table 2 compares  the
advantages and disadvantages of the shape from polariz-
ation based on both specular and diffuse reflections.

The shape  of  the  polarization  depends  on  the  estim-
ated  azimuth  and  zenith  angles.  Ambiguity  is  a  critical
challenge. Regarding the azimuth angle, two phase angles
with a π shift are derived from the period of the sinusoid
function.  For  specular  reflection,  the  azimuth  angle
would  be  retrieved  with  ±  π/2  operation.  However,  the
two zenith angles of the ambiguous solution are determ-
ined  for  a  given  DoP  in  the  specular  reflection,  which
cannot  be  excluded  without  other  information.  These
contributing factors result in high error rates and limita-
tions in the generalization to mixed materials and light-

ing conditions using only polarization images.
In addition  to  the  ambiguity  problem,  other  limita-

tions to  the  shape  owing  to  polarization  exist.  For  ex-
ample, estimating the zenith angle requires an unknown
prior for  the  refractive  index,  which  limits  the  recon-
struction of complex objects and natural scenes. Second,
when  the  zenith  angle  is  close  to  zero,  the  influence  of
noise  increases  because  the  DoP  is  small.  Third,  mixed
reflections  were  common  in  real-world  scenarios.
Moreover,  achieving  satisfactory  reconstruction  results
in complex scenarios by using the linear superposition of
a single  physical  model  is  challenging.  Finally,  the  dis-
continuous depth  is  also  a  significant  challenge  for  re-
covering  the  shape  from  the  derived  surface  normal  by
integration. Consequently,  the  introduction  of  other  in-
formation  is  essential  to  avoid  the  problems  mentioned
above and expand the application fields.

Typical  methods  include  a  combination  of  heuristic
priors, such as the boundary and convexity of objects180,
shading181, and photometric stereo64, but noise is a major
limitation.  This  complicated  calculation  amplifies  the
noise, leading to a degraded texture or profile in the re-
covered shapes. Data-driven imaging is powerful for 3D
imaging with a nonlinear modeling ability. Furthermore,
this  primarily  depends  on  the  semantic  information  of
the  image.  Under  the  guidance  of  the  physical  model,
this brings new possibilities for shapes from polarization.

 Data-driven shape from polarization in single
reflection
In certain situations,  the reflection can be purely specu-
lar or diffuse. For instance, in human face recognition or
clothed body reconstruction tasks, the skin, clothes, and
other human tissues are diffuse surfaces, and specular re-
flection is  negligible.  In  transparent  object  reconstruc-
tions, specular reflection dominates.

For  3D  clothed  human  shape  reconstruction  with
clothing details,  Zou  et  al.  introduced  polarization  im-
ages and two ambiguous normal maps into the designed

 
Table 2 | Comparisons of specular reflection and diffuse reflection.

 

Advantages Disadvantages

Specular reflection
● Higher signal-to-noise ratio

● Lesser influence of the refraction index

● Suffer from more ambiguity problem
● Lower viewing angle

● Lesser application fields

Diffuse reflection
● Monotony of degree of polarization about refraction index

● Wide viewing angle
● More application fields even for scene in wild

● More influence of noise
● Worse visual effects

● Stronger influence of refraction index
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network65,  as  shown  in Fig. 14.  Specular  reflection  was
omitted  because  of  the  rough  surface  of  the  clothing.
Owing  to  the  azimuth  ambiguity  problem,  two  possible
maps were resolved and input into the network as phys-
ical priors.  The two ambiguous normal maps, n1 and n2

are  classified  into  three  categories: n1, n2, and  back-
ground.  Each  pixel  point  was  classified  as  belonging  to
one of these three categories and then merged into n3 us-
ing Eq. (26) with probabilities p0, p1 and p2. 

n3 = (1− p0) ·
p1n1 + p2n2

∥p1n1 + p2n2∥2
. (26)

The final surface-normal prediction is refined using a
denoising  network.  The  smoothed  normal  concatenates
the  fused  normal  and raw polarization direction images
as  the  input  to  accurately  estimate  the  surface  normal.
Subsequently,  the  skinned  multi-person  linear  (SMPL)
representation182 and deformation stage were used to re-
construct the refined 3D human shape with clothing de-
tails rather than naked.

Regarding diffuse-reflection-dominated cases,  such as

human face reconstruction, Han et al. proposed a learn-
ing-based  method  for  passive  3D  face  reconstruction
from  polarization183,  as  shown  in Fig. 15(a). Further-
more, it  derives the ambiguous normal of each microfa-
cet over the face at the pixel level based on the polariza-
tion of the diffuse reflection. The CNN-based 3D morph-
able model (3DMM) generates a rough depth map of the
face based on a directly captured polarization image, and
is used to amend the ambiguous polarization normal and
further  reconstruct  an  accurate  3D  face  using
Frankot–Chellappa  3D  surface  restoration  functions.
Figure 15(b) illustrates the final results, including a male
face  under  indoor  lighting,  a  male  face  under  natural
outdoor  illumination,  and  an  indoor  plaster  statue.  The
3D rendering  features  fit  well  with  the  original  appear-
ance, and the lighting conditions had little influence. The
experiments also  demonstrate  the  benefits  of  introdu-
cing deep learning into 3D polarization reconstruction.

The transparent  objects  exhibited  typical  specular  re-
flections.  Shao  et  al.  proposed  a  multibranch  fusion
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network  to  reconstruct  3D  shape-transparent  objects
from specular reflections81. However, transmitted light is
often a diffuse reflection. Therefore, separating the trans-
mitted  light  is  critical.  The  AoLP  features  indicate
stronger background noise in areas with higher transmit-
tance. The closer it is to the center area, the stronger the
noise, as shown in Fig. 16. The physical prior confidence
concept is based on intrinsic faults in the AoLP maps of
transparent objects. 

ConfidenceK,m (i, j) =

∑
p∈Pi,j

|p− p̄i,j|m

max
0⩽x⩽W
0⩽y⩽H

∑
p∈Px,y

|p− p̄x,y|m
, (27)

p̄x,y
where pi,j represents  the  pixel  values  in  the K×K neigh-
borhood of the point (x, y),  is  the mean of the pixel
values in this area, m is the smoothing exponential term.
H and W denote the  height  and  width  of  the  map,  re-
spectively.  This  physics-based  prior  confidence  map  is
then input into the network as an attention map to guide
the fusion of  the original-polar (DoLP and AoLP maps)
and  physics-based  prior  (four  ambiguous  maps).  The
proposed  method  achieves  optimal  performance  and
provides  a  new  perspective  for  further  transparent
shapes from polarization research.

 Data-driven shape from polarization in mixed
reflections
Mixed reflections  stemming from the  two primary  con-
ditions were prevalent in the natural scenarios. First, the
reflectance of  the  surface  determines  the  type  of  reflec-
tion: specular reflection or diffuse reflection. For materi-
als such  as  ceramics,  plastics,  and  lacquers,  specular  re-
flection dominates the highlighted areas, whereas diffuse
reflection  dominates  the  other  areas.  Second,  objects
made of different materials create reflections that vary in

each segmented area. Moreover, this problem can also be
solved  by  reconstructing  each  area  separately;  however,
the  segmentation  algorithm  and  stitching  of  the  3D
shape of an object are huge challenges. Neural networks
provide solutions to fuse explainable or inexplicable fea-
tures  with  mixed  reflections,  relying  on  their  excellent
nonlinear representation ability.

The first method combines deep learning and polariz-
ation-reconstructed models; Ba et al. fed polarization im-
ages and ambiguous normal maps into the network and
trained  the  network  to  learn  the  effective  inputs  from
training  data  automatically64. The  inputs  were  four  im-
ages captured  with  a  polarizer,  and  the  ambiguous  nor-
mal maps consisted of one diffuse and two specular am-
biguous maps.  The  proposed  method  achieved  the  low-
est  test  error on the tested data under the three lighting
conditions compared with conventional methods.

