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Towards integrated mode-division
demultiplexing spectrometer by deep learning
Ze-huan Zheng1,2†, Sheng-ke Zhu1,4†, Ying Chen3, Huanyang Chen5* and
Jin-hui Chen1,4,6*

Miniaturized  spectrometers  have  been  widely  researched  in  recent  years,  but  few  studies  are  conducted  with  on-chip
multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division de-
multiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which real-
izes simultaneously spectral dispersing and light fields detecting. In the bandwidth of 1500–1600 nm, the designed spec-
trometer achieves the single-mode spectral resolution of 7 nm for each mode of TE1–TE4 by Tikhonov regularization op-
timization.  Empowered  by  deep  learning  algorithms,  the  15-nm  resolution  of  parallel  reconstruction  for  TE1–TE4 is
achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE1–TE4 to the single spec-
tra, the 3-nm spectral resolution is realized. This design reveals an effective solution for on-chip MDM spectroscopy, and
may find applications in multimode sensing, interconnecting and processing.
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 Introduction
To cope with the ever-growing shortage of communica-
tion resources, advanced multiplexing technologies such
as wavelength-division multiplexing (WDM)1 and polar-
ization-division multiplexing  (PDM),  have  been  de-
veloped to  realize  multi-channel  parallel  data  transmis-
sions.  In  the  past  decades,  mode-division  multiplexing
(MDM)  technology  has  attracted  considerable
attention2,3,4,  which  divides  mutually  orthogonal  mode
channels in  a  single  wavelength.  Various  kinds  of  mul-

timode  manipulating  and  processing  devices  have  been
springing up, such as mode multiplexers/demultiplexers5,6,
mode converters7–9, and mode switches10. Due to the lack
of devices that simultaneously integrate the functions of
mode  demultiplexing  and  spectral  measurement,  the
sophisticated photo-detecting  circuits  are  usually  re-
quired when  extracting  the  wavelength-dependent  in-
formation carried on independent modes11,12.  Moreover,
to the best of our knowledge, none of related works con-
sider high-order modes as individual channels to directly 
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recognize  multiple  spectra  from  separated  sources.
Therefore, the  on-chip  multimode  spectrometers  com-
patible in MDM systems still remain an open problem.

Optical  spectroscopy  is  a  ubiquitous  technique  from
scientific research to engineering practices. In witness of
innovative miniaturized  optical  spectrometers  on  silic-
on-on-insulator  (SOI)  platforms13, spectroscopic  analys-
is has  become more  convenient  for  the  specific  applica-
tions that  usually  require real-time and comparable  res-
ults rather than ultra-high accuracy, including instantan-
eous biosensing14,15, mobile spectral imaging16–18, and sig-
nal monitoring for coherent optical communications19,20.
Spectrometers  generally  contain  the  wavelength-select-
ive  elements  and  photodetection  components.  Recently,
the  miniaturized  spectrometers  based  on  gradient-
bandgap  nanowires  or  tunable  two-dimensional  (2D)
materials have realized the integration of material-based
dispersion and photoelectric detection21,22, which are op-
erated  with  free-space  light  illumination.  For  on-chip
waveguide-integrated spectrometers,  the usual  approach
is  to  combine  the  narrowband  filters  or  interferometers
with  a  single  photodetector  or  multiple  photodetectors,
which  increases  the  spectrometer  footprint  and restricts
denser  integration23.  To  realize  the  ultimate  multimode
spectrometers in MDM systems, we argue that the novel
design of  spectral  dispersive  components  and  broad-
band  photodetecting  elements  are  required.  Moreover,
the  advanced  reconstruction  algorithms  are  in  demand
to  deal  with  the  strong  nonlinear  coupling  effects
between  various  modes.  The  fast  development  of  deep
learning  (DL)  techniques  merging  with  photonics  may
shed new light on this difficulty24−30. DL offers high plas-
ticity  to  nonlinear  optimizations  and  complicated  tasks,
whose target functions are difficult to express or solve by
conventional optimization  methods,  such  as  compress-
ive  sensing31−33 and  regularization-based  algorithms34−36.
In addition, because of the end-to-end training manner,
it  is  unnecessary  for  DL-empowered  reconstructions  to
know the physical properties of devices in advance, sup-
porting  a  transferable  architecture  for  the  multimode
spectrometers.

