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Benchmarking deep learning-based models on
nanophotonic inverse design problems
Taigao Ma1, Mustafa Tobah2, Haozhu Wang3* and L. Jay Guo3*

Photonic inverse design concerns the problem of finding photonic structures with target optical properties. However, tra-
ditional methods based on optimization algorithms are time-consuming and computationally expensive. Recently,  deep
learning-based approaches have been developed to  tackle  the problem of  inverse design efficiently.  Although most  of
these neural network models have demonstrated high accuracy in different inverse design problems, no previous study
has examined the potential effects under given constraints in nanomanufacturing. Additionally, the relative strength of dif-
ferent deep learning-based inverse design approaches has not been fully investigated. Here, we benchmark three com-
monly used deep learning models in inverse design: Tandem networks, Variational Auto-Encoders, and Generative Ad-
versarial Networks. We provide detailed comparisons in terms of their accuracy, diversity, and robustness. We find that
tandem networks and Variational Auto-Encoders give the best accuracy, while Generative Adversarial Networks lead to
the most diverse predictions. Our findings could serve as a guideline for researchers to select the model that can best
suit their design criteria and fabrication considerations. In addition, our code and data are publicly available, which could
be used for future inverse design model development and benchmarking.
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Introduction
Nanophotonics  has  become  an  important  platform  for
exploring  the  light-matter  interaction1−5 and  wavefront
manipulation6−12, and  is  critical  for  realizing  the  ad-
vanced  photonic-electronic  integrated  circuits13.  Most
nanophotonic  devices  are  based  on  carefully  designed
nanostructured  plasmonic14 and  dielectric15 materials.
These  emerging  devices  have  surpassed  conventional
photonic devices for many applications, such as on-chip
coherent light sources16−17, communication18−19, informa-
tion processing20, and sensing21−22, to name an important
few.

Nanophotonic devices  usually  have  different  struc-
tures, which  can  uniquely  determine  their  optical  re-
sponses  and  functionality.  Researchers  can  simulate  or
measure  the  optical  response  of  a  nanophotonic  device
through the electromagnetic (EM) simulation or experi-
ment.  However,  it  is  nontrivial  to  inverse  design  the
nanostructures from  desired  optical  responses  and  fea-
tures.  One  of  the  challenges  is  that  different  structures
can  have  similar  responses,  which  leads  to  the  one  (op-
tical  response)  -to-many  (structures)  mapping  issue.
Usually,  inverse  design  problems  are  solved  by  human
experts  through  a  time-consuming  iterative  trial-and- 
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error  approach,  which  is  guided  by  domain  knowledge.
For example,  to  realize  a  polarization-insensitive  optical
response,  the  symmetric  structure  should  be  typically
considered23−24.  However,  because  of  the  one-to-many
mapping issue, we still do not know if the intuitive sym-
metric structure  gives  the  best  performance.  Addition-
ally, relying on human expertise alone to design complic-
ated structures  with  a  large  number  of  degrees  of  free-
dom (DOF) could result in a slow design process.

On the other hand, optimization-based methods have
been widely used in inverse design for a long time25. The
optimization-based methods  are  a  combination  of  for-
ward simulations and automatic iterative searches, where
in  each  iteration,  the  optimization  starts  from  a  set  of
structures and requires the EM simulations to obtain the
corresponding optical responses. The difference between
the simulated and the target optical response is later used
to update  the  structures  with  the  objective  of  minimiz-
ing this difference. After sufficient iterations, a structure
with  desired  optical  responses  can  be  found.  Different
optimization methods differ from each other in terms of
the mechanism for updating the structure, including the
local  optimization,  e.g.,  Newton’s  methods26 and gradi-
ent descent27, and the global optimization, such as simu-
lated  annealing28,  adjoint  variable  algorithms29, evolu-
tionary  algorithms30,  particle-swarm  algorithms31,  and
Bayesian  optimization32.  A  summary  and  benchmark  of
optimization methods in the photonic inverse design can
be found in ref.33.

Though proven  powerful  for  a  wide  range  of  nano-
photonic  inverse  design  problems,  optimization-based
methods  are  often  target-specific,  i.e.,  the  optimization
process needs to start from scratch for each new inverse
design target. Because EM simulation is performed each
iteration  during  the  optimization-based  inverse  design
process, applying  such  methods  for  many  different  in-
verse design  targets  is  time-consuming  or  even  intract-
able. For  example,  when designing  photonic  nanostruc-
tures  to  reconstruct  all  colors  in  a  painting34,  one  needs
to perform the optimization process for potentially thou-
sands  of  different  inverse  design  problems,  which  can
take an extremely long time.

Recently, deep  learning  models  have  been  demon-
strated  as  an  efficient  alternative  to  the  optimization-
based methods  for  nanophotonic  inverse  design.  Rather
than  target-specific  as  in  optimization-based  methods,
deep learning  models  have  a  strong  generalization  abil-
ity  and  can  learn  the  mapping  between  the  structural

parameters and the optical responses. After being trained
on  a  dataset  containing  pairs  of  structural  parameters
and  the  corresponding  optical  responses,  deep  learning
models  can  accurately  predict  the  structural  parameters
given  a  design  target  within  milliseconds,  which  greatly
improves the efficiency of the inverse design process. For
example, Liu et al.35 trained the tandem networks for the
inverse design of optical multilayer thin films. Ma et al.36

applied Variational  Auto-Encoders  (VAEs)  for  the  in-
verse  design  of  metamaterial  elements,  including  cross,
split-ring,  and  H-shape  nanostructures.  Liu  et  al.37 used
the Generative Adversarial  Networks (GANs) to inverse
design  the  nanostructures  for  customer-defined  optical
spectra.  There  have  been  several  excellent  reviews  on
deep  learning-based  inverse  design  published  recently,
including these three commonly used models for inverse
designs38−41.