Based on a polarimetric Bidirectional Reflectance Dis-
tribution Function (pBRDF) model and real polarization
scene rendering, Kondo et al. applied rendered polarized
images to train a network for an accurate surface normal
estimation71. A physics-based renderer was built to simu-
late  the  polarization  behavior  of  the  rays  based  on  the
proposed pBRDF model for each material. Furthermore,
it can  correctly  reproduce  the  polarization property,  in-
cluding  the  inter-reflection  effect,  in  real-life  scenes.
Therefore,  the  synthetic-colored  image  and  simulated
polarization  information,  such  as  the  phase  and  DoP,
were  fed  into  the  CNN  to  estimate  the  surface  normal.
The  detailed  process  and  reconstruction  results  are
shown in Fig. 17(a).

The proposed pBRDF model is described by the angle
of incident  light,  plane,  reflection  angle,  camera  direc-
tion, and  half-vector,  which  allows  accurate  transmis-
sion Mueller matrix modeling for arbitrary cameras and
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lighting positions.  Specular  and  diffuse  reflection  mod-
els  were  established  separately.  The  Mueller  matrix  of
specular reflection considers the rotation matrix of light

in  the  incident  plane,  Fresnel  elements,  delay  metrics,
and the  rotation  matrix  of  light  in  the  camera,  as  de-
scribed by Eq. (28),

Ms
i,o =


R+ R−γl R−χl 0
R−γc R+γlγc − R×χlχccosδ R+χlγc + R×γlχccosδ R×χcsinδ
−R−χc −R+γlχc − R×χlγccosδ −R+χlχc + R×γlγccosδ R×γcsinδ

0 R×χlsinδ −R×γlsinδ R×cosδ

 , (28)

R+ = (R⊥ + R∥) /2 R− = (R⊥ − R∥) /2
R× =

√
R⊥R∥

where , ,  and
 are  Fresnel  reflection  coefficients.  The

other  coefficients  are  elements  of  the  rotation  matrix.
Accordingly,  the  Mueller  matrix  of  diffuse  reflection
contains  a  rotation  matrix  of  light  into  the  incident
plane, two Fresnel elements into and out of the surface, a
depolarization matrix, and a rotation matrix of light into
the camera, as denoted by Eq. (29), 

Md
i,o =


T+

o T+
i T+

o T−
i βln T+

o T−
i αln 0

T−
o T+

i βnc T−
o T−

i βlnβnc T−
o T−

i αlnβnc 0
−T−

o T+
i αnc −T−

o T−
i βlnαnc −T−

o T−
i αlnαnc 0

0 0 0 0

 ,

(29)
T+ = (T⊥ + T∥) /2 T− = (T∥ − T⊥) /2where  and  are

Fresnel  transmission  coefficients.  The  final  normalized
Mueller matrix  is  the  linear  superposition  of  the  reflec-
tion matrix and depolarization matrix mentioned above,
representing the  diffraction  and  scattering  characterist-
ics of the light inside the materials. The linear superposi-
tion process  can  effectively  simulate  the  mixed  reflec-
tions.  A  generalized  Lambertian  reflection  distribution
function model was used to parameterize luminance and
linear combination  coefficients.  Through  the  final  op-

timization, all  parameters  can  be  calculated.  Experi-
ments  show  well-rendered  results  close  to  the  real  ones
used  to  generate  polarized  images  as  synthetic  datasets.
This study  guides  the  establishment  of  3D  reconstruc-
tion of polarized datasets and encourages exploration to
accurately transmit  the  interaction  process  between  po-
larized light and objects, even in the entire scenario.

Similarly, Deschaintre et al. coupled polarimetric ima-
ging with  a  CNN  to  estimate  the  3D  shape  and  calcu-
lated the Spatially Varying Bidirectional Reflectance Dis-
tribution Function  (SVBRDF)  using  single-view  polari-
metric  imaging  under  frontal  flash  illumination80,  as
shown in Fig. 17(b). U-Net  contains  three  branched de-
coders  to  generate  the  3D shape:  1)  surface  normal  and
depth maps, 2) spatially varying reflectance properties as
diffuse, and 3) specular albedo maps and specular rough-
ness maps.  Next,  it  was  fed  by  the  flash  image,  normal-
ized diffuse color,  and the Stokes map computed by the
polarization image results, which were plausible, and the
proposed method captured the real appearance of the in-
puts. However,  as the lighting or object becomes gradu-
ally  complex,  for  instance,  multi-illumination,  multiple
objects  with  blurred  details,  etc.,  the  methods  based  on
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BRDF71,80 will suffer poor recovery, and accurate simula-
tion of mixed polarization remains an open challenge.

Mixed reflection dominated the outdoor scenario with
multiple objects with different refractive indices. Lei et al.
constructed  the  first  real-world  SfP  dataset  for  complex
scenes to train a network67. The proposed network input
includes  three  parts:  1)  four  raw  captured  polarization
images and 2) polarization feature images,  including in-
tensity, DoP, and encoded AoP by sine and cosine opera-
tions.  Encoded  AoP  solves  the  problem  regarding  raw
AoP maps being similar at two given polarization angles
with  π  difference;  3)  The  viewing  encoding  to  account
for  non-orthographic  projection  in  scene-level  SfP.  The
introduction  of  viewing  encoding  effectively  calibrates
the  polarization  parameters  influenced  by  the  spatially
varying viewing directions.

In  summary,  existing  data-driven  polarization  3D
shape  reconstruction  methods  are  always  end-to-end
structures guided  by  a  physical  model.  The  basic  struc-
ture  is  input  to  the  raw  polarization  images  and  other
prior  images,  which  are  always  ambiguous,  to  optimize
the network, and the refined normal image is generated.
In addition, other prior images are crucial in the corres-
ponding methods  for  enhancing  the  reconstructed  ef-
fects. Different inputs may also result in various network
architectural designs. Therefore, as shown in Fig. 18, the
inputs  in  the  3D  shape  reconstruction  task  are  visually

displayed.
The data-driven dataset for the ground truths was ob-

tained  in  two  ways.  First,  a  Kinect  depth  camera  is  the
most  commonly  used  equipment  for  capturing  a  coarse
depth map as the ground truth. Other operations may be
conducted to refine the captured depth map, such as de-
noising, exclusion of inaccurate values, and sparse point
cloud67. Second, a simulation method based on the BRDF
is  adopted  to  generate  the  synthetic  datasets.  Plausible
results  could  be  produced,  and  other  features  such  as
roughness  and  depth  maps80 could  also  be  generated,
which  may  be  helpful  for  other  computer  vision  tasks.
However,  robustness  will  decrease  in  a  complicated
environment.

 Reflection removal

 Limitations of reflection removal based on
polarization
Removal of reflection contamination is a challenging but
critical  and  frequently  encountered  task  because  it  may
contaminate  image  quality.  Several  studies  have  been
conducted based  on  diverse  physical  and  image  charac-
teristics,  but  this  remains  an  unsubstantial  task14,184,185.
Because the transmission image through the surface and
the  image  reflected  by  the  surface  are  simultaneously
captured by a photographer, recovering two images from
a  single-mixture  image  is  a  highly  ill-posed  problem.
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Constraints are essential to solve this problem.
The  reflected  light  is  polarized,  and  polarization  has

proven to be a feasible solution to this problem. Based on
the Fresnel functions, the number of unknowns was sim-
ilar to that of the input images. The reflection and trans-
mission  components  can  be  separated  by  viewing  the
Brewster  angle.  Moreover,  the  closer  to  the  Brewster
angle,  the  better  the  reflection  removal  performance.
Despite the  incident  angle  having  to  be  known,  obtain-
ing  it  in  the  real  world  is  challenging.  Additionally,  the
robustness  and  generalization  of  existing  polarization-
based  methods  cannot  meet  the  requirements  of  real-
world  high-quality  imaging,  considering  the  various
viewing  angles,  complex  refractive  indices,  smoothness,
and local curvature of the surface.

