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Innovations  in  artificial  intelligence  have  revolutionized
various  areas,  especially  optics.  The  rapid  development
of novel  optoelectronic  devices  at  nanoscale  has  exhib-
ited the  multiple  functionalities,  high  integration,  com-
pactness,  fast  modulation  and  scalability,  showcasing
new  breakthroughs  of  digital  optics  and  optoelectronic
processors for intelligent computations. Tremendous ap-
plications  have  been  actively  explored,  such  as  optical
neural  network,  photonic  integrated  circuits  (PICs),
computational imaging, bio-sensing and many others. In
this special issue, we have collected five papers reporting
the  high-impact  researches  in  this  domain,  covering
from the optical intelligent hardware, novel light sources
to their practical intelligent design models and emerging
applications.

There  are  several  examples  of  optoelectronic  PICs  to
use photons  for  information  processing.  Numerous  ar-
chitectures  have  been  extensively  studied  including  the
Mach-Zehnder Interferometer (MZI) mesh arrays1−5, mi-
cro-ring resonators (MRR)6−8,  neuromorphic computing
with  phase  change  materials9−11,  and  others12−15.  Along
with  these  technological  advancements,  exploring  new
application  scenarios  of  these  PIC  computations  is  also
important  as  it  helps  to  attract  more  efforts/investment
into  this  field  and  to  drive  the  novel  task-specific  PIC
computing architectures.

Here,  Dong  et  al.  has  demonstrated  the  integrated

photonic  convolution  acceleration  core  (PCAC),  with
purpose-oriented  functionalities  for  smart  wearables
with  edge  computing  capabilities16.  The  team  used  the
MRR  arrays  for  convolution  operation  at  the  speed  of
light with  7-bit  accuracy  and extremely  low power  con-
sumption, which can be a scalable solution of PICs. The
computing  capability  is  3.2  TOPS  (tera  operations  per
second)  in  parallel  processing.  This  has  allowed  image
convolution and gesture recognition,  important for new
applications for wearable devices.

Dong’s  team used the external  light  source and fibre-
based MUX  for  their  exciting  proof-of-concept  demon-
strations. From the  practical  viewpoints,  the  further  ad-
vancement could  be  broadband  light  source  and  integ-
rated multiplexer, which hopefully can be tailorable on a
chip. The on-chip frequency comb will be a great candid-
ate  as  light  source.  This  can  be  obtained  via  nonlinear
optical  processing,  the  RF  electro-optical  modulation
and  others,  and  further  feedback  loop  can  be  included
for phase-locking mechanism.

In one cover of this special issue, Xie et al.  has repor-
ted the flat broad frequency-comb with near-zero disper-
sion17,  which  is  one  of  the  holy  grail  in  this  field.  Their
repetition frequency is around 190 GHz, covering 1470-
1670 nm  (70%  of  the  entire  spectral  range).  They  have
also  efficiently  packaged  the  optical  chip  in  the  way  of
edge coupling (coupling loss is less than 1 dB) and can be 
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stable more than 8 hours with the feedback control  sys-
tem  as  demonstrated.  Such  flat  combs  will  enable  the
next-generation compact source-embedded PICs18−20 and
even high-dimensional photonic computing solutions4,21.

Last,  these  PICs  composed  of  nanophotonic  building
blocks  such  as  waveguides,  multiplexer/demultiplexer
and  others  usually  rely  on  the  optimized  structural
design. Conventional approach is the brutal-force simu-
lation where  one  would  sweep  all  possible  configura-
tions  and choose  the  one  which gives  the  results  closest
to  the  target.  This  method  is  not  efficient  and  does  not
meet the ever-increasing demand of fast design of intelli-
gent photonic systems. In this special issue, Yu et al. has
proposed  the  anisotropic  inverse  design  of  on-chip
photonic elements  based  on  lithium niobate  on  insulat-
ors  (LNOI)22.  Importantly,  this  represents  one  of  a  few
works for  inverse  design  of  complicated  media,  aniso-
tropic  media  specifically  here.  The  authors  exploit  the
rank-3 dielectric matrix in FDTD simulations and apply
the adjoint  method  to  reduce  the  computational  com-
plexity. Therefore, the compact four-channel wavelength
division demultiplexer with high figure of merit has been
designed based on LNOI,  offering a new opportunity to
further  miniaturize  the  PCAC  demonstrated  by  Dong’s
team.

Also  included  in  this  special  issue  are  two  papers  on
how  emerging  intelligent  optoelectronic  system  and
computing algorithms can innovate the bio-imaging ap-
plications. Another cover paper, contributed by Luo et al.
has  reported  a  synthetic  wave  microscopy  (SWM)  with
the  metalens  system  for  3D  super-resolution  label-free
microscopy23. Specifically, they vary the phase of various
ways slowly to decouple the interferometric signals from
the  incoherent,  non-modulating  background,  thus
achieving  4×  faster  imaging  speed  (up  to  106 pixels/s).
Combining  with  metalens,  the  high lateral  resolution of
0.42 λ/NA is  also  realized.  Meanwhile,  Zhao  et  al.  here
also reported a smart and compact Palm-size Optofluid-
ic Hematology  Analyzer  based  on  a  miniature  fluores-
cence microscope and a microfluidic platform24. The di-
mension of gadget is 35 × 30 × 80 mm and the mass is of
39 g. Via leukocyte counting algorithms, automatic con-
centration detection has  been realized  with  high fidelity
of  95%  limits,  ranging  from  -0.93×103 to  0.94×103

cells/μL. The work promises the practical  miniaturized25

and intelligent optoelectronic system for the imaging and
monitoring  biosamples  with  high  spatial  and  temporal
resolution26.

In summary, this special issue has broadly covered the
optoelectronic sciences and technologies from the integ-
rated  photonic  processors,  the  novel  design,  integrated
light sources  and  practical  applications  from  the  wear-
able devices, portable microscope and high-end bio-ima-
ging systems.  Moving  forward,  we  anticipate  the  opto-
electronic  sciences  and  technologies  will  offer  the
paradigm shift of digital and intelligent photonic applic-
ations.  We also  greatly  thank all  contributions  from the
authors, reviewers,  and  the  scientific  editor,  Prof.  Lian-
wei  Chen,  and  very  much  hope  the  readers  from  broad
communities enjoy this special issue as we did.
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