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Deblurring, artifact-free optical coherence
tomography with deconvolution-random
phase modulation
Xin Ge1, Si Chen1, Kan Lin1, Guangming Ni4, En Bo1, Lulu Wang1 and
Linbo Liu1,2,3*

Deconvolution is  a  commonly  employed  technique  for  enhancing  image  quality  in  optical  imaging  methods.  Unfortu-
nately, its application in optical coherence tomography (OCT) is often hindered by sensitivity to noise, which leads to ad-
ditive ringing artifacts. These artifacts considerably degrade the quality of deconvolved images, thereby limiting its effect-
iveness in OCT imaging. In this study, we propose a framework that integrates numerical random phase masks into the
deconvolution process, effectively eliminating these artifacts and enhancing image clarity. The optimized joint operation
of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks (RPM), termed as De-
conv-RPM, enables a 2.5-fold reduction in full  width at half-maximum (FWHM). We demonstrate that the Deconv-RPM
method significantly enhances image clarity, allowing for the discernment of previously unresolved cellular-level details in
nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.
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 Introduction
Optical  coherence  tomography  (OCT)  is  a  powerful
technique that provides non-invasive images with micro-
meter resolution and millimeter depth. To assess the tis-
sue  microstructures  at  the  cellular  and  subcellular  level,
advancements1−6 have been made to improve spatial res-
olutions  and  image  contrast.  However,  high-resolution
OCT  images  often  suffer  from  a  broaden  or  distorted
point spread function (PSF) due to the inherent trade-off
between resolution  and  depth-of-focus,  artifacts  result-

ing from  strong  scattering,  optical  component  deficien-
cies, speckle  noise  from coherent  light  source,  and ima-
ging  system's  noise.  Therefore,  enhancing  image  quality
of  the  OCT  system  holds  significant  importance.
Without  introducing  more  optical  components,  many
software-based approaches  have  been  harnessed  to  re-
cover the  degraded  OCT  images  by  deterministic  mod-
els7,8 or a class of evaluation metrics9−11.

Deconvolution, an algorithm extensively used in fluor-
escence  microscopy,  has  shown  promising  potential  in
mitigating  transverse  and  axial  resolution  blurring  in 
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OCT images. Numerous attempts have been made to ap-
ply it in OCT, leading to enhanced image quality in cer-
tain scenarios12−18. However, when amplitude-based data
is  used  to  invert  a  coherent  process,  the  image  quality
will  be  inevitably  deteriorated  as  the  operation  creates
sidelobes  from  the  image  noise  around  the  scatterers.
Moreover,  closely  adjacent  scatterers  in en-face images
are difficult to resolve, limiting the use of deconvolution
for OCT imaging scattering tissues19. Transverse and axi-
al  resolutions  are  separable  in  OCT  systems,  where  the
axial  resolution  is  governed  by  the  central  wavelength
and the bandwidth of the detected light while the trans-
verse  resolution  is  limited  by  the  effective  numerical
aperture.  With  a  separable  one-dimensional  (1-D)
scheme,  each  depth  slice  or  A-line  of  an  OCT  frame  is
deconvolved by  the  unregularized  Richardson-Lucy  al-
gorithm. Some  regularization  constraints,  such  as  Tik-
honov-Miller  regularization20 and Total  Variation  regu-
larization21, have been used to suppress  noise amplifica-
tion,  yet  these  methods  require  prior  knowledge  of  the
measured data and can result in either smooth edges or a
contrast loss in the image restoration.