Although  deep  learning-based  methods  have  been
shown to  give  accurate  predictions  efficiently  on  differ-
ent  nanophotonic  inverse  design  problems,  existing
works  mostly  overlook  other  requirements  that  are  also
important  for  real  applications.  For example,  due to the
constraint of  existing nanofabrication techniques,  struc-
tures with high-aspect-ratio or sharp corners can be dif-
ficult or  even  impossible  to  realize.  Therefore,  if  a  di-
verse  set  of  designs  with  optical  responses  close  to  the
target responses can be identified, researchers can choose
designs with lower aspect-ratios or smoother shapes that
are  more  amenable  to  nanofabrication.  Thus,  whether
and  to  what  extent  an  inverse  design  method  can  learn
the  one-to-many  mapping,  i.e.,  come  up  with  a  diverse
set of  designs  for  a  single  design  target,  is  a  critical  fea-
ture of practical inverse design methods. Apart from di-
versity,  robustness  also  plays  an  important  role  when
considering the  real  fabrication.  If  the  predicted  struc-
tures from certain inverse design models violate physical
constraints, e.g.,  the  dimension  of  the  designed  nano-
structure for a metasurface exceeds the size of a unit cell,
those  structures  should  never  be  considered  because
their optical  responses  will  not  be  reasonable.  In  addi-
tion, optical responses of fabricated structures may devi-
ate  from the desired responses because of  the variations
in  the  fabrication  process,  i.e.,  the  fabrication  tolerance.
The  optical  responses  corresponding  to  the  predicted
structures  given  by  different  models  may  have  different
sensitivity to such fabrication variations. We believe that
in addition  to  accuracy,  both  the  diversity  of  the  pre-
dicted  structures  and  the  robustness  of  their  optical
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response against predicted structures are important con-
siderations when  applying  deep  learning  models  to  in-
verse design.  Unfortunately,  no  existing  work  has  sys-
tematically considered and compared these two properties.

To  bridge  the  gap  of  the  diversity  and  robustness  for
deep learning-based inverse design models,  and provide
a direct  comparison for design accuracy,  we benchmark
three widely  used  deep  learning  models:  Tandem  net-
works, VAEs,  and  GANs,  on  two  representative  nano-
photonic  inverse  design  problems.  Performance  metrics
including accuracy, diversity, and robustness are quantit-
atively  evaluated  on  both  problems  with  held-out  test
datasets. Based on our comparisons,  we provide recom-
mendations  on  how  to  select  from  these  inverse  design
models  based  on  different  requirements  and  highlight
the  important  future  research  directions  for  developing
inverse  design  models  that  can  be  adopted  more  widely
for practical nanophotonic inverse design applications. 

Methods
Neural networks (NNs) contain multiple layers of neur-
ons  that  are  connected  in  series.  Each  neuron  takes  in
one or multiple inputs from the previous layer, sums up
all the inputs based on learnable weights, and passes the
outputs  through  a  nonlinear  activation  as  the  inputs  to
the next layer. By stacking multiple layers of neurons to-
gether,  complex  information  can  be  processed  by  these
interconnected neurons, enabling NNs to learn the map-
ping between inputs and outputs. In terms of the inverse
design, the inputs are the optical responses, and the out-
puts are  the  designs  of  structures  (i.e.,  structural  para-
meters). However,  using  the  conventional  NNs  to  in-
verse  design  directly  will  give  inaccurate  results42. Be-
cause of the one-to-many mapping issue, there are mul-
tiple possible  structures  for  a  given  target  optical  re-
sponse. Minimizing the loss during training (i.e., the dif-
ference between the target structure and designed struc-
tures, which are usually represented by the Mean Square
Error (MSE)) will make it hard for the conventional NNs
to converge and lead NNs to output the averaged struc-
tures, which usually will not have the desired optical re-
sponses. Therefore,  special  constructions of  NNs are re-
quired to deal with this one-to-many mapping issue. The
following three models are widely known to solve this is-
sue  properly  and  are  commonly  used  in  inverse  design
and,  therefore,  are  examined  in  this  benchmark  work.
Specifically,  tandem  networks43 can  learn  a  one-to-one
mapping that accurately maps the given optical response

x, y
z

to one of the potential structures. Generative models, in-
cluding VAEs44 and GANs45, leverage the stochastic gen-
eration  process  to  directly  capture  the  one-to-many
mapping. We  classify  these  three  models  into  two  cat-
egories based on whether their outputs are deterministic
or stochastic (generative models).  We use  to denote
optical  responses  and  structures,  respectively,  and  to
denote  the  latent  variables  or  random  variables  used  in
VAEs and  GANs,  respectively.  Detailed  network  con-
structions and training can be found in the supplement-
ary information. 

Deterministic models
Tandem networks  are  the  combinations  of  the  Forward
Neural Networks  (FNNs)  and  the  Inverse  Neural  Net-
works  (INNs),  which  are  shown  in Fig. 1(a).  The  FNN
takes in the structure parameters and outputs the predic-
tions  of  their  corresponding  optical  responses  and  is
used to approximate the solution of Maxwell’s equations.
We use the MSE loss to train the FNN: 

MSEFNN
x =

1
N
∑
i

(xi − fθ (yi))2 , (1)

y x
fθ (y)

θ
N

where  and  are the structures and corresponding op-
tical  responses,  respectively,  are the  predicted  re-
sponses of FNN based on the network parameters , and

 is  the  number  of  training  samples.  Once  trained,  we
can use the FNN to predict  the optical  responses accur-
ately for given structures. The INN takes in the target op-
tical responses  and  outputs  inverse  predictions  of  pos-
sible structures. The idea of tandem networks is to train
the  FNN  first,  and  then  connect  the  output  of  INN  to
this pre-trained FNN and use the forward prediction loss
to supervise the learning of INN: 

MSEINN
x =

1
N
∑
i

(
xi − fθ

(
gϕ(xi)

))2
, (2)

gϕ (x)
x ϕ

fθ
(
gϕ(xi)

