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Chiral detection of biomolecules based on
reinforcement learning
Yuxiang Chen1†, Fengyu Zhang2,4†, Zhibo Dang1, Xiao He1,
Chunxiong Luo2,4, Zhengchang Liu3, Pu Peng1, Yuchen Dai3,
Yijing Huang1, Yu Li3 and Zheyu Fang1,3*

Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and
different  physiologic  functions.  In  recent  years,  chiral  detection  of  enantiomers  become  a  popular  topic.  Plasmonic
metasurfaces enhance weak inherent chiral effects of biomolecules, so they are used in chiral detection. Artificial intelli-
gence algorithm makes a lot of contribution to many aspects of nanophotonics. Here, we propose a nanostructure design
method  based  on  reinforcement  learning  and  devise  chiral  nanostructures  to  distinguish  enantiomers.  The  algorithm
finds out the metallic nanostructures with a sharp peak in circular dichroism spectra and emphasizes the frequency shifts
caused by nearfield interaction of nanostructures and biomolecules. Our work inspires universal and efficient machine-
learning methods for nanophotonic design.
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 Introduction
Chirality is one of important properties of subjects1,2. Es-
pecially in the aspects of medicine and biology, it is very
normal  that  the  opposite  handedness  of  enantiomers
leads  to  entirely  different  pharmacological  effects.  How
to  discriminate  chiral  signals  attracts  wide  attention  in
recent  years,  but  most  of  chiral  biomolecules  present
weak optical  signals  in ultraviolet  band,  which increases
difficulties for detection.  On the other hand,  it  is  repor-
ted  that  surface  plasmons  enhance  circular  dichroism
(CD)3−6,  and  different  kinds  of  plasmonic  metamaterial

exhibit a giant nonlinear optical activity (NOA)7−11. They
possess  significant  optical  chirality  around  the  resonant
frequencies in the visible and near-infrared band. There-
fore, chiral metasurfaces12−19, metamaterials19−22 and nan-
oparticles23−26 are  widely  used  in  chiral  detection.  The
nearfield interaction between chiral molecules and metal
nanostructures  causes  a  far-field  spectrum  shift  which
can be considered as the basis of chiral discrimination27.
Complex nanostructures usually possess intrinsic chiral-
ity,  and  the  background  CD  signals  of  nanostructures
cover  the  interaction  effects  from  biomolecules. 
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Emphasizing the CD signals of biomolecules depends on
shapes  and  optical  properties  of  the  nanostructure.  It  is
significant  to  design  particular  structures  for  accurate
chiral  detection.  Diverse  types  of  biomolecules  require
different  nanostructures,  but  the  relationships  between
biomolecules and corresponding nanostructures are very
intricate.  Finding  appropriate  nanostructures  demands
extensive  theoretical  simulation  and  explorative
experiments.

In  recent  decades,  it  is  found  that  various  artificial
nanostructures  achieve  the  manipulation  of  light  based
on  their  unique  geometric  distributions.  However,  the
structure  design  process  consumes  huge  amounts  of
computing  in  iterative  electromagnetic  simulations28.
Advanced  optimization  algorithms  rather  than  simple
parameter sweep  methods  are  involved  in  the  nano-
photonic design to tackle these challenges.  For example,
genetic  algorithm and topology optimization succeed in
the design of metasurface and obtain exceptional optical
features29−32. As the development of artificial intelligence,
the application of intelligent algorithms has been an act-
ive topic for nanophotonics28,33−35. Due to their huge ad-
vantages on  large-scale  data  processing,  intelligent  al-
gorithms deal  with  the  complex  problem  which  tradi-
tional optimization  algorithms  cannot  solve.  They  con-
tribute to  the  design  of  diverse  functional  nanostruc-
tures  including  meta-lens36,  meta-grating37−39,
coupler40−41,  beam  splitters42−43 and  photonic  crystals44,
etc. As one of the most popular artificial  intelligence al-
gorithms, deep learning models successfully decrease the
cost  of  nanostructure  design,  enlarge  the  computable
parameter space  and  help  search  for  better  nanostruc-
tures  than  classic  design  methods  provide.  However,
deep  learning  models  are  usually  limited  by  the  small
volume and inappropriate distribution of raw dataset28.