In this work, we propose a post-processing algorithm,
Deconv-RPM. The  Fourier  or  pupil  plane  of  a  decon-
volved frame is  separately  multiplied with multiple  ran-
dom phase masks before the products are inverse Fouri-
er transformed to the image plane and summed together.
Random  phase  masks  (RPM)  are  employed  to  remove
the  artifacts  while  preserving  the  resolved  features  with
deconvolution, a concept vaguely reminiscent of numer-
ical random  masks  methods  applied  in  digital  holo-
graphy  for  image  denoising22−24.  Our  approach,  verified
through simulation  testing,  has  achieved  a  2.5-fold  re-
duction  in  the  full  width  at  half-maximum  (FWHM).
When applied  to  a  turbid  sample,  Deconv-RPM  exhib-
ited unprecedented performance  in  cross-sectional  ima-
ging compared to the unprocessed images. Deconv-RPM
was used  to  isolate  scattering  signals  from  nonkeratin-
ized epithelial cells ex vivo and blood cells in vivo,  using
both standard and high-speed line scan cameras. This ro-
bust and reliable method is expected to pioneer new pos-
sibilities for OCT in biomedical applications.

 Principle of Deconv-RPM method
In this section, we elaborate on the Deconv-RPM meth-
od that is schematically illustrated in Fig. 1. For coherent
imaging, image formation of one B-scan in OCT can be
described as a convolution of the electric field of the ori-

ginal  undistorted  sample  object uobj(x, z)  and  the  2-D
PSF h(x, z) followed by adding noise n, 

uimg (x, z) = uobj(x, z)⊗ h(x, z) + n , (1)

⊗where  denotes the convolution operation.
The  backscattered  magnitude  of  the  conventional

OCT frame |uimg(x, z)| is obtained by the Fourier trans-
form  of  the  raw  interferogram  in kz-space. As  demon-
strated, the convolution kernels can be approximated by
absolute  values  instead  of  the  complex  values14,25.  The
OCT  PSFs  are  separable  in  transversal  and  longitudinal
coordinates. That is h(x, y, z) = h(x)·h(y)·h(z), and can be
approximated by 

h (x, y, z) =exp
[
− x2

wr (z)2
]
· exp

[
− y2

wr (z)2
]

· exp
[
−4ln2(z/lC)2

]
, (2)

wr (z) lCwhere  is the spot radius of the focused beam and 
is  the  coherence  length.  As  illustrated  in  the  flowchart,
the Deconv-RPM method primarily consists of two pro-
cessing  steps:  the  first  step  involves  deblurring  through
deconvolution,  and  the  second  step  improves  image
quality using numerical random phase masks.

In step 1, Richardson-Lucy deconvolution algorithm is
implemented  on  one  B-scan  |uimg(r)|,  performed by  the
built-in MATLAB function [deconvlucy ()], 

ot+1(r) = ot(r) ·

(
|uimg (r)|

ot(r)⊗ |ĥ(r)|
⊗
∣∣∣ĥT

(r)
∣∣∣) , (3)

ot(r)
|ĥ(r )|∣∣∣ĥT

(y)
∣∣∣

|ĥ(r )|

where  the  pixel  index r represents any  one  of  the  co-
ordinates x or z for B-scans and x, y or z for C-scan, 
is the estimated object image after t-th iteration.  is

the theoretical 1-D absolute value of the PSF, and 
is its  transposed matrix.  In the Richardson-Lucy decon-
volution method,  is typically set as space-invariant.
The  primary  challenges  for  deconvolution  methods  to
resolve images in OCT lie  in the absence of  an accurate
complex PSF due to experimental constraints and the in-
evitable ringing artifacts that occur during the deconvo-
lution process.

o(r)
exp

(
iφm

)
O (kf)

In step 2, the deconvolved image  is further modu-
lated  by  the  phase  masks  of  in  its  respective
Fourier  domain . Through  the  forward  and  back-
ward  Fourier  operation,  a  set  of  modulated  images  are
averaged, 

u(r) = 1
m
∑
m

|um(r)/ūm(r)| ,

where 
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um(r) = F−1
r

[
Fr(o(r)) · exp(iφr,m)

]
, (4)

ūm(r) um(r) F
φ

σ

where  is the mean value of ,  denotes the 1-
D Fourier transform,  is normal random numbers with
a mean of 0. RPM algorithm has two tuning parameters:
the  number  of  phase  masks m, and  the  standard  devi-
ation of normal random numbers .