)
where  are the predicted structures for given optic-
al  responses  based  on  the  INN’s  parameters ,  and

 is the predicted optical responses given by the
pre-trained  FNN,  which  correspond  to  the  predicted
structures. Using  this  two-step  training,  tandem  net-
works  circumvent  the  one-to-many  mapping  issue  by
enforcing the INN to converge to only one possible solu-
tion  suggested  by  FNN.  Tandem  networks  have  been
widely used in a variety of inverse design problems, such
as  multi-layer  transmission  spectra35,  silicon  structure
colors46, and chiral metamaterials47. 
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Stochastic models

z
z

z
z

Unlike  tandem  neural  networks  that  can  only  map  the
input to a single output deterministically, both VAEs and
GANs are generative models that can stochastically out-
put  multiple  different  predictions  given  the  same input.
For  VAEs,  we  consider  a  specific  variant  conditional-
VAEs (c-VAEs)44 to inverse predict structures given spe-
cific optical responses. There are three networks in VAEs
(for the remaining parts, we will use VAEs to refer to c-
VAEs for simplicity): the recognition networks, the gen-
eration  networks,  and  the  conditional  prior  networks.
During training,  the  recognition  networks  learn  to  en-
code the structures and the optical responses together in-
to  the  latent  variables ,  and  the  generation  networks
learn to decode the structures from the latent variables 
based  on  the  conditional  optical  responses48.  The  latent
variables  follow the normal distribution. Because of the
introduction  of  latent  variables , VAEs  can  give  mul-
tiple  predictions  when  decoding  from  different  latent
variables. The conditional prior networks provide recon-
structions of structures and are useful during the inverse
prediction.  We  find  that  connecting  the  pre-trained
FNNs to the output of  VAEs can improve the accuracy.
The  overall  network  structures  for  VAEs  are  shown  in
Fig. 1(b). The loss for training VAEs is: 

LVAE = − 1
N
∑
i

KL (qφ( zi|xi, yi) || pθ (zi|xi)) +MSEpred+

MSErecon + α ∗MSEx , (3)

KL (qϕ( z|x, y) || pθ (z|x))

qϕ (z| x, y) pθ (z|x) MSEpred

y
ŷ

MSErecon

yrecon
MSEx

x

ŷ α

where  the  is  the  Kullback-Lei-
bler  (KL)  divergence  between  the  latent  distribution

 and  prior  distribution ,  is  the
prediction  loss  between  the  target  structures  and  the
inverse  designed  structures  predicted  by  VAEs,

 is  the  reconstruction  loss  between  the  target
structures and the reconstructed structures  given by
the conditional prior networks,  is the forward pre-
diction loss  between the target  responses  and the pre-
dicted  responses  given  by  the  FNNs,  which  correspond
to the inverse designed structures . The  is the weight
factor  for  forward  prediction  loss.  More  details  can  be
found in supplementary information.

z

GANs are another type of generative models. We con-
sider  the  conditional-GANs  (c-GANs)45 to inverse  pre-
dict structures given specific optical responses. There are
two networks in GANs (for remaining parts, we will use
GANs  to  refer  to  c-GANs  for  simplicity):  the  generator
networks  that  generate  structures  based  on  the  random
variables  and the optical  responses,  and the critic  net-
works  that  attempt  to  distinguish  if  a  structure  is  from
the dataset  or  from the generator  networks.  The idea of
the GAN is based on the game theory, where the generat-
or  networks  always  learn  to  generate  structures  that  are
distributed as  close  to  the  test  dataset  as  possible  in  or-
der to fool the critic networks,  while the critic networks
always learn to distinguish the generated structures from
real structures. The loss for training GANs is: 

 

Fig. 1 | The structure of three considered models: (a) Tandem networks, (b) VAEs, (c) GANs. The detailed descriptions of building and training

each neural networks can be found in the supplementary information.
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LGAN =
1
N
∑
i

[logDθ (yi|xi) + log(1− Dθ(Gϕ (zi| xi )) )] ,

(4)
Gϕ (z| x)

Dθ (y| x)

Dθ (Gϕ( z |x))

ϕ θ
z

where  are the predicted structures from the gen-
erator  networks,  are  the  scores  given  by  critic
networks  for  the  structures  from  the  training  dataset,
and  are the scores given by critic networks
for  structures  predicted  by  the  generator  networks.  The

 and  are  the  parameters  of  the  generator  and  critic
networks,  respectively.  The  random  variables  are
sampled from the normal distribution. We minimize this
loss  function  when  training  the  generator  networks,
while  maximizing  this  loss  function  when  training  the
critic networks.

Both  VAEs  and  GANs  are  widely  used  in  inverse
designing free-form structures, including metamaterials36,
diffractive metagratings49, and nano-antennas50. Detailed
descriptions  for  constructing  and  training  each  model
can be found in the supplementary information. 

Experiments
We  formally  introduce  two  inverse  design  problems  as
the  benchmarking  problems  to  evaluate  inverse  design
models. A set of evaluation metrics regarding the design
accuracy, diversity,  and  robustness  to  fabrication  vari-
ations are later described in detail. We report the bench-
marking results and summarize the relative performance
of tandem networks, VAEs, and GANs at the end of this
section. All data and code are publicly available51. 

Inverse design problems
Nanophotonic  inverse  design  problems  can  be  grouped
into two categories40 based on the number of DOF asso-
ciated with the structure design. On the one hand, when
the number of  DOF is  small,  a  structure template based
on  simple  building  block  elements,  such  as  nanodisks
and  nanobricks,  can  be  used  to  form  the  design.  A  few
structural parameters, including height, width, and radi-
us,  can  be  carefully  designed  to  describe  the  structural
elements.  Thus,  a  1D  vector  containing  the  structural
parameters  is  used  as  the  representation  for  the  design.
On  the  other  hand,  when  the  number  of  DOF  is  large,
the nanostructures  have  free-form  geometries  and  can-
not be  represented by a  small  set  of  structural  paramet-
ers.  Instead,  2D  binarized  images  are  used  to  represent
these  free-form  structures.  In  terms  of  the  construction
of  neural  networks,  we  use  Multilayer  Perceptron52

(MLP) and Convolutional Neural Networks53 (CNN) for

the  vector  representation  and  the  image  representation,
respectively.

To ensure conclusions are generalizable on most nan-
ophotonic inverse design problems, we consider two dif-
ferent inverse design problems from the template design
and free-form design categories, respectively. 