In this work, we for the first time propose an on-chip
mode-division demultiplexing  (MDD)  compatible  spec-
trometer with  deep  learning.  The  ultracompact  mul-
timode  spectrometer  in  footprint  of  63×12  μm2 (estim-
ated  based  on  simulation)  integrates  a  highly  branched
waveguide along with an array of coupled graphene pho-
todetectors, which  realize  simultaneously  spectral  dis-

persing  and  light  fields  detecting.  In  the  bandwidth  of
1500– 1600 nm,  the  designed  spectrometer  achieves  the
single-mode spectral resolution of 7 nm for each mode of
TE1–TE4 by  Tikhonov regularization optimization21,37,38.
Besides,  the  deep  learning  algorithms  are  implemented
to tackle the strong mode coupling effects in multimode
demultiplexing, and the 15 nm resolution of  parallel  re-
construction  for  TE1-TE4 is  achieved  by  the  single-shot
measurement. Moreover, we investigate the spectral res-
olution  enhancement  technique  by  stacking  multi-shot
multimode measurement, and an average resolution of 3
nm is  achieved.  Our  work  provides  an  effective  way  for
MDM spectroscopy  that  may  find  applications  in  mul-
timode sensing, interconnecting and processing, with be-
nefits for future on-chip dense integrations.

 Results

 Device design and Tikhonov regularization-based
reconstruction
A simplified  schematic  of  the  proposed  MDD  spectro-
meter  on  SOI  platform  is  illustrated  in Fig. 1(a),  which
consists  of  a  backbone  multimode  branched  waveguide
and m 2D-material-based  photodetecting  units,  i.e.,
unit1–unitm.  Here,  2D  materials,  such  as  graphene  and
black phosphorus,  can be selected as the photodetecting
layer  due  to  their  advantages  in  flexible  integration  and
broad  operation  wavelength  range39.  For  example,
graphene has  the  potential  for  high-speed  and  broad-
band photodetection thanks to its  gapless bandstructure
and high carrier mobility40,41,42. The small direct bandgap
of  black phosphorus makes  it  advantageous for  infrared
spectra detection39. 2D materials meet the imperative de-
mand  of  on-chip  photonics  for  high-performance  and
broadband photodetectors. As a proof-of-concept study,
we  consider  the  photoconductive  effect  of  the
metal−graphene−metal  photodetectors43−46. In  a  photo-
conductive  device,  photon  absorption  generates  extra
free  carriers,  reducing  the  electrical  resistance  of  the
semiconductor.  The  evanescent  fields  of  the  waveguide
enhance  the  light-graphene  interactions.  The  incident
photons cause  the  change  of  the  channel  electrical  con-
ductivities,  and  the  photocurrents  can  be  extracted  by
applying  a  bias  voltage39. The  magnitude  of  the  photo-
current  is  proportional  to  the  material’s  absorption
(more  details  see  Supplementary  information  Section
S1). The highly branched structures of silicon waveguide
integrated with the transparent graphene photodetectors
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realize simultaneously spectral dispersing and light fields
detecting. In particular, when the multimode spectra car-
ried on k guided modes, i.e., mode1–modek, are launched
from  the  input  port,  the  photocurrents I1– Im in  the
graphene  photodetecting  units  are  generated.  Then  the
captured photocurrent  arrays  are  fed into a  deep neural
network (DNN) to separate and rebuild the desired spec-
tral profiles F1 (λ)–Fk (λ) corresponding to mode1-mod-