 Evaluation of Deconv-RPM through 1-D
simulations
To  quantitatively  evaluate  the  performance  of  Deconv-
RPM,  we  conducted  1-D  simulations  in  line  with  the
processing  steps  depicted  in Fig. 1.  FWHM  and  signal-
to-noise ratio (SNR) are used as key metrics to compare

 

z

1, 2
, 3

...
N

Lucy-Richardson

deconvolution ○×−1

OCT images

magnitude |uimg (r)l
FFT

(r direction)

IFFT

(r direction)

IFFT

(r direction)

IFFT

(r direction)

0

2π

0

2π

0

2π
φr,1 φr,2 φr,m

O (kr)·exp (iφr,1) O(kr)·exp (iφr,2) O (kr)·exp (iφr,m)

Random masks

Avg.

Normalized magnitude

Random phase modulation on the fourier

transform of o (r), r−1

Repeat steps along the y direction for volumetric reconstruction

o(r)

u(r)

[r  (o(r))·exp (iφr,m)]

F F−1

Fig. 1 | Flow chart showing the processing steps of the Deconv-RPM method. uimg(r) is the acquired OCT frame (B-scan), where x is the
B-scan direction, z is the depth direction. For simplicity, r represents any of the coordinates x or z in the case of B-scan and x, y or z for C-

scan. N is the number of B-scans. In step 1, an iterative Richardson-Lucy deconvolution is performed to produce a deconvolved image o(r). In

step 2, numerical random phase masks exp(iφm) are modulated on the O(kr), which is the Fourier space representations of o(r). For B-scan, 1-D

FFT  and IFFT  are operated along the rows first and then the columns. φ obeys the normal distribution with a mean of 0. (r) and (kr) are

the pixel indices in spatial domain and Fourier domain, respectively. An average of the normalized modulated images results in a final image. For

C-scan, we repeat steps 1 and 2 along the y direction in step 3.
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the deblurring capability and signal-to-noise level between
the unprocessed and the Deconv-RPM images. The SNR
is  defined  as SNR =  10log10(MAX2(uimg)/Var(n))26,
where MAX(uimg) represents the maximum pixel intens-
ity of uimg, Var(n) denotes the variance of uimg in a back-
ground  noise  region n.  The  second  row  in Fig. 2(a)
shows  the  noisy  image uimg,  generated  by  convolving
ideal  points  (shown  in  the  top  row  of Fig. 2(a))  with  a
complex  Gaussian  PSF  (transverse)  and  then  adding
Gaussian white noise denoted as n. The FWHM and the
SNR of intensity profiles were measured. The variance of
the  normally  distributed  noise,  Var(n),  was  determined
by a reasonable SNR value of 25 dB, approximated from
the  SNR  of  a  conventional  OCT  image  (refer  to Fig.
3(a)). In estimating the real-valued PSF, we established a
sub-optimal w,  which  is  set  to  be  1.1  times  the  optimal
wopt.  The  tuning  parameters m and σ were  set  to 10000
and 0.7,  respectively.  Upon  examination  of  the  unregu-
larized  deconvolved  image  (third  row  of Fig. 2(a)),  we
noted the presence of apparent ringing artifacts. In con-
trast,  Deconv-RPM  offers  artifact-free  images  and
demonstrates a 2.5-fold reduction in FWHM (evident in
the bottom row of Fig. 2(a) and 2(b)). The process of im-
age restoration by Deconv-RPM generally takes approx-
imately  70  seconds  for  a  matrix  of 1000 pixels  ×  100
pixels. This process involves 10 iterations in the first step
and 10000 resamplings in the second,  executed on a 3.4
GHz  Intel  Core  i7-3770 processor  with  8  GB  memory.
Each  resampling  operation  is  performed  independently,
suggesting the potential for significantly faster computa-
tion through the use of GPU-based parallel computing.