Template structures: Silicon structure color inverse
design

(D,H,G, P)
G

(x, y,Y)

For  the  inverse  design  based  on template  structures,  we
choose  a  design task  that  has  been investigated  in  ref.46.
As shown in Fig. 2(a), the template structure is a unit cell
arranged  periodically  and  consists  of  four  identical  and
uniformly  spaced  silicon  nanorods.  A  layer  of  70  nm
Si3N4 is located between the nanorod structures and the
bottom  silicon  substrate  layer.  This  periodic  template
structure  is  represented  by  a  vector  with  four  structural
parameters , where D and Ｈ refer to the dia-
meter and height of each nanorod, respectively,  refers
to the gap between two nearby nanorods, and P refers to
the  period  of  the  unit  cell.  The  inverse  design  target  of
optical responses is the reflective structural color, which
can  be  described  by  three-dimension  CIE  1931
coordinates .

(D,H,G, P)

G+ D < P

(x, y,Y)

For  data  collection,  we  use  the  Rigorous  Coupled
Wave  Analysis  (RCWA)54 to  simulate  8411  samples.
Structure  parameters  of  are  uniformly  and
randomly  sampled  in  the  ranges  of  (80,  160)  nm,  (30,
200) nm, (160, 320) nm, and (300, 700) nm, respectively.
A  physical  constraint  is  used  during  the
sampling  process  to  make  sure  all  four  nanorods  are
within one  unit  cell.  The  reflection  spectrum  is  com-
puted between the (380, 780) nm wavelength range with
a 5 nm step size, which is then converted to CIE 1931 co-
ordinates . Detailed information can be found in
ref.46. In all three models, we use 6,000 samples for train-
ing,  1,000  samples  for  validation,  and  the  rest  1,411
samples for testing. The obtained structural colors in the
training dataset  are  plotted  in  the  CIE  chromatic  dia-
gram in Fig. 2(b). 

Free-form structures: Silicon transmission filter
inverse design
For the inverse design based on free-form structures, we
choose  a  design  task  that  we  investigated  before,  where
we  used  NNs  to  inverse  design  metasurface  filters55.  As
shown in Fig. 2(c), the structure is a 2D periodic pattern
on  the  silicon  substrate.  The  pattern  is  made  of

Ma TG et al. Opto-Electron Sci  1, 210012 (2022) https://doi.org/10.29026/oes.2022.210012

210012-5

 



64× 64
polycrystalline silicon (Poly-Si) with a fixed thickness of
500 nm and is represented by a 2D  pixeled bin-
arized image.  We  also  include  a  scalar  parameter  ran-
ging  from  200  nm  to  400  nm  as  the  period  of  the  unit
cell. For the inverse design target of optical responses, we
consider  the  transmission  spectra  for  both  TE  and  TM
polarized  normal  incident  light.  The  spectrum  target  is
within  the  visible  band and ranges  from 400  nm to  680
nm, with a 10 nm step size.

Again, we use RCWA to simulate 63,757 samples. The
free-form  2D  patterns  are  randomly  generated,  and  the
period  is  uniformly  and  randomly  sampled  between
(200,  400)  nm.  During  the  image  pattern  generation,  to
make sure  the  corresponding  structures  satisfy  the  fab-
rication  limitation,  all  sharp  features  are  smoothed  to
fulfil the  minimum  curvature  with  a  20  nm  radius.  De-
tailed descriptions can be found in the supplementary in-
formation. In all three models, we use 53,750 samples for

training,  5000  samples  for  validation,  and  5007  samples
for  testing. Figure 2(d) gives  one  example  of  the  free-
form structure  as  well  as  the  corresponding  transmis-
sion spectra. 

Evaluation metrics
As stated earlier, practical inverse design problems often
involve  considerations  beyond  accuracy.  However,  no
previous  research  work  has  systematically  studied  the
properties of deep learning-based inverse design models
for practical applications. To bridge this gap, we propose
a set of evaluation metrics based on practical considera-
tions  that  are  generalizable  for  extensive  inverse  design
problems:

Accuracy: The  design  accuracy  is  most  widely  con-
sidered in previous research works, and it quantifies how
close  we  can  design  a  structure  that  achieves  the  target
response.  We  use  both  MAE  and  Root  Mean  Square

 

Fig. 2 | (a) The template structure for silicon structural color inverse design. Four structural parameters (D, H, G, P) are shown in the inset figure.

(b) The obtained structural colors in the training dataset embedded in the CIE 1931 chromatic diagram, which cover a wide color gamut. (c) The

free-form structure for silicon transmission filter inverse design. The inset is the period of the structure and the 2D pattern treated as an image.

(d)  One  example  of  the  TE/TM transmission  spectra  in  the  training  dataset.  The  inset  shows  the  2D  free-form  structure  with  period  283  nm,

where the yellow and black regions are the dielectric material and air, respectively.
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Error (RMSE) to measure the accuracy. The MAE is ex-
pressed as: 

MAE =
1
N
∑

i
|xi − x̂i| , (5)

x x̂where  and  refer  to  the  target  optical  responses  and
inverse  designed  optical  response,  respectively.  The
RMSE is expressed as: 

RMSE =

√
1
N
∑

i
(xi − x̂i)2 . (6)

RMSE is more sensitive to large difference than MAE
because  of  the  squared  error.  Thus,  if  a  design  method
can output accurate designs on average but predicts poor
designs  occasionally,  its  MAE  will  be  low  while  the
RMSE  could  be  high.  Therefore,  including  MAE  and
RMSE for  the accuracy evaluation allows us  to  investig-
ate if an inverse design model exhibits such behavior.

Diversity:  This  evaluates  if  the  examined  model  can
give multiple predictions for one specific task; and if so,
how diverse these predicted structures are distributed in
the  structure  space.  As  mentioned  above,  an  inverse
design  model  that  can  output  a  diverse  set  of  structure
designs given a design target is highly desired. This is be-
cause  the  diverse  designs  could  facilitate  the  fabrication
process by  providing  more  candidate  designs  for  re-
searchers to choose from, which can be beneficial,  espe-
cially when  the  designs  involve  shapes  that  are  challen-
ging  for  nanofabrication.  In  addition,  an  inverse  design
model  that  can  capture  the  one-to-many  mapping  may
provide  physical  insights  for  the  inverse  design
problems.

