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Solvent-free fabrication of broadband WS2
photodetectors on paper
Wenliang Zhang1, Onur Çakıroğlu1, Abdullah Al-Enizi2, Ayman Nafady2,
Xuetao Gan3, Xiaohua Ma4, Sruthi Kuriakose1, Yong Xie 1,4* and
Andres Castellanos-Gomez1*

Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.
Herein,  we  integrate  semiconducting  devices  on  cellulose  paper  substrate  through  a  simple  abrasion  technique  that
yields  high-performance  photodetectors.  A  solvent-free  WS2 film  deposited  on  paper  favors  an  effective  electron-hole
separation and hampers recombination. The as-prepared paper-based WS2 photodetectors exhibit a sensitive photore-
sponse over a wide spectral range spanning from ultraviolet (365 nm) to near-infrared (940 nm). Their responsivity value
reaches  up  to  ~270  mA  W−1 at  35  V  under  a  power  density  of  35  mW  cm−2.  A  high  performance  photodetector  was
achieved  by  controlling  the  environmental  exposure  as  the  ambient  oxygen  molecules  were  found  to  decrease  the
photoresponse and stability of the WS2 photodetector. Furthermore, we have built  a spectrometer using such a paper-
based WS2 device as the photodetecting component  to  illustrate  its  potential  application.  The present  work  could  pro-
mote the development of cost-effective disposable photodetection devices.
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 Introduction
Paper  based  electronics  have  gained  popularity  to  meet
the requirements of the next generation of smart instru-
ments,  especially  disposable  electronic devices1.  Paper is
commonly  used  in  daily  life,  it  is  manufactured  at  very
large  scale  and  at  low-cost  and  there  are  widespread
policies  and  industrial  processes  for  recycling  it2−4.  The
price of common paper is ~0.1 € m−2, far less than that of
crystalline  silicon  wafers  and  plastic  substrates,  thus

making  paper  an  appealing  candidate  as  an  alternative
and low-cost substrate for the construction of functional
electronics5. Furthermore,  unlike  flexible  polymer  sub-
strates such  as  polyimide  (PI),  polyethylene  terephthal-
ate (PET),  and polydimethylsiloxane (PDMS)6−9, the pa-
per  substrate  is  biodegradable10,11.  The  recyclable  and
biodegradable  features  of  paper  substrates  provide  a
great potential to alleviate the electronic waste issue. Be-
nefiting from these superior characteristics, various novel 
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paper-based  electronic  devices  such  as  sensors12,13, tran-
sistors14,15,  triboelectric  nanogenerators  (TENG)16,17, sol-
ar cells18,19, supercapacitors20,21, and photodetectors, have
been developed.

As one of  the representative paper electronics,  paper-
based  photodetectors  are  capable  of  converting  optical
pulses  into  electrical  signals  effectively,  therefore  could
be used in many fields spanning optical communication,
imaging, biological detection, and environmental monit-
oring22−27.  Layered  transition  metal  dichalcogenides
(TMDCs)  (e.g., WS2 and MoS2 ), hold  high carrier  mo-
bility,  a  sizeable  band  gap  of  1–2  eV,  and  strong  light-
matter  interaction28,29,  which  make  these  materials  very
prospective  for  optoelectronic  devices30.  The  weak  van
der Waals (vdW) bonds among the adjacent layers allow
bulk TMDCs  crystals  to  be  effectively  exfoliated,  en-
abling direct deposition of such layered crystals by direct
abrasion against the substrate5,31−36.  In addition, the high
surface  roughness  and  porous  nature  of  cellulose  fibers
not  only  aid  the  adhesion  of  the  deposited  material  but
also provides a larger photoactive area for optoelectronic
devices as compared to conventional planar substrates37.