In  this  work,  we  present  a  method  of  nanostructure
design  based  on  reinforcement  learning,  which  changes
data  generation  manners  and  replaces  data  fitting  with
explorations  of  parameters.  The  algorithm  proposes
automatically  the  nanostructures  that  it  wants,  and
learns from  the  spectra  of  these  nanostructures.  Artifi-
cial neural networks (ANNs) guide searching for poten-
tially better nanostructures which are about to be calcu-
lated  by  electromagnetic  simulations,  and  these  results
are  used  to  update  the  ANNs.  With  this  algorithm,  we
obtain  numerous  different  nanostructures  with  a  sharp
peak in CD spectra in order to emphasize the interaction
effects  between  chiral  biomolecules  and  plasmonic.  The

experiment  proves  that  the  microfluidic  chips  with  the
optimized  chiral  structures  succeed  in  differentiation  of
enantiomers.  The  resonance  wavelength  shifts  between
enantiomers  of  glucose  with  opposite  chirality  reach  7
nm. According  to  the  cathodoluminescence  (CL)  spec-
troscopy, the  structures  designed  by  artificial  intelli-
gence  possess  different  near-field  modes  for  RCP  and
LCP components.

 The workflow of the optimization algorithm
The circular dichroism (CD) spectrum of a typical chiral
reflective metasurface  illustrates  the  difference  in  re-
flectivity (transmissivity)  between  left-circularly  polar-
ized  light  (LCP)  and  right-circularly  polarized  light
(RCP), and it is defined as 

CD =
RRCP − RLCP

RRCP + RLCP
,

where RRCP and RLCP denote the reflectivity of the metas-
urface  with  a  right-circularly  polarized  input  and a  left-
circularly polarized input.

The metasurface whose CD spectrum presents a sharp
peak emphasizes the phenomenon of the frequency shift
caused  by  chiral  biomolecules.  When  a  metasurface  is
covered  by  biomolecular  solution,  its  CD  spectrum  will
be  modulated  by  the  biomolecules  which  leads  to  the
change of the resonance frequency. As for ordinary chir-
al  metasurface,  the modulation effect  is  limited,  because
the CD spectra shift is combined with the noise of back-
ground  spectra.  Therefore,  it  is  effective  to  design  a
nanostructure  with  a  sharp  chiral  peak  for  detection  of
the chiral molecules.

Reinforcement learning  is  involved  to  design  struc-
tures  with  strong  chirality.  The  specific  optimization
workflow  for  optical  properties  of  nanostructures  based
on  reinforcement  learning  is  shown  in Fig. 1.  We  use
ANNs to predict the chirality of a new nanostructure in-
stead of  electromagnetic  simulations.  Unlike  classic  su-
pervised learning, the design process is considered as the
exploration of the parameter space. Predictions of ANNs
which  are  updated  according  to  the  feedback  from  the
environment guide the optimization. The exploration of
new nanostructures and the update of models are simul-
taneous. The introduction of reinforcement learning im-
proves  the  quality  of  the  training  dataset  and  declines
electromagnetic simulations.

When  involving  classic  supervised  learning  to  design
structures of nano-photonics, it is a possible contradiction

Chen YX et al. Opto-Electron Sci  2, 220019 (2023) https://doi.org/10.29026/oes.2023.220019