We then evaluated how the parameters w, σ and m in
the Deconv-RPM  method  contribute  to  FWHM  reduc-
tion and SNR improvements. Figure 2(c) illustrates a re-
duction  in  FWHM  when w deviates  from  the  optimal
wopt.  When  we  varied  the  standard  deviation σ,  it  was
found  that  an  optimal σ exists for  both  FWHM  reduc-
tion and  SNR  enhancement,  provided  that  other  para-
meters are fixed (Fig. 2(d)). Figure 2(e) demonstrates the
algorithm’s performance reaching a limit as m increases.
Under  different  noise  levels  in  the  unprocessed  image
(Fig. 2(f)), Deconv-RPM  proved  robust  in  FWHM  re-
duction,  with  a  SNR  gain  exceeding  10  dB  in  low  SNR
scenarios (unprocessed images, SNR below 32.5 dB).

 Deblurring capability of Deconv-RPM with
microparticles
The  deblurring  capability  of  the  Deconv-RPM  method

was demonstrated  through  imaging  of  suspended  poly-
styrene  calibration  spheres  (80177,  Fluka,  diameter  2
μm) in  water.  A  detailed  description  of  the  spectral  do-
main  μ-OCT  system  construction  is  presented  in  our
earlier  work27,28.  A 20× objective  lens  (M Plan Apo NIR
20X, Mitutoyo, Takatsu-ku, Kawasaki, JP) was employed
in the sample arm. The spatial resolution of μ-OCT in air
was recorded as 2.40 μm × 1.38 μm (x, z).  We observed
high reflectivity signals, which originate from alterations
in  the  refractive  index  (RI)  at  the  peripheries  of  the
spheres and  the  water  interface.  Particularly,  these  sig-
nals are manifested as paired reflections in the OCT im-
ages, each corresponding to the top and bottom surfaces
of  the  microsphere,  as  illustrated  in Fig. 3 inset.  In  out-
of-focus  regions,  these  paired  signals  widen  due  to  the
broadened transverse PSF.

Figure 3(a, b),  and 3(c) show logarithmic  images  fol-
lowing a  two-step  processing.  Ringing  artifacts,  an  ex-
pected  outcome  of  the  Richardson-Lucy  deconvolution
(Fig. 3(b)), were  effectively  mitigated  by  numerical  ran-
dom  phase  masks  (Fig. 3(c)). The  Gaussian  kernels,  de-
rived from  the  theoretical  physical  parameters  (the  co-
herence  length  of  the  light  source  and  the  beam radius,
respectively) and employed for deconvolution, were con-
stant and non-adaptive.  It's noteworthy that the numer-
ical random phase masks, while suppressing ringing arti-
facts,  also  reduce  some  weak  signals.  We  evaluated  the
system's  performance  based  on  the  FWHM,  under  the
assumption of a refractive index of 1.58 at 850 nm. When
focused on the confocal region, Deconv-RPM achieved a
2.8 ± 0.2 times finer lateral FWHM and a 2.9 ± 0.5 times
finer axial FWHM in comparison to conventional OCT.
Two selected regions  from Fig. 3(a) and 3(c) were mag-
nified for  detailed comparison of  deblurring capabilities
before  and  after  Deconv-RPM  processing.  Two  closely
positioned spheres with four reflective signals, blurred in
the  conventional  image,  were  clearly  distinguishable  in
the  Deconv-RPM  image  (Fig. 3(d)).  Even  at  the  depth
range limit,  Deconv-RPM's ability to distinguish reflect-
ive signals  from  merged  ones  highlights  the  improve-
ment  in  image  quality.  The  corresponding  line  profiles
across  reflective  signals  before  and  after  Deconv-RPM
processing are shown in Fig. 3(f) and 3(g).