Deep  learning  methods  based  on  CNN  are  excellent
for  extracting  hidden  features.  Furthermore,  it  enables
the prediction  of  potential  prior  information  from  cap-
tured images and demonstrates good performance in the
reflection  removal  task.  Introducing  polarization  and
imaging  models  into  the  network  can  improve  removal
performance and expand the diversity of datasets and ar-
chitectures. However,  acquiring  the  ground  truth  data-
set is crucial.  Thus, the generation of a synthetic dataset
based  on  the  proposed  method  and  refined  real  dataset
methods  was  proposed. Table 3 lists  the  elements  that
must  be  considered  in  synthetic  and  real-world  dataset
acquisition and their advantages and disadvantages.

Therefore,  artificial  manipulations  must  be  added  to
generate  synthetic  images  or  collect  real-world  images.
In  this  section,  based  on  the  acquired  aspects  of  the
training datasets,  we  review  the  existing  reflection  re-
moval methods using synthetic and real-world datasets.

 Data-driven polarization reflection removal based on
synthetic datasets
Synthetic datasets are commonly used to train networks
because they are hard-accessible real-world datasets. The
traditional method directly sums the candidate image as
a  reflection and transmission using normalized weights.
Real-world  tests  exhibit  poor  performance.  Therefore,
based on the polarimetric imaging model, synthetic data-
sets of high quality and robustness were generated.

T′

R′

By  leveraging  the  properties  of  light  polarization  and
residual  representation,  Wieschollek  et  al.  presented the
first  deep  learning  approach  to  separate  reflected  and
transmitted  components73,  as  shown  in Fig. 19(a1).  The
proposed  network  architecture  uses  three  polarization
orientation images  to  calculate  the  parallel  and  perpen-
dicular components I∥, I⊥ as the input into the network.
The output of network comprises the residual images ,

 and the two single-channel weights ξ∥, ξ⊥.  The final
estimates of the reflection and transmission can be com-
puted as follows: 

Ir = ξ⊥R′ + (1− ξ⊥) I⊥ and It = ξ∥T′ +
(
1− ξ∥

)
I∥ ,
(30)

where Ir and It denote  the  estimation  of  reflected  and
transmitted  light,  respectively,  represented  as  predicted
transmission and reflection in Fig. 19(a1).

An accurate  synthetic  data  generation  pipeline  is  in-
troduced, including the simulation of realistic reflections,
such  as  high-dynamic-range  scenes,  nonstatic  scenes,
and curved and nonideal surfaces, to enhance the robust-
ness  of  the  proposed  method,  as  shown  in Fig. 19(a2).
First,  because  the  world consists  of  high-dynamic-range
elements,  the  light  intensity  naturally  diminishes  as  it

 
Table 3 | The comparison of synthetic and real-world datasets.

 

Synthetic dataset Real-world dataset

● Elements should be
considered in acquisition of

datasets

● High dynamic range in the real-world.
● Disappearance or interruption of the reflection.

● Discontinuous scene of the reflection or
transmission.

● Dynamic scenes.
● Semi-reflective surface.

● Curved or irregular surface.
● Rotating of reflection.

● Acquisition of ground truth.
● Dynamic scenes.

● Misalignment of refraction and transmission light.
● Luminousness and thickness of glass.

● Image registration with or without glass.
● Overexposure areas.

● Advantages
● Abundant samples.
● Easily generation.

● Real.
● Complicated enough to cover the real-world

conditions.

● Disadvantages
● Illusory.

● Difficult to take fully account all conditions.
● Domain gap between synthesis and real-world data.

● Difficult capturing process.
● Limited samples.
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travels.  Consequently,  artificial  adjustments  match  this
phenomenon in real-world environments. The proposed
method separately manipulates the dynamic range of the
transmitted  and  reflected  input  images  using  a  random
factor. Second, for nonstatic scenes, such as cases where
a  swaying  tree  branch  occurs  during  capture,  local  and
nonrigid  deformations  are  adopted  by  perturbing  each
grid over  a  patch.  Third,  for  curved  and  non-ideal  sur-
faces,  a  parabola  was  utilized  to  simulate  unconstrained
surface curvatures with four variable parameters.

Lyu et al. exploited the physical constraints from a pair
of unpolarized  and  polarized  images  to  separate  reflec-
tion and transmission74, as shown in Fig. 19(b). The coef-
ficients of the glass plane are predicted by the semireflec-
tor  orientation  module  to  compute  the  reflection  and
transmission  based  on  the  proposed  physical  image
formation, denoted as: 

ξ =R⊥ + R∥

ζ =R⊥cos2
(
ϕpol − ϕ

)
+ R∥sin2

(
ϕpol − ϕ

)
, (31)

where ϕpol denotes the polarization angle and ϕ denotes
the azimuth  angle.  The  unpolarized  and  polarized  im-
ages were then calculated using:
 

Iunpol =
ξ
2
· Ir +

2− ξ
2

· It

Ipol =
ζ
2
· It +

2− ζ
2

· It , (32)

where Iunpol, Ipol, ξ and ζ denotes the unpolarized, polar-
ized images and weights for reflection and transmission,
respectively. Next,  the  reflection  and  transmission  im-
ages can be computed as:
 

Ir =2 ·
(2− ξ) · Ipol − (1− ζ) · Iunpol

2ζ − ξ
,

It =2 ·
ζ · Iunpol − ξ · Ipol

2ζ − ξ
. (33)

Finally,  to  close  the  gap  between  the  physical  model
and real data, a refined module was adopted to improve
the initial estimation. Additionally, the proposed captur-
ing setup can potentially be integrated into smartphones
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without  affecting  the  original  photography  quality  or
achieving  reliable  results.  The  dataset  was  generated
based  on  the  PLACE2186 dataset,  in  which  two  random
images were selected as the original reflection and trans-
mission  images.  Reflection  is  blurred  by  Gaussian
smoothing  based  on  the  assumption  that  people  take
photos of the transmitted light.

Pang et al.  proposed a novel progressive polarization-
based reflection removal network (P2R2Net) to generate a
preliminary estimation of coarse transmission images be-
fore guiding the final reflection removal187. The input im-
ages for the network consisted of two parts: a reflection-
obstructed image and high-column features  from a pre-
trained  VGG19,  which  is  a  successful  example  of  using
pre-trained features as prior information. Reflection-ob-
structed images  are  synthetic,  based  on  physical  func-
tion Eq. (33). The high dynamic range in the real-world,
considered  as  light  intensity,  is  nonlinearly  compressed
in  the  captured  image  through  the  power  function  of
gamma  encoding73.  Two  independent  parameters  were
used to simulate diverse practical imaging environments.
Additionally, flat and parabolic surface models were ad-
opted to  simulate  curved  surfaces,  which  can  be  calcu-
lated  using  the  camera  position  (xc, yc)  and  incidence
point (xp, yp): 

θ = arccos
xcyp − xpyc − xpyp√

x2p + y2p
√(

x2p − x2c
)
+
(
y2p − y2c

) , (34)

where the θ is the angle of  incidence.  Additionally,  ran-
dom  deformation,  rotation,  and  wrapping  expand  the
scale  of  the  dataset  and  improve  the  robustness  when
synthesizing the reflected obstructed image.

 Data-driven polarization reflection removal under
real-world datasets
Despite synthetic datasets not being easy to obtain,  they
are  often  too  ideal,  and  complex  conditions  cannot  be
fully considered in real-world environments. Real-world
datasets  are  also  crucial  but  challenging  to  obtain  with
the influence of glass and misalignment issues.