220019-2

 



that enough training data might consume so much com-
puting resource that  machine learning does not develop
the design process. Data plays a crucial role in classic su-
pervised learning.  Trained  deep  learning  models  sum-
marize  the  relationship  between  the  input  data  and  the
output data, so they cannot achieve the prediction of in-
puts which have nothing in common with training data-
set, even  for  the  most  advanced  artificial  neural  net-
works. Obviously,  sufficient  data  is  the  base  of  super-
vised  learning,  but  the  generation  of  data  cost  large
amounts of computing resource and time. We obtain the

training data through numerical electromagnetic simula-
tions which take much more time than the calculation of
ANNs. When the training dataset covers the whole para-
meter space densely, involving ANNs is meaningless, be-
cause the cost of training data generation reaches or even
exceeds the traditional design method. In this work, it is
difficult  for  normal  supervised  learning  to  accurately
predict  spectra  with  a  dramatic  change  because  of  the
above problem. It is necessary for accurate prediction for
optical response of a structure with ANNs that there are
similar structures in the training dataset. As the first step
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of the classic supervised machine learning, it is very diffi-
cult  to  estimate  the  optical  responses  of  structures
without electromagnetic simulation while the generation
of training dataset,  so the structures are usually  selected
randomly.  However,  the  electromagnetic  simulation  of
all  kinds  of  nanostructures  demands  more  computing
costs than the classical nano-photonic design does. Nor-
mal supervised learning cannot achieve the design under
the limitation of calculation resources.

Reinforcement learning is an effective way for the con-
struction of  a  training dataset  shown in Fig. 1(a),  which
focuses on  nanostructures  with  strong  circular  dichro-
ism rather than all of nanostructures. Numerical electro-
magnetic simulations of significantly chiral structures are
indispensable,  because  it  is  the  main  goal  for  ANNs  to
calculate  spectra  and  distinguish  structures  with  high
values  of  circular  dichroism.  It  is  important  to  decrease
the  ratio  of  weakly  chiral  nanostructures  in  the  training
dataset for  the  decline  of  the  simulation  cost.  The  ar-
rangement does  not  only  reduce  the  time spent  in  elec-
tromagnetic  simulation  significantly,  but  also  ensures
that ANNs  calculate  optical  responses  of  chiral  struc-
tures correctly. Although ANNs trained according to this
training  set  cannot  predict  spectra  of  nanostructures
with weak chirality accurately, their results usually exhib-
it stochasticity and most of random spectra present weak
circular dichroism. The ANNs still  differentiate whether
a structure has optical chirality or not, so the inaccuracy
does  not  hinder  the  chiral  structure  design.  Therefore,
the training  dataset  including  few  achiral  structures  re-
duces  computing  resources  and  maintains  the  major
function of ANNs.

The  exploration  of  the  parameter  space  is  achieved
through  ANNs  and  Bayesian  optimization  algorithms.
The first part of the optimization is the generation of the
initial dataset.  We  create  different  nanostructures  ran-
domly  and  calculate  the  corresponding  CD  spectra  by
solving the Maxwell’s equations through the finite differ-
ence  time-domain  (FDTD)  method.  As Fig. 1(b) shows,
the next step is to train several ANNs in order to obtain
mapping  relations  between  the  nanostructure  geometry
and the optical  response.  New structures (shown in Fig.
1(c)) are designed with Bayesian optimization algorithm
on the basis of predictions from ANNs. Although ANNs
cannot  provide  accurate  prediction  at  the  period  of  the
exploration because of the limited training data, they of-
ten  recognize  structures  that  possibly  possess  strong
chirality.  As  a  primary  selection,  predictions  of  ANNs

generate  possibly  optimized  structures  and  decrease  the
computing  recourses  spent  on  structures  with  weak
chirality.

Figure 1(d) illustrates  the  process  of  updating  the
dataset.  It  is  a  useful  method  for  judging  whether  the
check of  a  structure  is  necessary or  not  to  compare res-
ults from  different  ANNs.  Structures  whose  optical  re-
sponses estimated by several  neural  networks are differ-
ent  significantly  need  to  be  calculated  again  by  FDTD
and  added  to  the  dataset,  because  the  inaccuracies  of
ANNs prove  that  there  are  few similar  structures  in  the
current dataset and it is possible that the structures pos-
sess strong  chirality.  On  the  other  hand,  when  predic-
tions of  a  structure  from  several  ANNs  are  highly  con-
sistent, the predictions are  credible  and the dataset  cov-
ers similar structures. The structure does not need check
with  numerical  electromagnetic  simulations,  and  it  can
be the  optimized  chirality  structure.  After  the  data  up-
dated,  ANNs are retrained and generate  new structures.
Although the initial  training data generation is  random,
ANNs  ensure  that  new  structures  added  to  it  have  the
potential of  strong  chirality,  and  this  selection  contrib-
utes to construct a training dataset which contains chiral
structures.