 Imaging of nonkeratinized epithelial cells
ex vivo
Tissue  experiments  were  conducted  under  the  approval
of  the  Institutional  Review  Board  (IRB)  of  Nanyang
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same display scale are shown on the right side. Scale bars: 1 μm. (f−g) Corresponding profiles (yellow lines in (d) and (e)) across the hyper-re-

flective signals are shown to compare the resolved capability before and after processing, with a μm-per-pixel ratio of 0.525 in the transverse dir-

ection (f) and a μm-per-pixel ratio of 0.173 in the axial direction (g).
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Technological  University  (IRB-2016-10-015  and  IRB-
2019-05-050). The selection of parameters in the follow-
ing  tissue  experiments  was  guided  by  the  quantitative
evaluation  metrics  derived  from  our  simulations  and
phantom  studies  using  microspheres.  The  theoretical
FWHM w was  set  as  the  theoretical  estimate  of  spatial
resolution,  and  the  number  of  iterations t for Richard-
son-Lucy deconvolution ranged between 4–10. Paramet-
ers σ and m were  empirically  selected  to  ensure  artifact
suppression. The pixel size in both spatial and frequency
domains was set to fulfill the Nyquist sampling criterion.

To  demonstrate  the  applicability  of  Deconv-RPM  to
static  scatterers,  we  recorded  the  B-scans  of  swine  floor
of mouth ex vivo using μ-OCT. In cross-sectional μ-OCT
images, we  usually  identified  paired  high-scattering  sig-
nals at  the  nucleocytoplasmic  boundary  each  sandwich-
ing a  low-scattering  nuclear  core  in  the  middle  and up-
per epithelial layers. These corresponded to the Periodic
acid-Schiff-Diastase (PAS-D) positive cells with flattened
nuclei,  as  indicated  in  the  matched  histology.  Speckle
noise  is  inherent  in  coherent  imaging29,  which  reduces

contrast  and  makes  it  difficult  to  resolve  boundaries
between  highly  scattered  structures30 in  the  tissue.  For
speckle noise reduction,  we applied standard B-scan av-
eraging  (also  known  as  spatial  compounding)  to  both
unprocessed OCT images and Deconv-RPM images. The
principle underlying this operation is  that the reduction
in  speckle  noise  is  inversely  proportional  to  the  square
root of the number of compounded frames (in this case,
N = 20). However, there is an inherent trade-off between
the  speckle  reduction  and  the  resolution  improvement:
averaging B-scan comes at  the expense of  image resolu-
tion.  This  is  primarily  because  the  total  field  of  view  or
angular aperture of the detector must be split to perform
the averaging, inherently resulting in some loss of resolu-
tion31. Figure 4 features cross-sectional imaging of swine
floor of mouth: Fig. 4(a) is the standard μ-OCT, Fig. 4(b)
represents  the  Deconv-RPM, and Fig. 4(c) is the  decon-
volution-only  image.  Magnified  sections  from Fig. 4(a)
and 4(b) are  detailed  in Fig. 4(d) and 4(e), with  nucleo-
cytoplasmic  boundaries  marked  by  pink  arrowheads.
The  histology  reference  from  the  swine  mouth  floor  is
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Fig. 4 | Cross-sectional imaging of swine floor of mouth. (a–c) Conventional image, Deconv-RPM image and Deconvolution image with 20 B-

scan averages showing epithelium (EP) and lamina propria (LP). Scale bar: 50 μm. (d, e) Enlarged 4× views of the selected sections from the

conventional and Deconv-RPM images, demonstrating clearly identifiable nucleocytoplasmic boundaries, as indicated by pink arrowheads. Scale

bar: 10 μm. (f) Corresponding histology image from the swine floor of mouth, serving as an anatomical reference. Scale bar: 20 μm. (g–h) Cor-

responding profiles (yellow dashed lines in (g) and (h)) across the hyper-reflective signals before and after processing, with a μm-per-pixel ratio of

0.218 in the transverse direction (g) and a μm-per-pixel ratio of 0.22 in the axial direction (h).
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provided in Fig. 4(f), and line profiles from Fig. 4(d) and
Fig. 4(e) are  shown  in Fig. 4(g) and 4(h).  Significantly,
the  Deconv-RPM  depicted  in Fig. 4(b) greatly  improves
the visibility of cellular structures.  Nevertheless,  because
of the magnitude normalization implemented during the
summation process in Step 2, the layered structures evid-
ent  in Fig. 4(a) are  less  prominent  in Fig. 4(b), a  con-
sequence of the self-averaging effect.