Robustness:  Two  different  aspects  of  robustness  are
considered.  First,  we  examine  the  robustness  of  neural
network  models  by  checking  if  the  predicted  structures
satisfy the constraint of the physical system. In addition,
we also examine the optical performance drop caused by
fabrication  variations  as  the  second  type  of  robustness.
This  is  because  during  nanofabrication,  the  fabricated
structures may slightly deviate from the expected designs
due  to  variations  in  the  fabrication  process,  leading  to
different optical responses.

To compare the performance, we report each model’s

best  performance  on  these  two inverse  design  problems
found through an extensive  hyperparameter  search (de-
tails in the supplementary information). 

Performance comparisons 

Template  structure:  Silicon  structure  color  inverse
design

R2 (x, y,Y)

R2

For  the  aspect  of  accuracy,  we  compare  the  predicted
colors  given by  the  inverse  designed structures  with  the
target  colors.  To  calculate  the  predicted  colors,  we  first
use RCWA to simulate  the reflection spectra  for  the in-
verse-designed  structures,  then  covert  the  spectra  into
the CIE  color  coordinates.  When  measuring  the  accur-
acy, in addition to the MAE and RMSE, we also calculate
the  scores  for  each  CIE coordinate .  In  order
to improve the statistics confidence, we train each model
five times with five different random seeds. All five mod-
els  use  the  same  hyperparameters,  which  are  found
through the hyperparameters search. We report the aver-
age  accuracy  results  of  all  five  models  in Table 1,  where
the  standard  deviations  are  also  included.  More  details
can be found in the supplementary information. To visu-
alize  the  difference  between  the  designed  color  and  the
target color, we randomly select and show five examples
of structural  color  inverse  design  given  by  tandem  net-
works,  VAEs,  and  GANs  in Fig. 3(a).  Additional  results
on  the  color  pixel  generation  to  reproduce  a  painting
with the inverse designed structures are also included in
Fig. 3(c–h). Based on the high  scores and small MAE
and  RMSE  values,  as  well  as  the  accurate  color  inverse
predictions,  we  can  see  that  all  these  three  models  can
give  accurate  results  of  color  inverse  design,  although
tandem networks give slightly more accurate results than
the VAE and the GAN.

However, tandem networks can only give one predic-
tion for a specific color task, which could lead to a poten-
tial  negative  impact  on  fabrication  (will  be  discussed
later).  Since  the  VAEs and GANs introduce  extra  latent
variables  or  random  variables,  every  time  they  will  give
different  structure  predictions44,45.  By  inverse  predicting
the same color task multiple times and choosing the best

Table 1 | Table of performance comparisons for the silicon structure color inverse design problem. Best results are given by bold type.
All R2 scores, MAE, RMSE, and robustness are averaged in five models, which are trained from different random seeds. Their standard
deviations are also given.
 

Models R2(x) R2(y) R2(Y) MAE RMSE Fault rate Robustness

Tandem networks 0.998±0.0004 0.997±0.0004 0.996±0.009 0.0043±0.0002 0.0070±0.0004 19/1411 (1.35%) 0.0611±0.0004

VAEs 0.992±0.001 0.990±0.001 0.992±0.0004 0.0074±0.0002 0.0112±0.0003 0/1411 (0.00%) 0.0520±0.0011
GANs 0.991±0.003 0.986±0.004 0.982±0.008 0.0069±0.0014 0.0138±0.0024 3/1411 (0.21%) 0.0613±0.0027
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structure that gives the most accurate color, the accuracy
of inverse design for VAEs and GANs can be further im-
proved.  In Fig. 3(b), we  calculate  how  many  color  in-
verse  design  tasks  have  MAE  smaller  than  a  specific
MAE threshold  and  show the  tendency  as  the  sampling
times  of  inverse  prediction  change  from  once  to  ten
times. We can see that when prediction is carried out for
ten sampling times, the accuracy of the GAN and VAE is
improved,  giving a  higher percent  of  tasks  for  a  specific
MAE threshold. The accuracy of GAN is improved more
than the improvement of VAE, which is related to the di-

versity of each neural network and will be discussed later.
In addition, we do want to mention that inverse predict-
ing multiple times costs extra time since it requires more
simulations for validating the predicted colors and pick-
ing up the best structure.

(x, y,Y) = (0.2917,
0.5711, 0.4720)

For the diversity of the generated candidate structures,
we compare  how  diverse  the  distributions  of  the  pre-
dicted  structures  are  for  each  neural  network  model.
Specifically, we start from the inverse design of the green
color  with  the  CIE  coordinates 

.  The  original  green  color  is  shown  in

 

Fig. 3 | (a) Five randomly selected examples of color inverse design (blue, brown, red, yellow, and green). The first row is the target color, where

the inset numbers are the target CIE (x, y, Y) coordinates. The second, third, and forth row corresponds to the predicted structural color by tan-

dem networks, VAE and GAN, respectively, where the inset numbers are the absolute difference of each CIE coordinate. (b) The percent of pre-

dicted color tasks that have MAE is smaller than a given threshold. The solid lines show the results when only sampling once for each model,

while the dashed lines show results when sampling ten times and picking the most accurate one. As we increase the predicting times, the accur-

acy of generative models (VAEs and GANs) improved. (c–h) Comparison of one specific application of structural color inverse design: reprodu-

cing a paint. (c) The original image of the Vincent van Gogh’s painting: Fishing Boats on the Beach at Saintes Maries-de-la-Mer. (d) The image

reconstructed by the predictions of Tandem networks. (e) The image reconstructed by the predictions of the VAE. (f) The image reconstructed by

the predictions of VAE when sampling ten times. (g) The image reconstructed by the predictions of GAN. (h) The image reconstructed by the pre-

dictions of GAN when sampling ten times. (i–m) The comparison of three models’ robustness with respect to the size of the array for five colors:

(i) Blue, (j) Brown, (k) Red, (l) Yellow, (m) Green. To calculate the color, we are not considering the structure to be infinitely periodic anymore. In-

stead, we are simulating the color within a limited region that only contains the 2 by 2, 3 by 3, 4 by 4, and 5 by 5 array of unit cells, respectively.