The above steps compose a self-consisted cycle which
searches for nanostructures with optimized chirality. Re-
inforcement learning  achieves  the  combination  of  para-
meter explorations and model  updates,  and declines the
cost of data generation. Through this method, we obtain
lots of chiral structures to detect chiral biomolecules.

 Results and discussion
Figure 2(a–c) illustrates  the  basic  structure  of  the  chiral
metasurface. Gold cuboid nanostructures are placed on a
SiO2/Si substrate with a period of 400 nm × 400 nm. The
thickness of SiO2 is 100 nm, and the height of nanostruc-
tures  is  40  nm.  These  nanostructures  are  composed  of
several cuboids  whose  side  lengths  are  an  integral  mul-
tiple of 10 nm, so they can be parameterized as shown in
Fig. 2(c). Each spatial period is divided into 40 × 40 units
encoded  with  0  or  1.  Code  1  represents  that  a  gold
cuboid exists at that position, and Code 0 means that the
substrate is exposed. Therefore, the geometry of a nano-
structure is expressed as a 40 × 40 square matrix.

Figure 2(d) shows  the  architecture  of  ANNs  which
predict reflective spectra of metasurfaces with a right-cir-
cularly  polarized  incidence  (RRCP).  ANNs  achieve  the
mapping  between  square  matrixes  which  describe
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nanostructures and corresponding spectra. According to
the symmetry of the system, the mirror symmetry trans-
formation  exchanges  values  of RRCP and RLCP,  so RLCP

can  be  obtained  based  on  the  prediction  for  the  flipped
structure. RRCP and RLCP determine CD spectrum by the
definition.  As  several  types  of  classical  Convolutional
Neural Networks (CNN), ANNs consist  of convolution-
al layers,  pooling  layers,  activation  layers  and  fully  con-
nection layers.  It  is  because  CNNs  exhibit  their  advant-
ages on  image  processing  that  we  choose  them  to  ana-
lyze optical  properties  of  metasurfaces.  Details  and  hy-
perparameters of  neural  networks  are  given  in  Supple-
mentary information.

The above ANN models predict optical responses suc-

cessfully  after  the whole design process.  In the first  step
of  the  design  process, 1000 random  nanostructures  are
generated  as  the  initial  dataset.  As  the  design  process
searches for  new  structures  with  a  strong  chirality  con-
tinuously, the quantity of the dataset is enlarged to 6000.
In order  to  estimate  the  performance  of  the  ANNs  in-
volved,  80% of  data  composes  of  training data  and 20%
data left is used as test data. After data enhancement (See
Supplementary information), the training loss defined as
the mean square error between results of simulations and
ANNs decline to 1.22×10−4, and the test loss is 3.31×10−4.
A  prediction  example  is  shown  in Fig. 2(e, f). The  out-
puts of ANNs describe reflective spectra with a right-cir-
cularly  polarized  incidence  accurately.  As  stated  above,
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we utilize mirror reflection transformation to obtain the
reflectivity in the case of a left-circularly polarized incid-
ence and calculate corresponding CD spectra. Figure 2(f)
illustrates that ANNs achieve accurate predictions of CD
spectra although the spectra possess a sharp peak.

In  order  to  prove  the  chirality  of  structures  designed
by the algorithm proposed, we fabricate three structures
whose  chiral  peaks  distribute  in  different  wavelengths.
Figure 3(a, e, i) illustrate  scanning  electron  microscope
(SEM)  images  of  the  structures,  and Fig. 3(b, f, j) com-
pare the corresponding CD spectra obtained from simu-
lations  and  experiments.  It  proves  the  rationality  of  the
design method that simulation curves are consistent with
experiment  results.  The  deviation  between  theory  and
experiment can be caused by machining errors.