 Imaging of moving blood cells imaging in
vivo
Dynamic imaging of cellular structures presents particu-
lar  challenges  due  to  the  uncertainty  of  the  physical
model  for  digital  correction  and  the  abrupt  changes  in
noise levels. To demonstrate the efficacy of our Deconv-
RPM  method  in  visualizing  dynamic  scatterers  (Fig. 5
and Fig.  S3),  we  performed  labial  mucosa  imaging  of  a
human volunteer using μ-OCT (a 126 kHz A-line rate al-
lows  for  a  B-scan  rate  of  512  lines  at  246.1  frames  per
second). We consecutively scanned the same location on
the  mucosa  multiple  times  to  ensure  the  visibility  of
moving  structures,  such  as  red  blood  cells,  in  each  B-
scan. Figure 5 presents  blood  flow  in  a  capillary  loop
containing a  mass  of  blood  cells,  where  the  flow  direc-
tion  is  marked  by  red  arrow.  It  should  be  noted  that  a
single bright spot in the image does not necessarily rep-
resent  an  individual  cell.  Instead,  it  denotes  a  reflective
surface. Figure 5(c) was created by manually segmenting
the  capillary  region  in Fig. 5(a) and then  applying  De-
conv-RPM  to Fig. 5(b).  To  offer  a  detailed  comparison
between  images  processed  with  and  without  Deconv-
RPM, we provided a 3× close-up view of the marked re-
gions in Fig. 5(b) and 5(c) (Fig. 5(b') and 5(c')). This ef-
fectively highlights the real-time characteristics of blood

cells.  We ensured the registration of the capillary region
by  employing  a  single-step  discrete  Fourier  transform
(DFT) algorithm to align the B-scans32. The supplement-
ary  Movie  S1  provides  detailed x-z views  of  moving
structures within in vivo human labial mucosa as visual-
ized by our Deconv-RPM method. Figure S3 presents an
in vivo imaging  of  zebrafish  larvae  captured  through  μ-
OCT. An individual RBC can be seen in the tail artery, as
highlighted  in  the  orange  box  and  inset.  After  applying
the  Deconv-RPM,  the  individual  RBC  becomes  clearer
and is easily distinguishable. The results presented above
demonstrate that  our  proposed  method  can  noninvas-
ively  enhance  image  quality  for  moving  structures  in
real-time using μ-OCT.

 Discussion

 Parameters and distributions analysis
To further understand the modulation of random phase
masks,  we  conducted  a  series  of  1-D  simulations.  Our
initial assessment  focused  on  the  impact  of  normal  dis-
tribution  mean  values  on  Deconv-RPM  image  quality.
Following this, we investigated the effects of various dis-
tributions, such as uniform, exponential, and Poisson, on
the quality of Deconv-RPM images. For consistent find-
ings, each  configuration  was  run  100  times  independ-
ently.  Each  simulated  matrix  had  dimensions  of 1000
pixels × 1 pixel. The iteration number in the deconvolu-
tion  process  was  10,  with  the  sub-optimal w set  at  1.1
times the optimal wopt. We fixed the resampling number
m at  10000.  This  approach  yielded  a  rich  dataset  from
both original unprocessed and Deconv-RPM images, fo-
cusing primarily on SNR and FWHM metrics.