ek,  where λ is light wavelength. In Fig. 1(b), each detect-
ing unit, which occupies an area of x×y, is made of sever-
al branched stripes symmetrically assigned on both sides
of  the  backbone  waveguide  with  width w, and  a  mono-
layer  graphene laminating on the top.  Inspired by ref.23,
each  branched  waveguide  is  determined  by  parameters
(s, h, g).  In addition, the gap between adjacent detectors
and the  thickness  of  silicon  layer  are  defined  as d and t
respectively.  Comprehensive  research  is  carried  out
when  selecting  design  parameters.  After  trying x in  the
range of  1–3 μm and y in the  range of  4–12 μm,  we fi-
nally fix x=1.5 μm and y=12 μm. In order to achieve the
balance between the number of supported modes and the
wavelength sensitivity, the width of backbone waveguide
w is set as 3 μm. Moreover, m is set as 25 because the res-
olution is slightly improved as m is larger than 25. We set
d=1 μm, t=220 nm, and randomly select parameters (s, h,
g) to mimic random medium, where s ∈ [180, 390] nm,
h ∈[180, 4200] nm, and g ∈[180, 300] nm. Specifically,
mode1–modek are set as TE1–TE4. Note that TE0 mode is
unused  under  the  current  design  parameters,  due  to  its
insensitivity  to  branched  microstructures  and  the  much
smaller  spectral  response  fluctuations  than  those  of
TE1–TE4 (Supplementary Fig.  S1).  More  information

Ri,k (λ) ∝
s

Di
|EDi,k (λ)|

2dτ
EDi,k (λ)

cond = 1/4 ·
∑4

k=1 ∥Ak∥ · ∥Ak
−1∥

∥Ak∥ · ∥Ak
−1∥

about the influences of the design parameters are offered
in  Supplementary  information Section  S2.  The  effective
footprint  of  the  multimode  spectrometer  is  as  small  as
63×12  μm2 estimated  based  on  the  simulations.  For  the
graphene  photodetectors,  a  thin  SiO2 layer (10  nm)  de-
posited  on  the  planarized  chip  electrically  isolates  the
graphene  layer  from  the  underlying  silicon  structures,
which  minimizes  the  impact  of  the  silicon  branching
structure  on  the  detector’s performance.  The  propagat-
ing  light  fields  are  absorbed  by  the  graphene  layer
through  the  evanescent  field  coupling,  leading  to  the
generation of  photocarriers.  The spectral  responsivity at
uniti for kth mode  can  be  expressed  by47:

,  where Di is  the  area  of
graphene photodetecting uniti,  and  is the simu-
lated  electric  field  for kth mode  in  the  graphene  layer.
Two  metal  electrodes  located  on  opposite  sides  of  the
waveguide  collect  the  photocurrent.  In  order  to  pursue
high spectral resolution and waveguide-mode discrimin-
ation, it  is  required  for  high  dissimilarity  of  spectral  re-
sponses of  varied modes,  which can be evaluated by the
condition  number  of  their  matrix  form48.  Generally
speaking, the lower condition number indicates the high-
er  dissimilarity.  To evaluate  the overall  dissimilarity,  we
define  as the average of
the condition numbers corresponding to TE1-TE4, where
Ak is  the  spectral  response  matrix  for kth mode,  and

 is  the  condition  number  of Ak. More  de-
tails can be found in Supplementary information  Fig. S3.
Since  the  shapes  of  waveguides  and  the  selection  of
guided  modes  affect  the  distribution  of  effective  indices
and optical fields, the spectral diversity of unit1–unitm is
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Fig. 1 | (a)  Illustration  of  the  proposed  mode-division  demultiplexing  (MDD)  spectrometer.  The  multimode  spectral  signal  (mode1–modek) dis-

persed in the branched waveguide structures and detected by graphene-photodetector units. The generated photocurrents I1– Im at unit1–unitm
from the input multimode spectral signals are fed into a deep neural network (DNN) to extract the desired spectral profiles F1 (λ)–Fk (λ). (b) Struc-

tural  parameters  of  a  designed  branched  waveguide  and  graphene  photodetector.  Inset:  the  cross-section  view  of  a  silicon  waveguide  and

graphene photodetector.
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actually determined by the branched structural paramet-
ers as well as waveguide mode group.