The  cathodoluminescence  (CL)  spectroscopy  is  used
to  analyze  optical  near-field  resonance  modes,  and  the
CL  mapping  images  shown  in Fig. 3(c, d, g, h, k, l) ex-
plain the  origin  of  the  chirality  of  the  proposed  struc-
tures.  The  CL  emission  signals  excited  by  an  electron

beam  are  collected  with  a  bandpass  filter  and  a  circular
polarizer in order to differentiate LCP and RCP compon-
ents. Figure 3(c, g, k) illuminate  that  quadrupole  modes
dominate  LCP  components  of  near-field  distributions,
but as shown in Fig. 3(d, h, l), RCP components exhibit a
comparatively  intense  dipole  mode.  Dipole  radiation
usually causes  a  stronger  far-field  signal  than  quadru-
pole radiation does, so the reflective distinction between
LCP  and  RCP  originate  from  the  different  near-field
modes excited. When chiral biomolecules are coupled to
nanostructures,  it  is  supposed  that  the  change  of  near-
field  modes  leads  to  the  frequency  shift  of  chiral  peaks.
For  LCP  and  RCP  components,  the  ratio  of  dipole  and
quadrupole modes varies  differently,  because chiral  bio-
molecules possess the divergent optical responses to LCP
lights  and  RCP  lights.  The  different  variation  results  in
the far-field CD spectra change.

The  frequency  shift  of  CD  spectra  caused  by  chiral
biomolecules is detected in experiments. The nanostruc-
tures  locate  at  the  bottom  of  microchannel  structure
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made of Polydimethylsiloxane (PDMS) as shown in Fig.
4(a).  We  measure  reflective  spectra  of  LCP  and  RCP  to
calculate CD spectra when the solutions of diverse chiral
molecules  pass  the  microchannels.  A  vertical  incident
light excites  the  coupling  of  structures  and  chiral  bio-
molecules  in  solution,  and  the  spectra  collected  by  the
objective  lens  above  are  shown in Fig. 4(b, c, d).  L-gluc-
ose and D-glucose are a pair of enantiomers which have
opposite  chirality,  and  we  select  them  as  an  example  to
test the resolving power of the microfluidic chip. It is ob-
vious that  far-field  CD  spectra  is  modulated  by  the  re-
fractive  index  of  solution,  because  near-field  optical
modes depend  on  the  refractive  index  of  the  environ-

ment.  Therefore,  NaCl  solution  which  possesses  the
same refractive index as glucose solution is involved as a
controlled experiment.

The experiment results based on three kinds of nano-
structures  illustrate  consistently  that  the  L-glucose  and
R-glucose triggers  frequency  shifts  in  different  direc-
tions compared to the CD spectra of NaCl solution. The
shifts originate from the coupling of chiral molecules and
nanostructures rather  than  the  change  of  refractive  in-
dex. It is a simple theory explanation that the effective re-
fractive  indexes  of  chiral  solution  for  LCP and RCP are
different, which  leads  to  distinct  near-field  electromag-
netic modes. As the CL mapping images show, the chiral
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resonance  peaks  of  the  metal  nanostructures  appear
when  dipole  modes  excited  by  LCP  abate  significantly.
Enantiomers  with  opposite  chirality  possess  contrary
variation of effective refractive index, so the orientations
of frequency shifts are different.

As  shown  in Fig. 4(c),  the  amplitudes  of  frequency
shifts  are  possibly  unequal.  When  chiral  biomolecules
locate at  hot  spots,  the  localized  field  enhancement  ef-
fects of metallic nanostructures cause that molecular cir-
cular  dichroism  in  the  ultraviolet  band  extended  to  the
visible and near-infrared band. The LCP and RCP modes
of chiral  nanostructure  possess  different  resonant  fre-
quencies, so the enhanced CD signals from enantiomers
occur in  different  wavelengths.  Variations  of  CD  spec-
trum  are  dependent  on  the  near-field  electromagnetic
modes  of  metallic  nanostructures.  When  the  LCP  and
RCP modes exhibit asymmetric resonant frequency devi-
ations from  the  CD  peak,  the  shifts  induced  by  bio-
molecules are probably different.