For the initial test, simulations were conducted within
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Fig. 5 | In vivo imaging of human capillary. (a, b) Representative μ-OCT image and segmented capillary region of human labial mucosa. Scale

bars: 50 μm. (c) The corresponding Deconv-RPM image. (b', c') 3× zoomed view on blood cells in the capillary.
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the range [−1, −0.5, 0, 0.5, 1] × π. Importantly, the stand-
ard deviation of the normal random numbers σ was fixed
at 0.7. Figure 6(a) illustrates that as the mean value of the
phase  distribution  fluctuates,  there  is  no  significant
change  in  the  FWHM.  Similarly, Figure 6(b) indicates
stable SNR values across different phase mask configura-
tions.  We  used  a  one-way  Analysis  of  Variance  (AN-
OVA)  test  to  determine  differences  among  the  five
groups.  The obtained p-values were 0.13 for  the SNR of
the  original  images,  0.25  for  their  FWHM;  0.81  for  the
SNR  of  Deconv-RPM  processed  images,  and  0.48  for
their  FWHM.  Given  that  all  the p-values  exceeded  the
standard  significance  level  of  0.05,  we  could  not  reject
the null hypothesis. This suggests that our analysis didn't
identify  any  statistically  significant  differences  among
the group means for the metrics mentioned.

For  the  second  test,  we  investigated  various  random
phase distributions of phase masks. In the Gaussian dis-
tribution, we set the phase range as [−A, A]×π, with A as
the variable.  In  the  exponential  distribution,  we  evalu-
ated RPM modulation over varying phase means. In the
Poisson  distribution,  changes  in  the  rate  parameter λ
were examined.  As shown in Fig. 7,  the SNR (blue solid
line)  and  FWHM  (red  solid  line)  of  the  original  image
remained  stable,  acting  as  reference  values.  The  RPM-
modulated values (dashed lines) showed deviations from
these references based on the chosen distribution and its
parameters. In Fig. 7(a) (uniform distribution), there was
a peak in RPM modulated SNR and FWHM around the
phase  range  of  [−0.9,  0.9]×π,  followed by  a  decrease.  In
the  exponential  distribution  (Fig. 7(b)), the  SNR  in-
creased  with  the  phase  mean,  stabilizing  between  1.7π
and 3.7π. The RPM modulated FWHM became consist-
ent after  a  phase  mean of  2.5π.  In  the  Poisson  distribu-
tion  (Fig. 7(c)),  variations  in  both  SNR  and  FWHM
modulated  by  the  RPM  were  observed,  with λ =  0.95π
identified  as  an  optimal  modulation  point.  In  essence,

each distribution presents unique modulation character-
istics.  Across  all  distributions,  the  relationship  between
SNR and FWHM remained consistent,  suggesting a dir-
ect link between image clarity and resolution.

 Theoretical explanation
We attempt to provide a theoretical explanation and as-
sume  the  effective  signal  to  be  a  Gaussian  function.
There are two types of original signals under considera-
tion: white noise and Gaussian signals. Furthermore, it's
assumed that random phase masks follow a normal dis-
tribution.

Case 1: White noise signal f(x)
The  procedure  involves  convolving  the  input  signal

f(x)  with  a  random phase  mask h(x).  Formally,  this  can
be represented as: 

c(x) = f(x)⊗ h(x) . (5)

The autocorrelation function of h(x) is given as: 

Rh (τ) =
1
N
δ (τ) . (6)

τ
Assuming  that f(x)  is  white  noise,  its  autocorrelation

function Rf( ) is a Dirac delta function: 

Rf (τ) = δ (τ) . (7)

Given that the autocorrelation function of the convo-
lution c(x) is given by the convolution of the autocorrela-
tion functions of f(x) and h(x), we have: 

Rc (τ) = Rf (τ)⊗Rh (τ) = δ (τ)⊗ 1
N
δ (τ) = 1

N
δ (τ) . (8)

Case 2: Gaussian signal f(x)
Assuming f(x) is a Gaussian function represented by: 

f (x) = e−
x2
2σ2 . (9)

Rf (τ)To determine the autocorrelation function  of the
Gaussian  function f(x),  we  integrate  the  product  of f(x)
and f(x+τ) over all x: 
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Rf (τ) =
w ∞

−∞
e−

x2
2σ2 e−

(x+τ)2

2σ2 dx . (10)

This evaluates to:
 