Standard printer  paper  is  typically  made  up  of  inter-
connected  cellulose  fibers  with  diameters  of  20−40  μm
and lengths up to 2−5 mm38. This structure,  very differ-
ent from  that  of  conventional  micro-electronic  sub-
strates, makes it  necessary to develop specialized manu-
facturing processes to integrate electronic materials onto
paper  substrates.  Over  the  past  decades,  the  majority  of
efforts  to integrate vdW materials  onto paper substrates
have  been  focused  on  printing  dispersions  of  liquid-
phase  exfoliated  (LPE)  nanosheets  to  form  networks/
films39,40.  However,  high-temperature  thermal  treatment
(which  can  damage  the  paper  substrates  or  the  vdW
films) is needed to evaporate the solvents used during li-
quid  phase  exfoliation41,42. On  the  other  hand,  the  re-
maining residual surfactant molecules hamper the intim-
ate contact  between flakes  of  vdW materials,  thus  redu-
cing  the  performance  of  the  device.43 In general,  the  re-
sponsivity of the photodetectors based on LPE nanosheets
is  in  the  order  of  10−1000  μA  W−1,  which  limits  their
practical application44,45. Hence, it remains a challenge to
establish  an  efficient  deposition  on  paper  for  the  mass
production  of  thin  films  with  high  purity31.  Our  recent
work has illustrated an improved all-dry abrasion method
to  deposit  a  wide  variety  of  vdW  materials  on  standard
(untreated) office paper46, making it possible to fabricate
optoelectronic devices without the utilization of solvents.

This study aimed to integrate high-performance semi-
conductor  photodetection  devices  on  common  paper
substrate through the direct abrasion of photoactive WS2

crystals.  The  WS2 devices  fabricated  on  paper  exhibit  a
remarkable  photoresponse  behavior  with  responsivity
values in the order of ~10 mA W−1 at a bias voltage of 10
V over a broad spectral range from ultraviolet (365 nm)
to near-infrared (940 nm). As the applied bias voltage is
increased, the responsivity is dramatically enhanced and
reaches  a  maximum  value  of  ~270  mA  W−1 at  a  bias
voltage of  35  V.  Moreover,  we  demonstrate  that  the  at-
mospheric  oxygen  molecules  have  a  negative  impact  on
the electrical  conductivity  and  photoresponse  perform-
ance of paper-based WS2 photodetectors. In fact, the per-
formance of the fabricated paper-supported WS2 photo-
detectors is optimized when operated in vacuum and we
thus propose  to  explore  encapsulation techniques  in  fu-
ture  works.  In  addition,  a  WS2 photodetector  with  the
narrow channel distance is fabricated on paper using in-
terdigitated  Au  electrodes,  achieving  a  responsivity  of
~200 mA W−1 at 5 V bias. Finally, we construct an optic-
al  spectrometer  using  a  paper-based  WS2 device  to
demonstrate its  potential  application in sensitive photo-
detection components.

 Experimental section

 Materials sources
Common office copy paper (Winner Paper Co Ltd, 80 g
m−2)  was  used  as  a  low-cost  substrate  without  any  pre-
treatment.  Micronized WS2 (tungsten disulfide)  powder
(0.6 micron  APS)  was  purchased  from  Hagen  Automa-
tion Ltd to serve as the photosensitive material. Graphite
pencil  (4B  grade,  ~80%  graphite  content)  commercially
available (Faber Castell) was utilized to deposit conduct-
ive electrodes for interfacing with readout electronics.

 Device preparation
The  paper-based  WS2 devices  with  graphite  electrodes
were  fabricated as  described in  detail  in Fig. 1(a).  Using
this all-dry abrasion method, the WS2 film, with a thick-
ness of ~20±5 μm46 and a width of 2 mm, was prepared
as  the  photosensitive  channel.  After  drawing  of  the
graphite electrodes, the length of the WS2 channel could
be  reduced  to  ~250−500  μm  using  the  assistance  of  a
glass slide. For the paper-based WS2 devices with interdi-
gitated  Au  electrodes,  the  Au  layer  (100  nm)  was
thermally  evaporated  on  top  of  the  large-area  deposited
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WS2 film  through  a  patterned  shadow  mask  (Ossila,
E323) with a channel length (the space between two fin-
gers) of 45 μm.

 Photoelectric measurements
The  prepared  WS2 devices  were  placed  in  a  homebuilt
probe  station with  adjustable  pressure  and temperature.
Details  about  the  vacuum  probe  station  system  can  be
found  in  ref.47.  High-power  fiber-coupled  LEDs  (Thor-
labs)  with  different  wavelengths  were  employed  as  the
light source48 to produce a light spot with a diameter of 3
mm  by  connecting  the  free-end  of  the  multimode  fiber
(Thorlabs, M28L05) to a collimator. The power intensity
of the output light can be regulated by a computed pro-
grammable DC power supply (Tenma 72-2710) and de-
termined  using  a  power  meter  (Thorlabs,  PM100D).  A
Keithley-2450 source measure unit was used to measure
the  current  vs.  voltage  characteristics  and  the  temporal
current response.