Fishing Boats on the Beach at Saintes-Maries-de-la-Mer” is reproduced with the permission of the Van Gogh Museum, Amsterdam (Vincent van

Gogh Foundation).
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(D,H,G, P)

Fig. 4(c).  For each model,  we inverse predict 1000 times
using  this  specific  color  target  as  the  input,  which  gives
1000 predicted structures.  To visualize and compare the
distribution, we first calculate the frequency histogram of
each predicted structure parameter, then divide each his-
togram  by  its  respective  maximum  value  to  ensure  that
the peak density for each histogram is one. We show this
normalized  density  of  each  structure  parameter

 in Fig. 4(a).  Since  the  tandem  networks  are
deterministic  models,  these  1,000  predicted  structures
are the same, i.e.,  there is  no diversity at all.  Both VAEs
and  GANs  can  give  diverse  structure  distributions,  but
with different levels of diversity. For the VAEs, since the
recognition  networks  learn  to  map  structures  into  a
single-modal normal distribution, they can only output a
narrow  and  single-peaked  structural  distribution.  In
comparison, there is no such limitation for GANs, there-
fore, they can capture a multi-modal distribution caused
by  the  intrinsic  one-to-many  mapping,  where  the
learned structure distributions of height, period, and dia-
meter exhibit  multiple  peaks.  The  overlapped  distribu-
tions of  structural  parameters  show  that  both  the  tan-
dem  networks  and  the  VAEs  methods  only  learn  one

specific mode in the multi-modal distribution learned by
GANs.  This  diverse  distribution  in  structure  space
clearly reveals  the  intrinsic  one-to-many  mapping  fea-
ture, which is expected in physics.

(x, y,Y)

To validate the color accuracy of 1000 predicted struc-
tures in  such  diverse  distributions,  we  simulate  the  col-
ors of  these  structures  using  RCWA  and  show  all  pre-
dicted colors in the 3d  space in Fig. 4(b). For fur-
ther comparison, we randomly show 40 colors predicted
by the VAE and GAN in Fig. 4(e, f). The color predicted
by  the  tandem  networks  is  also  shown  in Fig. 4(d). Al-
though  the  predicted  structures  are  broadly  distributed,
their  corresponding  colors  are  close  to  the  target  color
(an illustration of  the  one-to-many mapping),  and their
color differences cannot be distinguished by human eyes.
This  diverse  distribution  is  highly  desirable  in  practice
since  more  broadly  distributed  structure  spaces  provide
more  choices  during  fabrication.  Specifically,  structures
with greater  gaps  or  greater  diameters  are  easier  to  fab-
ricate, allowing researchers to pick the structures that are
more  suitable  for  fabrication  from  these  1000  predicted
structures.  Therefore,  when  diversity  is  of  high  design

 

Fig. 4 | (a) The normalized density distribution of 1000 inverse designed structure parameters for the green color (c) with the CIE coordinates (x,

y, Y) = (0.2917,  0.5711, 0.4720). (b) The 3-dimensional color distribution related to 1,000 inverse designed structures. We can see all these pre-

dicted structures give a fairly accurate green color. (c) The target green color with coordinates (x, y, Y) = (0.2917, 0.5711, 0.4720). (d) The color

corresponding to the structure predicted by tandem networks. (e) The randomly selected 40 different colors corresponding to the structures pre-

dicted by the VAE. (f) The randomly selected 40 different colors corresponding to the structures predicted by the GAN.
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priority,  the  GAN  will  be  more  preferred  in  inverse
design. More examples with yellow and brown colors can
be  found  in  supplementary  information,  and  both  give
similar conclusions.

We want to emphasize the relationship between accur-
acy and diversity. In Fig. 4(b), each neural network mod-
el  exhibits  different  distribution  behaviors  in  the  color
space,  which  originates  from  the  different  distributions
behaviors in the structure spaces. Tandem networks only
give one predicted color that is  close to the target color.
The colors given by the VAE are located within a narrow
color space close to the target color, while the GAN’s are
more diversely  spread out  in  the  color  space,  surround-
ing  the  target  color.  Therefore,  if  we  only  predict  once
for  the  GAN,  it  is  possible  that  the  inverse  designed
structure  gives  the  color  with  a  large  color  difference
from  the  target  color.  By  predicting  multiple  times  and
picking the most accurate one, we can minimize this ran-
domness and improve the accuracy of the GAN. Similar
procedures are also applicable to the VAE, but its accur-
acy may  not  be  improved  too  much  because  the  struc-
ture  distributions  are  localized,  leading  to  the  localized
color distribution.

G+ D < P

In terms  of  robustness,  there  are  three  aspects  to  ex-
amine. First,  we examine if the generated structures sat-
isfy the constraints of physical systems. We need to make
sure  that  all  predicted  structure  parameters  are  positive
and  satisfy  another  physical  constraint  of ,
meaning  that  the  sum  of  the  gap  and  the  diameter  of
nanorods  should  be  smaller  than  the  period  of  the  unit
cell. Any  structure  that  does  not  satisfy  these  two  con-
straints  is  treated  as  a faulty design.  For  a  given  color
design target,  we run each model ten times, which gives
ten  predicted  structures.  When  all  ten  structures  are
faulty designs, this design task is treated as a faulted task.
We calculate the number of fault tasks in the test dataset
and summarize the fault rate for each model in Table 1.
Another example of analyzing the robustness of the im-
age  reconstruction  in Fig. 3(c–h) is  shown  in Fig.  S10.
We can see that the chance that tandem networks fail to
give a prediction is higher than VAEs and GANs, which
could  limit  its  applications  when  these  failed  tasks  are
necessary. Secondly,  we  examine  how  generated  struc-
tures  are  susceptible  to  fabrication  variations.  This  is
done  by  adding  a  +5/ –5  nm  perturbation  to  structure
parameters and measuring the shifts of CIE coordinates.
We randomly  select  and  inverse  predict  100  color  tar-
gets  in the test  dataset  and calculate  the color  related to
the perturbated structures. We use the MAE between this
perturbated  color  and  the  target  color  to  represent  the

fabrication robustness,  i.e.,  smaller MAE corresponds to
higher  robustness.  Again,  we  average  the  robustness
from  five  different  models  and  show  the  results  in  the
last  column  in Table 1.  We  can  see  VAE  gives  slightly
higher robustness than the other two models. But overall,
all these three models give similar robustness in terms of
the fabrication variation.  This  result  aligns  with  our  ex-
pectation  because  the  loss  functions  of  all  three  inverse
design models do not include components that promote
robustness with respect to fabrication variation.