Real-world datasets  are  typically  collected  using  re-
movable glass.  Reflection-obstructed  images  were  cap-
tured using a camera with glass in front of  the detector.
The ground truth of the transmission was captured after
the glass was removed. However, the difference between
transmission and  refractive  transmission  cannot  be  ig-
nored.  Intensity  delay  caused  by  attenuation  and  color
distortion caused by colored glass  are  also  common.  To

eliminate the misalignment between these two elements,
a loss of image similarity at the perceptual level,  such as
perceptual  loss  and  contextual  loss,  was  designed.
However, the intensity delay and color distortion persist.

The  collected  reflection-free  images  are  not  perfectly
aligned with  the  input  mixed  images  owing  to  glass  re-
fraction.  To avoid  misalignment  issues,  Lei  et  al.  used  a
piece of black cloth to cover the back of the glass to block
all  transmissions  for  clear  reflection53. This  dataset  in-
cludes approximately 100 types of glass in the real world,
which  guides  the  proposed  method  to  handle  different
types of reflections without introducing artifacts. The re-
flection removal  network  uses  multi-polarization  direc-
tion images as input. Furthermore, the calculated intens-
ity, degree, and angle of polarization, and the overexpos-
ure mask  eliminating  the  overexposed  areas,  were  com-
bined into the network.  Two stages  were adopted to  es-
timate reflection  and transmission.  This  design  signific-
antly improves the performance of the proposed method
by a large margin.

In summary, reflection removal is crucial because ob-
taining analytical solutions to ill-posed problems is chal-
lenging.  The  introduction  of  polarization  information
can guide reflection removal using Fresnel functions des-
pite the unknown incident angle. Thus, combining deep
learning  to  learn  prior  parameters  is  a  feasible  method.
Acquiring datasets  determines  the  effectiveness  and  ro-
bustness  of  the  parameter  estimation  of  the  proposed
methods. In  this  study,  synthetic  and  real-world  meth-
ods are proposed. In the future, more comprehensive en-
vironments and complete theories must be developed to
solve reflection-removal tasks effectively.

 Target detection
For  target  classification  or  detection,  polarimetric  data-
driven methods  can  improve  efficiency  and  do  not  re-
quire  manual  extraction  of  image  features  compared  to
traditional methods. However, existing methods use only
intensity information images, resulting in a reduction in
the accuracy rate  for  low-light  environments  or  camou-
flaged targets188−193. The targets and backgrounds also dif-
fer in their polarization characteristics. Polarimetric ima-
ging can effectively reveal  these differences and assist  in
target  detection194,195.  Therefore,  we  can  expect  positive
results  by  introducing  polarization  into  data-driven
target detection.

Fan et  al.  first  proposed  the  use  of  polarization  com-
plementary  to  intensity-based  information  to  improve
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car detection accuracy54.  A feature-selection process was
performed  to  select  the  most  informative  polarization
feature.  Final  detection  is  based  on  a  fusion  rule  that
takes the polarization-based model to confirm the color-
based one.  Gao et  al.  presented a  similar  work51.  Blin  et
al.  proved  that  polarimetric  imaging  is  useful  for  target
detection  in  road  scenes52.  Sun  et  al.  adopted  three-di-
mensional  convolutions  to  consider  the  relationship
among S0, S1,  and S2 images  to  improve  the  detection
rate with limited polarimetric images59. Xie et al. used the
Stokes  vector  to  obtain  four  different  configurations  of
polarization  parameter  image  datasets: I,  DoP,  [I,  DoP,
AoP],  and  [S0, S1, S2]  and  trained  different  polarization
image detection models, indicating that increased polar-
ization  information  fusion  enabled  more  learned  target
features  and  better  target  detection55. Tian  et  al.  pro-
posed  a  human  face  anti-spoofing  method  for  real-life
scenarios, which extracts and classifies the unique polar-
ized  features  of  faces  using  a  CNN  and  an  SVM
together196.  Experiments  covering  diverse  face-spoofing
attacks (print,  replay, and mask) under uncontrolled in-
door and outdoor conditions were conducted. Usmani et
al.  proposed  unified  polarimetric  target  detection  and
classification in degraded environments using 3D polari-
metric  integral  imaging  data197.  3D  polarimetric  images
with  deep  neural  networks  can  effectively  detect  and
classify  polarimetric  targets  under  different  low-light
conditions and in the presence of occlusions. Shen et al.
combined  the  advantages  of  polarimetric  imaging  and
deep learning  for  rapid  target  detection  of  artificial  tar-
gets  camouflaged  in  natural  scenes198,  as  shown  in Fig.
20.  The  color  difference  of  each  image  is  calculated  to
prove the  proposed  method  can  highlight  the  camou-
flaged artificial targets to a greater extent.

 Biomedical imaging and pathological diagnosis
Biomedical imaging and pathological diagnosis methods
based  on  Mueller  matrix  features,  a  typical  polarization
feature, are  emerging  label-free  and  noninvasive  tech-
niques suitable for characterizing the microstructures of
biological  tissues  with  anisotropic  properties.  Recently,
results  have  been  published  based  on  Mueller  matrix
imaging  for  digital  pathology25,28,29,199−207.  However,
achieving  accurate  pathological  diagnosis  by  observing
and evaluating stained pathological sections for interns is
challenging.  Furthermore,  pathological  diagnosis  is  a
classification problem;  therefore,  learning-based  meth-
ods  are  crucial  in  achieving  fast  and  accurate  digital

pathology.  This  section  reviews  the  existing  data-driven
biomedical imaging and pathological  diagnosis methods
and  applications.  Next,  we  discuss  the  interpretation  of
physical  properties  of  the  network  layers  based  on  the
distance-based learning classifier.

 Existing biomedical imaging methods
Li et al. first presented a Mueller matrix imaging system
to classify  morphologically  similar  algae  using a  CNN60.
Because of the low contrast in the polarimetric signals of
algae  based  on  previous  measurements  of  the  algal
Mueller  matrix,  performing  classification  without  high-
precision  instruments  is  challenging.  The  proposed
methods compare the performances of  various stacks of
network  layers  to  identify  the  number  of  convolution
layers. The classifier  network was trained to extract  fea-
tures from the Mueller matrix and achieved a classifica-
tion  accuracy  of  97%.  Subsequently,  they  introduced  a
distance metric learning method called the Siamese net-
work,  which  aimed  to  learn  good  distance  metrics  of
algal  Mueller  matrix  images  in  low-dimensional  feature
spaces61.  Compared  to  the  convolutional  CNN  method,
in  the  Siamese  approach,  data  pairs  are  generated
stochastically as  inputs  to  train  the  network  to  determ-
ine if they belong to the same category. The experiments
demonstrated that  the  coupling  of  Mueller  matrix  ima-
ging and CNN of  the Siamese approach may be an effi-
cient solution for the automatic classification of morpho-
logically similar algae.

Zhao et al. proposed a giant cell tumor bone detection
method  using  Mueller  matrix  polarization  microscopic
imaging and a multi-parameter fusion network (MPFN)
that combines three extracted polarimetric features: deep
micro-Pol  features,  MMPD  features,  and  MMT
features62,  as  shown in Fig. 21.  Wang et  al.  and Zhou et
al.  used polarized speckle images for in vivo skin cancer
detection85 and  polarized  hyperspectral  images  for  head
and neck squamous cell carcinoma detection86. Yao et al.
characterized  the  microstructures  of  endometrial
samples  at  the  typical  proliferative  and secretory  phases
using Müller matrix polar decomposition and a set of ro-
tation-invariant parameters and their corresponding an-
gular  parameters87.  In  this  study,  polarimetric  imaging
was  combined  with  a  digital  pathology  technique  to
quantitatively  study  the  microstructural  features  of
endometrial  samples.  Furthermore,  the incorporation of
local  image  texture  information  through  Local  Binary
Pattern  (LBP)  analysis  improves  the  characterization
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ability of the polarization parameter images. The experi-
ments demonstrated the feasibility  of  combining polari-
metric  imaging  with  digital  pathological  techniques  in
typical proliferative and secretory phases.