 Results and discussion
The schematic diagram of the fabrication process of pa-
per-based WS2 photodetectors is shown in Fig. 1(a). The
first step  in  device  preparation  is  to  print  out  the  out-
lines of the channel and electrode on a standard copy pa-
per with a commercial laser printer. The interior outline
is then enclosed by attaching conventional masking tape
to shape a rectangular mask. A continuous film is depos-
ited onto  the  unmasked  paper  surface  by  simply  abrad-
ing the fresh WS2 fine crystals with a cotton swab. After

the masking tape is removed, the electrode region within
the  exterior  outline  is  filled  by  drawing  with  a  graphite
pencil of  4B grade,  leaving a  narrow channel  for  expos-
ing the photoactive WS2 to light illumination. Previously
reported  transfer  length  measurements  showed  that
graphite electrodes  yield  low  contact  resistances  to  ab-
raded WS2 channels,  in fact  negligible in comparison to
the channel resistance46. We address the reader to a video
that  shows the  overall  fabrication process  (see Video S1
in Supplementary information). A paper-supported 3 × 3
photodetector array, as seen from the photograph in Fig.
1(b), is easily prepared through this all-dry abrasion fab-
rication route.  This  fabrication route is  advantageous in
avoiding  the  use  of  solvents  and  the  high-temperature
heating process. Figure 1(b) also illustrates the flexibility
of  paper  substrates.  We  have  recently  studied  similar
devices  to  those  shown  in Fig. 1(b) under uniaxial  ten-
sion and compression (ref.34)  finding  that  the  resistance
of  the  semiconductor  channel  strongly  depends  on  the
applied strain: increasing with tensile strain and decreas-
ing with compressive strain. We attribute this strain-de-
pendent  resistance  to  a  simple  phenomenon:  tensile
strain  yields  reduced overlapping  area  between adjacent
flakes while compressive strain would increase the over-
lapping area. This change in flake-to-flake overlap would
lead to a substantial change in the resistance of the chan-
nel.  But  more  importantly  we  found  that  the  strain-in-
duced  changes  in  the  electrical  properties  of  the  device
were reproducible  and reversible,  most  likely  due to the
easy  flake-to-flake  sliding  for  van  der  Waals  materials.
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Fig. 1 | (a) Schematic illustration of the fabrication process of paper-based WS2 photodetectors via abrading WS2 crystals and penciling graphite

electrodes on paper substrates. (b) Photograph of the 3 × 3 WS2 photodetector array. Inset shows the magnified view of a WS2 photodetector.

(c) Optical micrograph of a WS2 photodetector showing the WS2 channel and graphite electrode regions.
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This  illustrates  the  advantageous  use  of  paper  substrate
in combination with van der Waals materials for the fab-
rication of flexible devices.

Figure 1(c) displays  an  optical  micrograph  of  one  of
the prepared devices, showing the compact and continu-
ous nature of the graphite and WS2 films. This could be
attributed to the fact  that the friction force generated in
the process of abrading and drawing is capable of cleav-
ing the layered vdW crystals by breaking the weak inter-
layer vdW interactions, thereby forming a homogeneous
coating  with  interconnected  platelets.  Interestingly,  the
WS2 photoactive channel can be made as narrow as ~300
μm  despite  utilizing  this  manual  “abrading/drawing ”
method. A  recent  combined  scanning  electron  micro-
scopy and atomic force microscopy study of abrasion-in-
duced deposited WS2 on polycarbonate showed that the
abrasion  forces  experienced  during  the  rubbing  process
lead to a reduction of the thickness of the WS2 deposited
flakes,  from ~100−200 nm in  the  as-received powder  to
~20−80 nm for the abraded WS2 films35. We refer read-
ers to our previous work for further characterizations on
morphology and structure46.