Through three-dimensional  finite-difference time-do-
main simulations and structural optimizations, the integ-
rated structure with the lowest averaged condition num-
ber  (cond=1667)  is  eventually  chosen  for  the  spectral
range of  1500 –1600  nm.  The  normalized  spectral  re-
sponses for TE1–TE4 at two typical photodetecting unit5

and  unit20 are  shown  in Fig. 2(a).  More  information
about  the  detecting  units  and  design  parameters  are
provided in Supplementary information Section S2. It is
observed  that  the  spectral  response  at  a  photodetector
behaves  quite  dissimilarly  for  different  waveguide
modes.  Furthermore,  the  light  field  with  higher-order
mode is, in general, more sensitive to the variation of re-
fractive  index  distribution  of  the  branched  waveguides,
leading  to  stronger  fluctuation  than  that  with  lower-or-
der mode.  Note  that  the  transmission  attenuates  gradu-
ally because of the light scattering and absorption of the
composite waveguides, which sets the fundamental limit
of the number of cascading units.

The resolution for a single-mode spectral input is first

estimated.  The  spectral  correlation  function  for  each
mode (TE1–TE4) is calculated by49: 

Ck (Δλ) =
⟨

⟨Ri,k (λ)Ri,k (λ + Δλ)⟩λ
⟨Ri,k (λ)⟩λ⟨Ri,k (λ + Δλ)⟩λ

− 1
⟩

i

. (1)

Ck (Δλ)

Note that the correlation function of each mode is av-
eraged over 25 detecting units.  Overall,  the full  width at
half-maximum  (FWHM)  of  is  ~7  nm  for  each
mode, which implies the spectral resolution of 7 nm, as is
shown in Fig. 2(b). Next, to verify the performance of the
designed  structures,  the  simulated  photocurrent Ii,k at
uniti with kth-mode input is given by: 

Ii,k =
w λmax

λmin
Fk (λ)Ri,k (λ) dλ , (2)

λmin λmax

αk = [α1,k, α2,k, · · · , αn,k]
T

where  and  specify the bandwidth range. By de-
composing Fk (λ) into Gaussian basis  expansion,  the re-
construction  task  can  be  transferred  into  a  problem  to
find  out  the  optimal  weights  of  Gaussian  bases,  i.e.,

, to fit the following equation:
 

Akαk = ck, (3)

Akwhere  is  an m×n matrix  for kth mode  with  elements
equal  to  the  integrals  of  spectral  response  and Gaussian
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Fig. 2 | Simulated characterizations of the proposed device for the single-mode (TE1–TE4) spectrometer by Tikhonov regularization op-
timization. (a) Normalized photoresponses of two typical spectral detecting units. (b) Correlation functions of the spectral responses for different

TE modes. (c, d) Recovered spectral profiles of dual peaks separated by 7 nm (c) and the same random spectra (d) for TE1–TE4.
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ck = [I1,k, I2,k, · · · , Im,k]
T

αk

basis  function,  and  is  the  vector
of simulated currents for kth mode. Tikhonov regulariza-
tion optimization  is  implemented  to  search  for  the  op-
timal  (more  details  see  Supplementary  information
Section S3). In Fig. 2(c), dual spectral peaks separated by
7 nm in wavelength can be resolved when the light fields
with  any  one  of  TE1–TE4 is  input  to  the  spectrometer.
The  mean  square  error  (MSE)  between  reconstructed
profile  and  ground-truth  spectrum  is  regarded  as  the
quantification criteria to evaluate the reconstruction pre-
cision. Due to the MSE of 1000 random spectra as low as
0.0004 and the  high overlap  with  the  reference  curve  in
Fig. 2(d),  the  recovered  spectral  envelopes  of  the  same
random spectra further show the generalization capabil-
ity  for  single-mode  reconstruction  over  the  operating
bandwidth.