At present,  the  chiral  detection  methods  of  bio-
molecules  include  the  chiral  assemblies  of  plasmonic
nanostructures  enabled  by  biomolecules1−4,46,  chiral
metasurfaces12−19,  chiral  metamaterials19−21,  plasmonic
nanocavities47−48 and  chiroptical  active  nanoparticles.
Most  of  them  focus  on  the  macromolecules  like  DNA,
RNA and  proteins.  The  chiral  detection  of  small  mo-
lecules mainly  rely  on  nanoparticles  and  chiral  assem-
blies. It is reported that chiral nanoparticle films display
chiral binding to glucose enantiomers and induce select-
ive catalysis  and  glucose  enantiomers  exhibit  highly  se-
lective  photooxidation  under  CPL  illumination4,46.  This
method  obtains  interfacial  assemblies  of  the  monolayer
NP  film  through  evaporating  mixed  solution  and
achieves a high sensitivity. Unlike the complex process of
the  above  method,  our  approach  utilizes  microfluidic
chips to detect the chiral biomolecules constantly, which
is  reusable  and  more  convenient  to  practice.  Compared
to other  chiral  metasurfaces,  our  nanostructures  differ-
entiate  one  type  of  small  molecules,  which  can  inspire
more  exploration  of  chiral  detection  based  on
metasurfaces.

 Conclusions
In conclusion, a nanophotonics design method based on
reinforcement learning is proposed to devise microfluid-
ic chips which achieve differentiation of chiral molecules.
The  algorithm  combines  parameter  explorations  with
model  updates  and  successfully  obtains  nanostructures

which possesses sharp peaks in CD spectra. ANNs do not
only  learn from the  given training data  but  propose  the
structures whose spectra they need to know, so the pro-
cess  is  an  automatic  exploration  instead  of  supervised
learning.  They  accurately  predict  the  reflective  spectra
with  a  right-circularly  polarized  incidence  within 6000
simulations, even though the reflectivity is very sensitive
to  the  wavelength.  The  CL  spectroscopy  analyzes  the
near-field electromagnetic  modes  of  nanostructures  de-
signed by the  above method,  and it  is  considered as  the
origin of the chirality of the nanostructures that LCP and
RCP excite  different  near-field  modes.  When  the  solu-
tion  of  enantiomers  with  opposite  chirality  flows  into
microfluidic chips,  a  pair  of  contrary  resonance  fre-
quency shifts are detected in CD spectra. It is because the
coupling  of  chiral  biomolecules  and  nanostructures
changes the near-field modes. Therefore, the microfluid-
ic  chips  designed  by  artificial  intelligence  differentiate
enantiomers correctly.

The  above  algorithm improves  classic  explorations  of
parameter spaces with machine learning and achieves the
optimization for spectrum. However, the physical mean-
ings  of  spectrum  are  not  important  for  the  algorithm,
which means that other optical properties can be optim-
ized through  this  method.  The  paradigm  of  reinforce-
ment learning can be extended to design nanostructures
for other functions. In this work, the algorithm is restric-
ted by the physical limits of the system, but the designed
nanostructures successfully  differentiate  the  enan-
tiomers of glucose. It is reported that coupled chiral plas-
monic  nanostructures  including  plasmonic  nanocavities
are more suitable for chiral detection47−48. The algorithm
has the  potential  for  diverse  nanophotonic  circum-
stances,  and  the  combination  with  these  plasmonic
nanostructures probably form better chiral detection. As
an instance,  the  study  illuminates  the  physics  mechan-
ism and the practicability of nanostructures proposed by
artificial  intelligence.  It  can  inspire  new  applications  of
deep learning  algorithm  in  nanophotonics  and  help  ex-
plore physical limits.
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