All  of  the  colors  in  the  training  dataset  are  obtained
based  on  the  infinite  periodic  array  of  unit  cells,  which
cannot be  used  in  many  actual  applications,  e.g.,  repro-
duce a paint. Therefore, we evaluate the third robustness,
which  is  to  examine  how  accurate  the  predicted  colors
are when only a finite size of the array of the unit cell are
used for one color pixel34.  Here we consider that a color
pixel is made up of an array with a finite number of unit
cells, with array size to be 2 by 2, 3 by 3, 4 by 4, and 5 by
5.  Specifically,  we  calculate  and compare  the  robustness
of  these  five  colors  in Fig. 3(a) as  an  example.  For  each
color  task,  we  inverse  predict  twenty  times  and  choose
the  best  structure  that  gives  the  most  accurate  color.  In
order to calculate the predicted color related to different
sizes  of  the  array  of  unit  cells,  because  the  considered
simulation  region  is  no  longer  periodic,  we  change  the
periodic boundary conditions to perfect matching layers
and  use  the  Finite-Difference  Time-Domain  (FDTD)  to
simulate  the  reflection  spectrum.  Detailed  descriptions
can be found in the supplementary information. We cal-
culate  the  MAE  between  the  predicted  color  and  target
color  and  show the  relationship  with  respect  to  the  size
of  the  unit  cell  array  in Fig. 3(i–m).  As  we  expected,
when we increase the size of the unit cells array, the col-
or  difference  with  respect  to  the  target  color  decreases.
Overall,  again  generative  models,  including  both  VAEs
and GANs, are more robust than tandem networks when
using  a  finite  array  size  to  reconstruct  one  color  pixel.
This  is  because  generative  models  can  give  multiple
structure predictions,  which is  possible  to provide more
robust structures. 

Free-form structure: Silicon transmission filter inverse
design
In  terms  of  accuracy,  we  compare  the  MAE  and  RMSE
between the simulated spectra  related to  the inverse  de-
signed  structures  and  the  target  spectra.  Because  the
pixel values  of  predicted  2D  image  patterns  are  not  ex-
actly zero  or  one,  we  binarize  the  predicted  image  pat-
terns by setting the binarization threshold to be 0.5. The
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corresponding  transmission  spectra  are  simulated  using
RCWA based on the binarized 2D image pattens. Again,
in  order  to  improve  the  statistics  confidence,  we  train
each  model  three  times  with  three  different  random
seeds.  All  three  models  use  the  same  hyperparameters,
which  are  found  through  the  hyperparameters  search.
We  report  the  average  accuracy  results  over  all  three
models in Table 2, where the standard deviations are also
included. Figure 5 also gives two examples for transmis-
sion  spectrum  inverse  design,  where  the  inset  (lower)
shows  the  inverse  designed  2D  structure  pattern.  By
comparison,  we  can  see  that  if  researchers  care  more
about the accuracy, they can refer to tandem networks or
VAEs.

In terms of the diversity, we compare how diverse the
distributions  of  the  predicted  2D  patterns  are  for  each
model. To quantify the diversity of free-form structures,
we introduce a quantity to describe the irregularity of 2D
patterns, which is defined as: 

irr = (max (Dis)−min (Dis))
mean (Dis)

, (7)

Dis

irr
irr = 0

irr
irr

where  is  the  distance  between  the  extracted  edges
and the  center  of  the  2D  pattern.  We  give  several  ex-
amples of the 2D image patterns with different  in the
supplementary  information.  means  a  perfect
circle  pattern  and  a  greater  means a  more  nonuni-
form  pattern.  By  examining  the  distribution  of ,  we
can  reveal  the  distribution  of  the  predicted  structures.
Some other evaluation methods for  irregularity  can also
be used.

As  an  example,  we  start  from  the  inverse  design  of  a
randomly chosen target spectrum in Fig. 6. Similarly, for
each model, we inverse predict 1000 times using this spe-
cific spectrum target as the input, which gives 1,000 pre-
dicted structures. We show the normalized density of ir-
regularity  distribution  in Fig. 6(a–c).  Again,  we  observe
that tandem networks only give one structure prediction,
while  the  VAE  tends  to  give  a  single-peak  distribution,

Table 2 | Table of performance comparison for the silicon free-form transmission spectrum inverse design. The best results are given
by  bold  type.  All  MAE,  RMSE,  and  robustness  are  averaged  in  three  models,  which  are  trained  from  different  random  seeds.  Their
standard deviations are also given.
 

Model MAE RMSE Robustness

Tandem networks 0.0322±0.0027 0.0517±0.0046 0.0656±0.0015

VAEs 0.0277±0.0002 0.0444±0.0003 0.0617±0.0004
GANs 0.0508±0.0049 0.0829±0.0074 0.0705±0.0037

 

Fig. 5 | Two randomly selected examples of transmission spectrum inverse design for the tandem networks (a)(d), VAEs (b)(e), and GANs (c)(f).
The inset shows the original structure (upper) in the test dataset and the inverse predicted structure (lower) by each model.
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and the GAN gives a multi-modal distribution. To better
demonstrate that  these  predicted  structures  give  accur-
ate spectra, we simulate their transmission spectra using
the RCWA. In Fig. 6(a–c), we show the MAE of the 1,000
spectra v.s. the irregularity of 1,000 predicted structures.
One specific example of the inverse designed structure as
well  as  its  transmission  spectra  is  also  shown  in Fig.
6(d–f). We  can  see  that  although  the  predicted  struc-
tures  are  distributed  in  a  wide  irregularity  range,  their
spectra  are  close  to  the  target  spectrum.  In  this  case,  a
more diverse set of structure predictions can benefit  the
fabrication  since  a  smaller  irregularity  means  a  more
uniform shape,  which leads to easier fabrication.  There-
fore,  researchers  can  always  pick  the  best  structure  that
can facilitate the fabrication while still giving an accurate
spectrum. In  this  case,  the  GAN  would  be  more  pre-
ferred. Another example of diversity in the spectrum in-
verse design can be found in the supplementary informa-
tion, which gives similar conclusions.