 Physical interpretation of network layers
However, the  physical  properties  of  network  layers  re-

main  unclear.  In  data-driven  polarimetric  imaging,  the
Muller matrix provides the most comprehensive inform-
ation  representing  the  polarization  information,  and
most decomposition  methods  that  provide  raw  funda-
mental  parameters  have  been  proposed.  Thus,  the
Mueller  matrix  is  crucial  in  exploring the interpretation
of network layers.
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In  ref.61, the  authors  calculated  the  Pearson  correla-
tion  coefficients  between  the  elements  of  the  algal
Mueller matrix and features extracted by the CNN from
f0 to f15. The experiments demonstrate that features f2, f3,
f6, and f7 are positively correlated with depolarization-re-
lated elements; however, f1,  f4,  f10,  f12,  and f13 are negat-
ively correlated. In addition, the fast-axis-orientation-de-
pendent  periodic  variations  were  preserved  in  f0,  f5,  f9,
and f15.  Dong et al.  proposed a data-driven polarimetric
imaging  framework  and  constructed  a  dual-modality
machine-learning framework  for  the  quantitative  dia-
gnosis of cervical precancerous lesions63, as shown in Fig.
22.  The  U-net  architecture  was  adopted  to  segment  the
epithelium  in  digitized  cervical  hematoxylin-eosin-
stained  images  and  mask  the  corresponding  cervical
sample’s  polarimetry  basis  parameters  (PBPs),  which
were decomposed based on the MMPD, MMT, and oth-
er Mueller  matrix  rotation-invariant  parameters.  Fur-
thermore, these masked parameters are processed by the
designed  statistical  distance-based  learning  classifier  for
deriving  a  polarimetry  feature  parameter  (PFP).  The
classifier of the negative class and those of the CIN1(mild
dysplasia) samples can be expressed as: 

D =


xT1
xT2
...
xTN


N×M

, X = Dω =


xT1 · ω
xT2 · ω

...
xTN · ω


N×1

,

L (ω) = d(PNormal (X) , PCIN1 (X) )−1
,

(35)
where xi is  an  M×1  vector  representing  PBPs  elements.

M and N are the  number  of  PBPs  and  target  pixels,  re-
spectively. X is an N×1 vector, calculated as a linear pro-
jection  of  the  input  PBPs. PNormal(X)  is  the  probability
distribution of X from Normal  cervical  pathological  tis-
sues,  whereas PCIN1(X)  represents  CIN1  tissues. ω rep-
resents  weight  coefficients  of  PBPs. L(ω)  is  the  energy
distance between PNormal(X) and PCIN1(X) by energy dis-
tance function d. PFP can be represented a simplified lin-
ear combination of the PBPs, which is similar to the dis-
tribution of  specific  microstructural  variations.  The  dif-
ferent weights indicate the significance of the elements of
the PFP feature.

The  results  demonstrate  the  physical  interpretability
of  the  polarimetry  feature  parameters.  For  example,
complex cervical  precancerous samples exhibit  polariza-
tion characteristics of various types of anisotropic super-
positions. The depolarization ability of precancerous cer-
vical  samples  changed  with  the  development  of  lesions.
In  addition,  changes  in  retardation  and  depolarization
occur during the propagation and scattering of patholo-
gical  cervical  samples  at  different  stages.  Therefore,  the
proposed  method  has  high  sensitivity  and  precision  for
the  screening  of  cervical  lesion pathological  tissues,  and
may bring physical interpretability to the CNN.

 Semantic segmentation
Segmentation  is  a  popular  topic  for  understanding  the
scene in remote sensing and automatic navigation fields.
According  to  learning  from  different  types  of  massive
data,  the  data-driven  segmentation  method  achieved
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good  performance.  However,  intensity-based  methods
always  suffer  from  degradation  in  scenes  with  similar
colors, clutter, or reflective areas208−212. This choice is ori-
ented towards polarimetric imaging,  which provides the
ability to distinguish and recover from changes in com-
plex  scenes.  Several  approaches  have  been  proposed  to
achieve  segmentation  of  remote  sensing,  road  scenes,
and  transparent  objects  via  polarimetric  imaging  and
deep learning.

Shaunak et al. transformed the information in an aug-
mented dataset  into a  compact  representation of  polari-
metric synthetic  aperture  radar  data  to  classify  and seg-
ment urban areas82. The segmentation of road scenes is a
typical  application  in  which  water  hazards,  transparent
glass, and metallic surfaces are key challenges. Yang et al.
proposed  the  prediction  of  polarization  information
from monocular RGB images as a complement to RGB-
based pixel-wise semantic segmentation for applications
in  real-world  wearable  assistive  navigation  systems69,  as
shown in Fig. 23.  Similarly,  Zhang et  al.56 and Blanchon
et  al.83 used  different  architectures  to  achieve  the  same
goals: robust  and accurate  scene  parsing  of  outdoor  en-
vironments  paves  the  way  for  autonomous  navigation
and relationship  inference.  Focusing on transparent  ob-
ject segmentation,  the  polarization  textures  of  transpar-
ent  objects  provide  extra  but  very  different  information
than the background. Therefore, a polarized CNN frame-

work can be trained based on the intensity and polariza-
tion information57, which will be helpful for applications
in broad areas such as robotics, autonomous driving, and
face  authentication,  as  shown  in Fig. 24.  The  mean
average precision(mAP) is used to measure accuracy.

 Discussion
 Input and utilization of polarization information
Input information is a crucial element in network train-
ing  with  polarimetric  imaging  and  deep  learning.
However, various inputs and polarization parameters ex-
ist for  different  tasks.  Three  perspectives  were  con-
sidered  as  network  inputs:  original  polarization  images
(OPI), polarimetric parameter feature maps (PPFM), and
associated parameter maps (APM), as shown in Fig. 25.

Original  polarization  images  are  among  the  most
widely used  inputs.  OPI  refers  to  images  captured  dir-
ectly using a DoFP, camera, Mueller Matrix Polarization
Microscope, or other equipment. Because of the rapid re-
sponse  and  comprehensive  polarization  information
captured in one shot, raw super-pixel images captured by
DoFP are common input42−45.  Other common inputs are
polarization-oriented  images,  usually  set  to  0°,  45°,  and
90°46−49,52. Furthermore, there are variants with the addi-
tion  of  135°50,51 or  circular  polarization  information46.
Parallel  and  perpendicular  polarization  components
were  used  to  train  the  dehazing  network72.  Polarization
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speckle  images  are  another  type  of  OPI66,85 captured  by
the detector after scattering the media.

The polarimetric  parameter  feature  maps  were  calcu-
lated using the OPI. Based on the Stokes representation,
[S0, S1, S2]  is  a  common set  widely  used  in  polarization
network training52,55,58,59. Furthermore, the DoP and AoP
computed by the OPI or Stokes vector images are a type
of  new  material  for  network  training52−57.  In  biomedical
diagnosis,  Mueller  matrix images are the most  common
input to the network91,95, and Mueller matrix parameters
decomposed  by  Mueller  matrix  images  can  also  be  fed
into  network  training62,208. Table 4 lists the  existing  de-
composition elements of Mueller matrix methods.

Associated parameter maps are images in which OPI,
and PPFM are combined with other information or pre-
processing  for  different  tasks.  Intensity  information  is
the  most  common  complement  based  on  the  OPI  and
PPFM53,55−57,66,70,74,196.  Similarly,  the  spectrum86 and
phase71,75 are general  additions  to  the  polarization  in-
formation.  In  3D  shape  reconstruction  tasks,  there  are
different complements such as zenith and azimuth angle
maps  derived  from  specular  and  diffuse  reflection64,65,
viewing  encoding,  encoded  AoP67,  normalized  color80,
and  physics-based  prior  confidence81 based  on  different
conditions.  The  raw images  were  interpolated  using  the
bicubic  interpolation  method  in  the  demosaicing  task68.
An  overexposure  mask  is  used  in  the  network  input  to
avoid overexposed areas during reflection removal53. The
scene  segmentation  network  utilizes  HSL  color  space
representation by incorporating a polarizing pseudo-col-
or image83.