 Single-shot multimode spectral reconstruction
Although  the  aforementioned  optimization  method  is
helpful for single-mode spectral reconstruction, it is still
challenging to formulate or solve complex simultaneous
multi-mode problems,  such  as  demultiplexing  and  re-
building multiple  single-mode  spectra  from  a  mul-
timode spectra  input  in  a  single  shot.  To cope with  this

EDi (λ) =
∑k

l=1 EDi,l (λ)
EDi,l (λ)

Ii ∝
s

Di

r λmax
λmin

|EDi (λ)|
2dλdτ

difficulty, a single-shot multimode reconstruction (SMR)
computational framework is proposed here. As shown in
Fig. 3,  the  multimode  target  spectra  (F1 (λ) – Fk (λ)),  are
separately  modulated  into  mode1-modek and  imported
together with the proposed MDD spectrometer, exciting
the multimode interference electric fields at unit1–unitm

which can be expressed as , where
 is the  spectra-dependent  electric  field  with  re-

gard to model  in the detection unit Di. The response cur-
rents I1– Im caused by  evanescent  field  coupling  are  ob-
tained by . Here, the photore-
sponse  depends  substantially  on  the  wavelength  and
mode state of the input light fields,  which enables using
DNN  to  achieve  the  multimode  spectroscopy  analysis.
Due to end-to-end manner driven by data, once the size
of  training  dataset  is  sufficient,  and  the  dissimilarity,
which can also be called diversity, of the samples ensures
that  the  current-to-spectrum  mapping  under  nonlinear
coupling  effect  is  stable  and  distinguishable,  and  thus
DNN  will  be  effective  for  the  analysis.  The  generated
photocurrents I1– Im as  the  format  of  a  pixel  image are
subsequently fed  into  the  SMR-DNN  model  to  imple-
ment simultaneous reconstruction of multimode spectra
in  single  shot.  To  learn  the  statistical  relationship

 

Fk (λ)=?

F1 (λ)=?

Fk (λ)

F1 (λ)

Modek

Mode1

I1

I1

I2

I2

Im

Im−1 Im

UnitmUnit2Unit1

Fk (λn)

F3 (λ3)

F2 (λ2)

F1 (λ1)

ED1
 (λ)

k
EDi

 (λ)=∑l=1 EDi, l
 (λ)

ED2
 (λ) EDm

 (λ)

∑

k spectra modulated

into k modes
Multimode superimposed

electric fields

Multimode photocurrents

Reconstructed

k spectra

Photocurrent image

Mode-division demultiplexing spectrometer

Single-shot multimode reonstruction (SMR) DNN

Fully-Connected

+Dropout

Flatten Conv.+ReLU

+Pooling

Ii   ∫∫Di 
∫ |EDi

 (λ)|2dλ dτλmin

λmax∝
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between the  images  and  target  spectra,  the  major  com-
ponents  of  SMR-DNN  consist  of  convolutional  neural
networks (CNN) and fully-connected layers (FC). In es-
sence,  CNNs are  used to extract  invariant  features  from
images,  while  FCs  are  used  for  learning  the  nonlinear
mapping from features to target spectra. A dropout layer
is embedded between the FCs to prevent overfitting and
improve generalization ability.

The  SMR-DNN  model  is  trained  to  reconstruct  the
spectra of  TE1–TE4 modes with 25 detectors.  The input
is made of 5×5 pixels by pixelating I1–I25. The output has
404 data points by joining four mode-spectra (TE1–TE4),
and the single-mode spectra are represented by 101 data
points.  After  200  epochs  by  the  Adam  optimizer,  the
testing  MSE  eventually  reaches  0.0017.  More  details
about the setup and training procedure of SMR-DNN are
offered in Supplementary information Section S4. Figure
4 shows  the  single-shot  rebuilding  capability  of  the
trained  model.  From Fig. 4(a, b),  the  resolvable  FWHM
of optical  spectral  reaches  15 nm.  When the  parallel  re-
construction is implemented, dual peaks at 15-nm inter-
vals are successfully distinguished, and meanwhile, single
peaks  with  15  nm  FWHM  uniformly  distributed  in  the
bandwidth  can  be  largely  fitted.  In  addition,  in Fig.
4(c–f), four random spectra loaded on TE1–TE4 are well
recognized  (MSE=0.0015),  which  proves  the  ability  of
parallel  reconstruction.  In  addition,  these  results  also
show the  effectiveness  of  DL techniques  for  the  nonlin-
ear optimization  problems.  Such  design  not  only  signi-
ficantly  reduces the number of  optical  elements  and the