In terms of robustness, we only investigate the robust-
ness against fabrication variation, since all generated pat-
terns  are  images,  and  they  do  not  need  to  satisfy  any
physical  constraint  similar  to  the  color  inverse  design
task (any negative image pixel can be attributed as 0 dur-
ing binarization).  We  measure  the  fabrication  robust-

ness by testing how much the spectrum will shift under a
small  perturbation  of  the  inverse  designed  structures,
mimicking the  fabrication  variations  induced  by  nan-
ofabrication tolerance.  This  is  done  by  shrinking,  ex-
panding, or  smoothing  the  shapes  of  predicted  struc-
tures by a small factor. More details can be found in the
supplementary  information.  We  randomly  pick  100
spectrum targets from the test dataset and use the MAE
of the perturbated spectra with respect to the target spec-
tra to represent the fabrication robustness. Again, we av-
erage  the  robustness  from  three  different  models  and
show  the  results  in  the  last  column  in Table 2.  We  can
see  that  VAE  gives  slightly  higher  robustness  than  the
other two models. But overall, all these three models give
similar  robustness  measurements,  which aligns  with  the
observation in the template structure inverse design task. 

Results and discussion
For  all  evaluating  metrics  including  accuracy,  diversity,
and  robustness,  we  give  a  qualitative  comparison  of  all
three models in Table 3, where a greater number of stars
correspond  to  a  better  performance  in  each  evaluation
metric.  We  find  that  tandem  networks  and  VAEs  give
higher accuracy than GANs. However, tandem networks
can  fail  when  predicting  some  tasks,  which  can  be

 

Fig. 6 | Comparisons of the diversity for three models. (a–c) The red bar shows the distribution of the normalized density of irregularity for

1000 inverse predicted structures by tandem networks, VAEs and GANs, while the green points are the scatter plot of spectrum RMSE V.S. the

irregularity. According to the distribution of irregularity, we can see that tandem networks only give one structure prediction, where the VAE gives

limited diversity,  and the GAN gives a multi-modal  structure distribution that  covers a wide region.  (d– f)  A randomly chosen inverse designed

structure predicted by tandem networks, VAEs and GANs, as well as its corresponding transmission spectra. The inset shows the original struc-

ture (upper) in test dataset and the predicted structure (lower) given by each model.
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problematic  if  this  specific  task  is  important  because
there  is  no way to  find another  structure  to  replace  this
failed structure. Generative models like VAEs and GANs
can solve  this  problem and give  multiple  predictions  by
introducing random  variables.  GANs  give  a  better  di-
versity  than  the  tandem  networks  and  VAE  as  well  as
demonstrate  multi-modal  outputs  for  the  inverse-de-
signed structures,  providing  designers  with  more  op-
tions to select the best structure. By running predictions
multiple  times,  it  is  possible  to  find  structures  that  give
more accurate results, thus increasing the accuracy of the
GAN. We do  not  observe  a  significant  difference  in  ro-
bustness among the three studied models, but VAEs give
a slightly  better  result.  We  need  to  emphasize  that  dur-
ing  training,  there  is  no  loss  function  terms  or  training
data that  incorporates  the  fabrication  variations.  There-
fore, the observation that all three models perform simil-
arly in terms of robustness is not surprising.
 
Table 3 | Conclusion of performance measure for all three neur-
al networks. The number of stars is proportional to the perform-
ance.
 

Models Accuracy Diversity Robustness

Tandem ☆☆☆ ☆ ☆☆

VAEs ☆☆☆ ☆☆ ☆☆☆

GANs ☆☆ ☆☆☆ ☆☆

 

Although we only consider two specific inverse design
problems, these neural networks models and introduced
evaluation metrics  are  applicable  for  many  other  nano-
photonic inverse  design  problems  with  different  struc-
tures and materials, including the multilayer thin films35,
plasmonic  nanostructures56,  and  metasurfaces37,  etc,
where their  structures  can  be  described  either  by  a  vec-
tor  or  an  image  when  processed  by  appropriate  neural
networks. Therefore, our conclusions are generalizable to
a wide range of nanophotonic inverse design problems. 

Conclusions
In  conclusion,  we  benchmark  the  performance  of  three
deep learning-based methods that are commonly used in
the  current  deep  learning-based  inverse  design:  tandem
networks, VAEs, and GANs. To compare their perform-
ance  and  give  guidance  to  researchers  and  engineers,
each  model  is  evaluated  in  terms  of  accuracy,  diversity,
and robustness,  where  the  last  two aspects  are  seldomly
explored  in  the  current  domain  of  deep  learning-based
inverse design. Detailed comparisons and discussions are
included. We hope our work can provide insights for re-

searchers  and  engineers  to  correctly  select  their  target
model  that  best  fits  their  specific  needs.  For  example,  if
researchers  want  the  predicted  structures  to  give  the
most  accurate  optical  responses,  then  they  can  choose
tandem networks or VAEs. If they want to have multiple
structures  for  easier  fabrication,  GANs  or  VAEs  will  be
preferred.

All three models show similar performance on robust-
ness,  although  VAEs  give  slightly  better  performance.
Fabrication robustness is very important for real applica-
tion and should be considered when dealing with nano-
fabrications.  Additional  model  development  beyond
these studied models is necessary to incorporate fabrica-
tion  robustness  as  a  learning  objective.  For  example,  by
re-parametrizing  the  structures57,  or  building  suitable
datasets and incorporating the fabrication variation into
loss functions58, it is possible for neural networks to learn
these properties and output predicted structures that are
robust to fabrication variations.

We  also  want  to  mention  that  the  current  machine
learning  models  can  only  work  well  for  in-distribution
inverse design, where the target optical responses should
follow a similar distribution of the training dataset. Oth-
erwise,  the NNs may give erroneous predictions.  This is
because  NNs  can  only  accurately  interpolate  within  the
training dataset,  while  the  extrapolation  capability  bey-
ond  the  training  distribution  is  limited.  For  inverse
design problems that may require a high degree of extra-
polation, forward search approaches based on reinforce-
ment  learning59 or  conventional  optimization-based
methods should be used.  Hybrid methods that  combine
neural  networks  with  physics-driven  solvers  can  also  be
used for solving the extrapolation issue60,61.
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