 Datasets
Owing to the demand for different tasks, the number of
data-driven  polarimetric  imaging  datasets  has  gradually
increased,  as  listed  in Table 5.  Seven  types  of  datasets
were  associated  with  the  corresponding  tasks  described
in  previous  section.  Three  strategies  for  building  the
datasets were  considered.  First,  ground  truths  corres-
ponding  to  the  inputs  exist;  therefore,  the  real  ground
truth  is  captured directly  to  rectify  the  outputs.  Second,
the transfer  function  of  the  imaging  system  was  con-
sidered, and the generative process was simulated to gen-
erate the ground truth. In addition, comparing different
traditional methods and selecting the best results regard-
ing  the  ground  truth  is  another  method  that  combines
the advantages of existing methods.

The  overall  datasets  have  a  large  gap  between  each
other in terms of number and size, even in the same task,
as  shown  in Table 5, which  would  not  avoid  the  differ-
ence in  the  extraction  of  features  by  the  CNN.  Further-
more,  researchers  use  self-collected  training  and  test
datasets;  however,  evaluating  and  comparing  different
methods is challenging. Therefore, authoritative datasets
must be built for this task.

 Loss function
Loss functions are critical elements, and their selection is
crucial  in  guiding  network  training.  Each  loss  function
has  advantages  and  disadvantages.  Therefore,  a  specific
loss  function  was  adopted  based  on  the  given  task  and
imaging environment. Table 6 lists the latest quality-loss
functions  for  data-driven  polarimetric  imaging.  The
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Table 4 | Existing decomposition of Mueller matrix.
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following  is  a  detailed  description  of  several  functions
that differ from the intensity loss functions.

i)  Mean squared error (MSE) is  the most widely used
indicator in  deep  learning,  which  standards  the  differ-
ence between the output images and the ground truth. In
data-driven polarimetric imaging, in addition to the dif-
ference in intensity, the polarization parameters also en-
sure  the  accuracy  of  the  polarimetric  representations.
The loss can be expressed as: 

LMSE = ∥y− ŷ∥2 , (36)

ŷwhere y is  the  ground  truth,  and  is  the  output  of  the
network.  Therefore,  the  measured  information  consists
of  polarimetric  representations,  such  as  DoP(DoLP),
AoP(AoLP),  Stokes  vectors,  Mueller  matrix,  spectrum,
HSV  color  space,  and  their  perceptual  representations
computed by a network model VGG.

ii) The mean absolute error (MAE) is a widely used in-
dicator. Compared to the MSE, the MAE has less blurri-
ness and noise; however, it is more unstable. The utiliza-
tion of the MAE loss function was similar to that of MSE
because the range of AoLP is 0 to π that always maps in-
to  0–177.  However,  0  and  1  indicate  the  same  physical
meaning  where  the  error  is  the  largest.  Therefore,  the
HSV  spatial  display  rule  was  introduced  to  design  a
closer distance on the circle of the AoLP. The loss func-
tion is defined as follows: 

LMAE,AOLP = min
(
∥y− ŷ∥1, 1− ∥y− ŷ∥1

)
. (37)

iii)  Cosine  similarity  (CS)  is  commonly  used  in  the
surface-normal  estimation  of  3D  reconstructions  based
on polarimetric  imaging.  In  the  3D  polarimetric  ima-
ging  task,  the  surface  normal  map  is  calculated  using
Fresnel's  formula  to  generate  the  normal  vectors,  which

is  different  from  the  other  information  forms,  ensuring
that the CS loss becomes the most suitable indicator. The
loss function is defined as follows: 

LCS = 1− y · ŷ
∥y∥2∥ŷ∥2

. (38)

iv) SSIM is a widely used indicator of end-to-end net-
works.  SSIM  focuses  on  the  brightness,  contrast,  and
structural similarity between two images.  The SSIM im-
proves  as  the  value  increases  within  the  range  of  [0,  1],
opposite  to  the  goal  of  minimizing  the  similarity.  The
loss function is defined as follows: 

LSSIM = 1−
2μyμŷ + c1
μ2
y + μ2

ŷ + c1
·

2σŷy + c2
σ2y + σ2ŷ + c2

, (39)

μ∗ σ∗
σŷy

ŷ

where  and  denote the  mean  and  standard  devi-
ations  of  the  image,  respectively.  is  the  cross-covari-
ance computed from the images of y and . where c1 and
c2 are constants.

 Future of data-driven polarimetric imaging
The field of polarimetric imaging has been influenced by
deep  learning,  which  has  recently  become  one  of  the
most disruptive technologies. First, we analyze the trends
in data-driven polarimetric imaging, focusing on the ap-
plication of  data-driven  polarimetric  imaging  and  re-
view  existing  research  achievements.  Furthermore,  the
acquisition  of  high-accuracy  polarization  information  is
the  foundation  for  subsequent  imaging  and  semantic
processing. Descattering,  3D  shape  reconstruction,  re-
flection removal,  biomedical  imaging,  pathological  dia-
gnosis,  target  detection,  and  semantic  segmentation  are
crucial  in  the  application  of  data-driven  polarimetric
imaging.  A comprehensive  discussion is  essential  owing

Table 4 (Continued)
 

Decomposition of Mueller matrix Physical meanings

Differential decomposition104

m =

16∑
n=1

mn =


κi κq + κ′q κu + κ′u κv + κ′v

κq − κ′q κi − κ′i,q ηv + η′v ηu + η′u
κu − κ′u −ηv + η′v κi − κ′i,u ηq + η′q
κv − κ′v −ηu + η′u −ηq + η′q κi − κ′i,v

 Differential Mueller matrix for depolarizing anisotropic media

Symmetric decomposition105

M = MD2MR2MΔdMT
R1MD1

Symmetric decomposition of Mueller matrix
M = MR2M′

D2MΔdM′
D1MT

R1

M = MD2MR2MΔdM′
D1MT

R1

M = MR2M′
D2MΔdMT

R1MD1

Cloude decomposition106

mij =
1
2
Tr

(
Tcη4i+j

)
Cloude decomposition
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to  the  input  and utilization of  polarization information,
datasets, and loss functions.

This section evaluates the future of data-driven polari-
metric  imaging  based  on  its  strengths,  weaknesses,  and
opportunities. Furthermore, this approach is suitable for
developing  instructive  strategies  for  further  studies  that
combine deep learning and polarization information.

 Strengths
Data-driven  polarimetric  imaging  represents  a  new
paradigm  that  combines  deep  learning  and  traditional
physical  properties,  including  altering  the  patterns  of
physical properties  to  achieve  better  results  and  balan-
cing  the  physical  model  and  information  extraction
between the traditional physical and high-order nonlinear

 
Table 5 | Summary of data-driven polarimetric imaging datasets.