space  occupation  at  the  receiver  end  of  MDM  multi-
sensor networks, but also can be utilized for online mon-
itoring  of  MDM communication  quality.  To  the  best  of
our  knowledge,  the  MDD  spectrometer  is  for  the  first
time  proposed  to  realize  the  simultaneous  multimode
spectra construction in a single shot, which is fully com-
patible to  the  current  MDM  system.  Although  the  cur-
rent designed resolution of the MDD spectrometer is not
high, it is promising to improve the resolution by optim-
izing both the dispersive photonic structures and photo-
detecting materials.

 Multi-shot resolution-enhanced spectral
reconstruction
In this section, we discuss the potential of improving the
spectral  resolution  of  a  single-mode  by  harnessing  the
multi-mode dispersing effect.  In particular,  a  multi-shot
resolution-enhanced  (MRE)  architecture  is  designed  to
strengthen  resolving  ability  in  multiple  shots,  which  is
presented  in Fig. 5(a).  Target  spectra  are  individually
modulated into mode1–modek in temporal slices T1–Tk,
generating k images  of  pixelated  single-mode  currents.
The modulation  operation  can  be  implemented  by  re-
configurable  mode  converters7,8.  After  that,  the  samples
composed of these k images are input into MRE-DNN to
achieve  resolution  enhancement.  As  a  proof  of  concept,
TE1–TE4 are selected as the carriers to transmit the tar-
get spectra in T1–T4 separately. The input of MRE-DNN
is  with  a  size  of  4×5×5  corresponding  to  5×5  pixelated
currents in 4-mode channels, while the spectral output is
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represented more precisely by 1010 data points. The test-
ing  MSE  finally  stops  at 0.0007 after  200  epochs,  and
more information about MRE-DNN is provided in Sup-
plementary  information  Section  S4. Figure 5(b, c) dis-
play  the  reconstructed  spectral  results,  confirming  a
stable  FWHM-3  nm  resolution  over  the  bandwidth  of
1500–1600 nm,  which  is  ~1.3  times  higher  than  that  of
Tikhonov  regularization-based  method.  The  rebuilding
power for random spectra over the operating bandwidth
is also well realized as shown in Fig. 5(d). Notably, if the
number of implemented modes is increased, the spectral
resolution is expected to be further improved.

 Conclusion
In summary, we propose an ultracompact MDD spectro-
meter  that  integrates  a  highly  branched  multimode
waveguide  and  25  graphene-based  photodetectors  on
SOI  platform.  In  the  bandwidth  of 1500– 1600 nm,  the
simulation  results  show  that  it  can  realize  the  single-
mode  spectral  resolution  of  7  nm  for  each  mode  of
TE1–TE4 by Tikhonov regularization optimization.  Em-
powered by DL algorithms, the 15-nm resolution of par-
allel  reconstruction  for  TE1–TE4 is  obtained  by  SMR
framework. Moreover,  by  stacking  the  multimode  re-
sponse to the single spectra in TE1–TE4, the MRE archi-
tecture shows ~3 nm resolution, which is ~1.3 times im-
provement  compared  to  Tikhonov  regularization-based
method. For practical applications, considering the exist-

ence of  manufacturing  tolerances  and measurement  de-
viations  from  the  designed  structures,  it  is  necessary  to
modify  the  simulation  structures  and  recalibrate  the
spectral  responses  to  ensure  the  consistency  between
simulations and experiments. Adequate training samples
should  be  regenerated  based  on  the  modified  structures
to  update  the  DNNs.  Together  with  the  dissimilarity  of
the training samples and the noise robustness of DNN, it
is reasonable to believe that the simulation results can be
compared with the future experimental  demonstrations.
The  fusion  of  optical  mode  demultiplexing  and  spectral
detection  functions  in  a  single  device  is  proposed  here
for the first time, and it provides a feasible way for mini-
aturization  and  integration  of  optical  spectrometers.
More  importantly,  it  reveals  more  usages  of  guided
modes, which sheds light on new spectroscopic architec-
tures for MDM systems.
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