Rf (τ) =
√
πσe−

τ2
4σ2 . (11)

Following the approach from Case 1, the autocorrela-

Rc (τ)tion function  of the convolution c(x) is given by:
 

Rc (τ) =Rf (τ)⊗ Rh (τ) =
(√

πσe−
τ2
4σ2
)
⊗ 1

N
δ (τ)

=

√
πσ
N

e−
τ2
4σ2 . (12)
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Rc (τ) =
1
N
δ (τ)

Rc (τ) =
√
πσ
N

e−
τ2
4σ2

In summary, for white noise signals (Case 1), the auto-

correlation function of c(x) is . The mod-

ulation with RPM results in an autocorrelation function
that is entirely uncorrelated. This suggests that the noise
remains at  the  level  of  a  single  image,  even  after  super-
position. For Gaussian signals (Case 2),  the autocorrela-

tion function of c(x) is . The modula-

tion  with  RPM  leads  to  a  correlated  autocorrelation
function.  This  indicates  an  amplification  of  signal
strength  when  multiple  images  are  superimposed.  We
could imagine that c(x) acts as an encoding process in an
optical imaging encryption. For white noise, this encod-
ing is stationary33.

 Limitation and outlook
Applying  deconvolution  algorithms  to  noisy  data,  like
that  in  OCT  images,  often  poses  challenges.  While  our
approach has  been successful  in  identifying  cellular  and
sub-cellular features,  there  is  some  opportunity  for  fur-
ther improvement.  Some of  the weak signals  along with
the  artifacts  generated  by  deconvolution  could  be  also
suppressed  in  step  2  of  our  approach,  when  they  share
similar  SNR.  This  results  in  the  unintentional  loss  of
weak  signals  in  our  processed  images.  Addressing  this
overlap is essential, and several strategies can help in this
differentiation.  Analyzing  the  consistent  behavior  of
pixels  over  time,  known  as  temporal  analysis,  can  help
identify  weak  signals  that  stand  out  from  the  random
fluctuations of ringing artifacts. Additionally, by examin-
ing  the  spatial  patterns  in  the  data,  we  can  leverage  the
inherent structure of weak signals, which is typically ab-
sent  in  ringing  artifacts.  Analysis  in  frequency  domain
could also allow us to separate the unique components of
weak signals from those of ringing artifacts. The integra-
tion  of  recent  advanced  deep  learning  algorithms  offers
another  avenue,  as  these  can  be  trained  to  discern  even
subtle differences between artifacts and weak signals.

Generally, when utilizing a high numerical aperture in
the sample arm, OCT systems face limitations in depth-
of-focus. Deconv-RPM is compatible with numerical re-
focusing methods such as interferometric synthetic aper-
ture  microscopy  (ISAM)8,  aperture  synthesis34 and
subaperture  correlation35.  In  practice,  scatterers  outside
the confocal  region  could  be  refocused  before  the  De-
conv-RPM  processing.  In  strict  terms,  Deconv-RPM
should  depend  on  phase  stability.  Since  the  unstable
phase fronts among axial scans do not greatly modify the

backscattered  intensity,  Deconv-RPM  is  also  robust  to
these errors as Richardson-Lucy deconvolution14.

 Conclusion
The standard deconvolution, in concert with the numer-
ical random  phase  masks,  permitted  artifact-free  ima-
ging  with  an  approximate  2.5-fold  FWHM  reduction,
which significantly exceeds the performance of these two
methods  separately.  In  conclusion,  this  method  can  be
directly  applied  to  conventional  OCT  images  without
any  system  modifications.  It  opens  up  new  avenues  for
conducting deblurring imaging with potentially signific-
ant noise reduction, which could facilitate the identifica-
tion  of  specific  sub-cellular  structures  in  turbid  tissues.
On a broader scale, the Deconv-RPM method can be ap-
plied to any other coherent or incoherent imaging mod-
ality suffering  from severe  noise  artifacts,  thereby  yield-
ing enhanced image quality.
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