 

Task Data Dataset Paired or not No. of images Size Synthetic/Real

Section Restoration and enhancement of
accurate polarization information

2020 Hu42 Paired 300000 64×64 Real

2022 LLCP50 Paired — 64×64 Real

2018 Zhang68 Paired 215 640×480 Synthetic

2019 Zeng43 Paired 76890 40×40 Synthetic

2021 Wu44 Paired — 64×64 Synthetic

2020 Li45 Paired 137000 64×64 Synthetic

2022 Yang78 Paired 337 1961×2381 Real

2022 Liu77 Paired 140000 64×64 Real

2021 Ting79 Paired 42228 512×512 Real

2022 Si58 Paired — 256×256 Real

Section Polarimetric descattering

2020 Hu46 Paired 103000 64×64 Real

2021 Zhang70 Paired 2000 256×256 Real

2021 Ren148 Paired — — Real

2021 Zhou48 Paired — 240×240 Synthetic

2022 Shi72 Paired 60000 960×576 Synthetic

2022 Ding47 Paired 700 512×512 Real+Synthetic

2022 Li66 Paired 5000 256×256 Real+Synthetic

Section Three-dimensional shape
reconstruction

2019 Ba64 Paired 300 256×256 Real

2020 SURREAL+PHSPD65 Paired 312915 — Real

2020 Kondo71 Paired — — Real+Synthetic

2021 Lei67 Paired 522 1224×1024 Real

2021 Deschaintre80 Paired 100000 512×512 Synthetic

2022 TransSfP81 Paired 936 512×512 Real+Synthetic

Section Reflection removal

2018 URD73 Paired — 128×128 Synthetic

2019 Lyu74 Paired — 256×256 Synthetic

2020 Lei53 Paired 100107 — Real

Section Target detection

2018 Fan54 Paired 153 — Real

2019 Blin52 Paired 2730 — Real

2020 Sun59 Paired — 96×96 Real

2020 CASIA-DOLP196 Unpaired 10697 224×224 Real

2021 USMANI197 Paired 240 — Real

2022 Gao51 Paired 60 1224×1024 Real

Section Biomedical imaging and
pathological diagnosis

2017 Li60 Paired 10463 — Real

2018 Li61 Paired 12162 — Real

2020 Zhao62 Paired 100000 — Real

2021 Zhou86 Paired 4500 40×40 Real

2021 Yao87 Paired 400 64×64 Real

2021 Dong63 Unpaired 49870 128×128 Real

Section Semantic segmentation

2018 Yang69 Paired 9736 320×240 Real

2019 POLABOT56 Paired 700 256×256 Real

2020 Kalra57 Paired 1000 — Real
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representation domains.  Applying  the  information  rep-
resented  by  the  physical  model  and  the  deep  network
layers enables  researchers  to  exploit  the  potential  fea-
tures embedded in all information-transmitted paths.

During the  imaging  process,  the  light  source,  trans-
mitted  media,  imaging  system,  and  image  processing
method influence visual performance. Moreover, model-
ing these  complex  processes  using physical  functions  or
traditional  methods  is  challenging.  Network  layers  are
high-order  polynomials  expressed  by  the  convolution
neural  network.  Therefore,  nonlinear  representations  of
the network layers  may be promising for simulating the
process.

The  introduction  of  deep  learning  into  conventional
polarimetric  imaging  and  pattern  recognition  generates
more accurate coefficients for the physical model, simu-
lating  a  complicated  processing  approach  not  modeled
by physical  functions.  However,  introducing  a  polari-
metric imaging model into the deep network would add
physical  constraints  and  polarization  information  to
guide the  network  training  to  achieve  better  perform-
ance  compared  with  the  intensity  network.  Therefore,
data-driven polarimetric  imaging  probably  enables  cap-
abilities that cannot be realized using traditional methods.

 Weaknesses
To achieve a better performance by training a polarimet-

ric  imaging  network,  researchers  must  weigh  the  costs
associated  with  data-driven  polarimetric  imaging  and
conventional approaches,  which  include  the  establish-
ment of polarimetric imaging datasets, storage of data al-
ways four times that of traditional datasets, and imaging
systems. Because balancing these costs and benefits is not
exact, some uncertainties are considered in this process.

A  fundamental  element  of  data-driven  polarimetric
imaging  is  the  availability  of  comprehensive  datasets.
Most data-driven polarimetric imaging methods have fo-
cused  on  supervised  deep  learning.  However,  based  on
polarimetric imaging  methods  and  imaging  environ-
ments, the corresponding ground truth is more challen-
ging to capture than in an intensity-based network. Ad-
ditionally, different  polarimetric  imaging  techniques  in-
troduce various errors and influence the visual perform-
ance of the network. For example, the division of time al-
ways  suffers  from  mismatching  in  dynamic  scenes,  and
the division of the focal plane has a mosaicking problem
in  principle.  Existing  methods  have  established  their
datasets  to  respond to  specific  tasks.  However,  ensuring
similar  performance  from  other  datasets  is  challenging;
moreover,  the existing dataset  is  insufficient to cover all
conditions,  and  its  generalization  ability  is  insufficient.
Real  data  changes  over  time,  indicating  increasing
volume and improper handling of methods.

The  loss  function,  which  is  crucial  in  guiding  the

 
Table 6 | Summary of loss functions.

 

Loss function Applications

Frobenius matrix norm45,46,68
Section Restoration and enhancement of accurate polarization information, Section Polarimetric

descattering
Weighted mean squared error (WMSE)70 Section Polarimetric descattering

Preceptual loss53,70,77 Section Polarimetric descattering
Mean squared error

(MSE)46,48,49,61,65,71−74,76−78

Section Restoration and enhancement of accurate polarization information, Section Polarimetric
descattering, Section Three-dimensional shape reconstruction, Section Reflection removal

Mean absolute
Error(MAE)42−44,47,48,50,66,75,79,80,148

Section Restoration and enhancement of accurate polarization information, Section Polarimetric
descattering, Section Three-dimensional shape reconstruction

Negative pearson correlation coefficient
(NPCC)66

Section Polarimetric descattering

Cosine similarity (CS)64,65,67,81 Section Three-dimensional shape reconstruction
Perceptual normalized cross-correlation

(PNCC)53
Section Reflection removal

Structural similarity index (SSIM)43,79 Section Restoration and enhancement of accurate polarization information

Total variation (TV)58,75 Section Restoration and enhancement of accurate polarization information

Contrastive loss196 Section Target detection

Logistic regression87 Section Biomedical imaging and pathological diagnosis

Ridge loss87 Section Biomedical imaging and pathological diagnosis

Focal loss69 Section Semantic segmentation

Cross entropy loss (CEL)83 Section Semantic segmentation
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training of the network, is always similar to the intensity-
based methods used in data-driven polarimetric imaging.
General operators replace intensity images with polariza-
tion parameters. However, the intensity and polarization
information  have  entirely  different  optical  properties.
The intensity  image  describes  the  reflectivity  and  trans-
missivity  of  the  object;  however,  the  polarization  image
describes  the  texture  details,  material  properties,  shape,
shading, and roughness. These differences determine the
disparate  designs  of  loss  functions.  However,  there  are
insignificant  loss  functions  that  focus  on  polarization
parameters.

Black boxes and their acceptance by applied research-
ers are inherent drawbacks of deep learning methods by
health professionals.  Most  researchers  in  practical  ap-
plied fields are wary because deep learning theories have
not  yet  provided  a  complete  and  reasonable  answer.  In
addition,  further  development  and  optimization  would
depend  only  on  the  performance  of  tasks  without  any
guidance  from  theories,  which  results  in  indeterminacy
in  the  study.  Moreover,  the  legal  implications  of  black
box functionality  could  be  another  challenge.  For  ex-
ample, who would  be  responsible  if  the  results  were  in-
correct  in  pathological  diagnosis  or  target  detection?  In
data-driven  polarimetric  imaging,  the  introduction  of
polarization information  may  be  helpful  for  the  inter-
pretability of deep learning. Dong et al. attempted to use
a linear projection of input PBPs to interpret their signi-
ficance  by  learning  the  factors  of  each  parameter.
However,  many studies  have been conducted to achieve
these goals63.

The combination  and  utilization  of  polarization  in-
formation  in  deep  learning  are  still  in  their  infancy.  In
most  existing  methods,  polarization  parameter  images
are the only approach that uses polarization information
as the input into the network. The extraction of polariza-
tion features  relies  on  the  automatic  processing  of  net-
work layers, which remains a challenge to utilize polariz-
ation information despite  the unlimited opportunity  for
improvement yet to be explored.