The  photodetection  performance  of  the  paper-based
WS2 device  was  thoroughly  investigated  by  measuring
their electrical characteristics under dark and upon light
illumination. We found that the exposure to atmospher-
ic conditions can hamper the electrical and optoelectron-
ic  performance  of  the  fabricated  photodetectors  and
thus,  in  order  to  fully  optimize  their  performance,  we
have  studied  them  under  high  vacuum  conditions.  We
address  the  reader  to  the  Supplementary  information
Fig.  S1 where the current  is  recorded during the pump-
ing  down  finding  a  large  increase  of  the  dark  current
(×5)  while  reducing  the  pressure.  This  suggests  that  the
ambient  atmosphere  may  affect  the  electrical  properties
of  WS2 devices.  More  specifically,  we  found  that  the
presence of atmospheric oxygen is the main cause of this
degradation of  the  WS2 performance upon air  exposure
(see Supplementary information Fig. S2).

To further explore the impact of ambient atmosphere
on the photoresponse performance, the paper-based WS2

device  was  measured  under  vacuum and air  conditions,
respectively.  We subjected  the  WS2 device  to  a  periodic
ON/OFF switching of light illumination at a fixed incid-
ent  power  density  of  35  mW  cm−2 over  100  min.  As
shown in Fig. 2(a) and 2(b),  the  current  increases  when
the  device  is  illuminated  and  then  returns  to  the  initial
dark  current  value  once  the  illumination  is  shut  off.

Moreover, the  traces  of  current  recorded  in  both  vacu-
um  and  air  conditions  exhibit  reproducible  switching
under  150  repeated  illumination  ON/OFF  cycles.  The
significant difference is that the current trace in the vacu-
um  condition  is  more  stable  showing  only  an  overall
smooth  drift  while  the  trace  in  air  shows  jumps.  From
the  zoomed-in  profile  in Fig. 2(b),  one  can  also  observe
the  increment  of  current  with  lower  signal-to-noise  for
the WS2 device tested in vacuum as compared to that in
air.  These  results  demonstrate  that  the  WS2 device  has
better photoresponse performance in vacuum.

Response time  is  another  essential  parameter  for  as-
sessing  the  performance  of  photodetection  devices.  The
rise  time at  light  excitation denotes  the  time needed for
the current  to  climb from 10% to 90% of  the  photocur-
rent  whereas  the  fall  time  in  light  outage  represents  the
time  taken  for  the  current  to  drop  from 90% to  10% of
the  photocurrent49.  For  the  paper-based  WS2 photode-
tector (device A),  the rise and fall  time are calculated as
7.31 s and 6.58 s in vacuum, whereas in air they are 1.36 s
and 1.54 s respectively.

We further determined the dependence of  the photo-
current on the incident power to get a deeper insight in-
to the photocurrent generation mechanism of the paper-
based  WS2 photodetector  (device  A)  in  vacuum and air
conditions. The  photocurrent  can  be  calculated  by  sub-
tracting the dark current from the current under illumin-
ation  condition. Fig. 2(c) plots  the  photocurrent  of  the
WS2 device as  a  function of  time while  the illumination
is switched ON/OFF at increasingly high incident power
intensity  from  1.1  mW  cm−2 to  35  mW  cm−2.  Higher
photocurrent is  naturally  obtained  at  higher  illumina-
tion power intensities (both in air and in vacuum condi-
tions)  since  higher  power  intensity  provides  a  larger
number  of  photons,  enabling  the  formation  of  a  larger
number  of  electron-hole  pairs50. Interestingly,  the  rela-
tionship between the photocurrent and the illumination
power strongly differs when the device is measured in air
and in vacuum. The relationship between the photocur-
rent  and  the  incident  power  intensity  (Fig. 2(d))  can  be
fitted by a power-law equation of Iph ∝ Pα, where the ex-
ponent α specifies the  photocurrent  response  to  the  in-
cident power51−53. While the device tested in air show an
exponent αAir =  0.69,  the  device  in  vacuum  presents  an
exponent  value  of αVacuum =  0.93.  An ideal  exponent  of
α =  1  is  expected  for  photoconductive  photodetectors
where the number of photogenerated carriers is  trivially
proportional to the number of incident photons. On the
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other  hand,  the  value  of α less than  1  is  typically  ob-
served  in  photodetectors,  where  photogating  or  strong
carrier-dependent recombination processes play a signi-
ficant  role  in  the photocurrent  generation mechanism54.
The αVacuum value which is very close to α = 1 points out
the nearly linear dependency of the photocurrent on the
incident power  intensity,  confirming the  photoconduct-
ive  nature  of  the  all-dry  deposited  WS2 photodetectors
operated in vacuum.