 Opportunities
Based  on  the  weaknesses  of  data-driven  polarimetric
imaging,  solutions  have  been  proposed  to  address  these
gaps.  Furthermore,  many  novel  training  methods  and
physical  models  exist,  such  as  unsupervised  or  semi-su-
pervised  training,  transfer  learning,  and  computational
imaging. Therefore, it must be combined with other ima-

ging or  training  theories  to  guide  the  optimization  pro-
cess. In  addition,  three  broad  application  areas:  descat-
tering imaging,  even high-scattering media,  detection of
camouflage, spoofing  targets,  and  enhancement  and  fu-
sion  of  information  assess  the  potential  of  data-driven
polarimetric imaging in future applications.

 The opportunities of methods
The  assistance  of  physical  model: A  synthetic  dataset
solves the scarcity of datasets. An accurate physical mod-
el  that  simulates  information  transmission  is  crucial  in
dataset generation.  With  an  additional  physical  con-
straint  on  the  CNN,  fewer  training  data  are  required  to
achieve  a  more  generalized  result  than  conventional
methods. In addition, to obtain a synthetic dataset, vari-
ous  parameters  covering  different  imaging  conditions
are crucial.  Thus,  the  development  of  conventional  po-
larimetric imaging methods is suitable for designing net-
work architectures.

Unsupervised  or  semi-supervised  learning216−218: Ob-
taining the  ground truth for  a  large  polarization dataset
is  challenging.  Therefore,  unsupervised  or  semi-super-
vised  learning  is  required  to  reduce  the  dependence  on
the ground  truth.  However,  image  enhancement  or  im-
age processing is an end-to-end task; thus, existing learn-
ing methods  without  ground  truth  achieve  poor  per-
formance.  A  more  comprehensive  physical  model  must
be established,  and  more  effective  loss  functions  de-
signed to  guide  pipelines.  In  addition,  the  middle  para-
meter may be generated without the ground truth, which
is also a feasible way to improve the performance.

Transfer  learning219,220:  Transfer  learning  allows  the
optimized parameters for one dataset to train a new net-
work as initialization values for another dataset, which is
a feasible approach for reducing the dependence on data-
sets  in  data-driven  polarimetric  imaging  because  the
learned  features  can  be  promptly  transferred  from  a
trained network to a new network for another task. The
fine-tuning technique is  a typical  method used in trans-
fer  learning,  which  is  faster  and  easier  than  training  a
network  from  scratch.  Therefore,  the  extracted  features
were similar to the shallow layers; moreover, the shallow
layers in a trained network can be copied to the new net-
work for another task to reduce the cost of training time.

Multi-dimensional  learning221,222:  The  introduction  of
polarization  information  that  displays  different  physical
properties  into  a  traditional  intensity  network  can
provide  more  constraints  and  information  sources  to
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promote network  inference.  Similarly,  the  phase,  spec-
trum, and other physical properties can be embedded in-
to a network to enhance performance. Phase is a repres-
entative generation of the change in light,  and the spec-
trum  describes  the  characteristics  of  the  wavelength  of
light.  These  properties  would  fill  the  gap  in  which  a
single domain cannot fully represent the light domain for
all physical properties.

Federated  learning223:  To  provide  a  practical  training
set for  deep  learning  in  polarimetric  imaging  applica-
tions, obtaining various available datasets from different
institutes  or  corporations  may  be  a  possible  solution.
There are several datasets for different tasks, as shown in
Table 5;  however,  the  datasets  collected  by  different
groups are not uniform because it  is  difficult  to guaran-
tee a similar performance from other datasets. Therefore,
different datasets  were  beneficial,  increasing  the  di-
versity  of  the  collected  samples.  In  addition,  different
imaging systems,  detectors,  environments,  and  observa-
tion directions are challenging to simulate using existing
physical functions,  which  can  improve  the  generaliza-
tion ability of  the network and avoid overfitting.  There-
fore,  this  is  instructive  for  building  and  optimizing  the
evaluation criterion, focusing on polarization images.

Emergence of metasurface and metalens224−227: The util-
ization  of  lenses  and  metasurfaces  allows  for  tailored
control  over  light  with  specific  polarization  states,
achieved through deliberate design. This deliberate con-
trol enables superior capture, separation, and analysis of
polarized  light  signals,  thereby  significantly  enhancing
the  sensitivity  and  accuracy  of  acquiring  polarization
datasets. These  advancements  not  only  amplify  the  po-
tential of data-driven polarimetric imaging but also com-
plement the capabilities of deep learning methodologies,
promising refined insights and higher precision in polar-
ization imaging applications.

 The opportunities of applications
In  the  future,  the  optimization  of  methods  will  aim  for
better  visual  performance in more widely  applied fields.
For  polarimetric  imaging,  the  methods  that  depend  on
polarization  properties  include  descattering  imaging,
high-scattering media,  detection  of  camouflage,  spoof-
ing targets, and enhancement and fusion of information.
Deep learning,  nonlinear  representation ability,  and po-
tential feature extraction improve the accuracy of estim-
ating parameters and feasible transmitted functions com-
pared to conventional methods.

For  descattering  imaging  in  high-scattering  media,
such as clouds, water, haze, smoke, smog, fog, mist in the
air,  soil  particles,  algae,  and  mineral  salt,  in  underwater
scenes,  there  are  potential  opportunities  for  data-driven
polarimetric  imaging.  However,  further  development  of
physical models has amplified this ability. However, tra-
ditional  model  functions  are  challenging  to  handle  in
complex  imaging  environments  and  always  use  simple
assumptions to  simulate  real  parameters.  The  introduc-
tion of deep learning can model complicated conditions
in nonlinear cases using convolutional neural layers. Fu-
ture  opportunities  will  arise  from  the  development  of
more accurate  parameters  for  forming  improved  ima-
ging functions generated by deep learning.

Spoofing targets  are  another  opportunity  for  camou-
flage detection. Target detection is widely applied in po-
larimetric  imaging because  the  polarization information
can  describe  the  material  of  an  object,  which  is  suitable
for camouflaging and spoofing targets of the same color
that  the  intensity  information  cannot  distinguish.  Next,
more comprehensive extraction of special features by the
neural  network may further  improve the  success  rate  of
target detection.

The  material  surface,  texture,  and  contrast  are  the
main characteristics  described  by  polarization  informa-
tion for  enhancing and fusing information.  Polarization
parameters are observable in low- or hard-light environ-
ments because  they  are  unaffected  by  intensity.  Con-
sequently,  the  fusion  of  polarization  and  other  images
can extend the feature domain of an object. The network
generates a fusion based on data-driven polarization fu-
sion, enhancing  performance  by  extracting  more  fea-
tures and  providing  more  information  on  imaging  ob-
jects  or  scenes  compared  with  artificial  coefficients.
Moreover, complementary  features  from  various  do-
mains are advantageous for other computer vision tasks,
such as object detection.

 Conclusion
This  review  provides  an  overview  of  recent  efforts  to
summarize  data-driven  polarimetric  imaging  based  on
seven classifications  and  discusses  them  comprehens-
ively  from  three  perspectives.  Based  on  the  application
fields, the  classifications  consist  of  polarimetric  descat-
tering, 3D shape reconstruction, reflection removal,  res-
toration, enhancement  of  polarization  information,  tar-
get detection,  biomedical  imaging  and  pathological  dia-
gnosis,  and  semantic  segmentation.  Subsequently,  we
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synthetically analyze  the  input,  datasets,  and  loss  func-
tion, which  are  crucial  in  data-driven  polarimetric  ima-
ging, listing the existing datasets and loss functions with
an  evaluation  of  their  advantages  and  disadvantages.  In
conclusion,  deep-learning-based  polarimetric  imaging
introduces polarization  information  into  the  convolu-
tional neural network to achieve better performance than
traditional intensity  imaging,  bringing  physical  inter-
pretability  to  CNN  through  physical  models.  Through
research  on  existing  data-driven  polarimetric  imaging,
the study of the corresponding fields can be improved to
a higher level, enabling them to enhance high-level visu-
al tasks.
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