The effect of the bias voltage on the photocurrent was
further investigated by applying different bias voltages to
the  paper-based  WS2 photodetector  (device  B)  for  the
same  power-dependent  measurements  as  mentioned
above. Figure 3(a) and Fig.  S3 show  photocurrent  vs.
time at  different  bias  voltages.  The  device  shows  a  dis-
tinct  power-dependent  photoresponse  behavior  when
applying  the  bias  voltages  ranging  from  1  V  to  35  V,
which is also verified with IV curves in Fig. S4. The pho-
tocurrents as a function of incident power under various

tt=l2/μV

bias  voltages  are  plotted  in Fig. 3(b).  The  photocurrent
maintains  generally  a  near-linear  relationship  with  the
incident power even when subjected to a high voltage of
35 V. More importantly, one can observe the remarkable
enhancement  in  photocurrent  at  higher  voltages,  which
could be  attributed  to  the  increase  of  carrier  drift  velo-
city with  stronger  electrical  field  generated  in  the  chan-
nel. The transit time , where μ is the carrier mo-
bility, V is the bias voltage, and l is the distance between
the  source  and  drain  electrodes55.  The  stronger  electric
field favors the separation of photoexcited electron−hole
pairs and shortens the transit time, thus accelerating the
charge  accumulation  at  electrodes  and  increasing  the
photocurrent56.

The  responsivity  (R)  is  a  typical  detector  parameter
used to  compare  the  performance  of  different  photode-
tection devices, which can be calculated as5,57: 

R =
Iph

P× Sdevice
, (1)
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where Iph is  the  generated  photocurrent, P is the  incid-
ent  power  density  and Sdevice is  the  illuminated  active
channel area of the device. As plotted in Fig. 3(c), the cal-
culated responsivity  is  nearly  independent  of  the  incid-
ent  power  (as  expected  as αVacuum ~1). We  quantitat-
ively  compared  the  photocurrent  and  responsivity  at  a
selected power intensity of 35 mW cm−2 collected at vari-
ous bias voltages (Fig. 3(d)). The photocurrent (respons-
ivity) of the paper-based WS2 photodetector (device B) is
0.26  μA (1.2  mA W−1)  at  1  V and dramatically  raises  as
the  applied  voltage  increases,  reaching  a  maximum  of
56.5 μA (268.7 mA W−1) at 35 V. On the other hand, we
constructed  the  WS2 device  with  a  narrower  channel
length  of  45  μm  on  paper  by  thermally  evaporating  the
interdigitated  Au  electrodes  (100  nm  in  thickness)  and
carried  out  identical  power-dependent  measurements
(Fig.  S5).  At  a  bias  voltage  of  5  V,  the  WS2 device  with
Au electrodes delivers  a  significantly  enhanced respons-
ivity  of  193.9  mA  W−1 under  the  same  power  intensity
(35  mW  cm−2)  compared  with  the  WS2 device  with
graphite electrodes (6.4 mA W−1). These responsivity val-

ues measured are superior to that of other TMDCs-based
photodetectors  (0.018−124  mA  W−1)  fabricated  by
solvent-involved approaches37,56,58−60, and that of the WS2

photodetectors  with  atomically  thin  layers  (5×10−3−12.5
mA  W−1)  obtained  through  CVD61−63, magnetron  sput-
tering64,65, and mechanical exfoliation methods66. Table 1
compares  their  typical  device  characteristics  in  further
detail.

In order to illustrate the reproducibility of the devices
fabricated by this abrasion method we measured 10 WS2

devices  with  graphite  electrodes  at  10  V of  bias  voltage.
The  statistical  results  are  summarized  in Fig.  S6.  Under
the illumination with a power intensity of 35 mW cm−2,
the photocurrent of the as-prepared WS2 devices shows a
median value of 2.6 μA and a low deviation with 50% of
the devices scattering less than 1 μA. Accordingly, the re-
sponsivity  of  the  devices  presents  a  median  of  12.7  mA
W−1 and even reaches a maximum of ~30 mA W−1.  The
device-to-device variation for the paper-based WS2 pho-
todetectors could be attributed to the percolative charac-
ter of the WS2 film since the conduction paths of charge
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carriers  are  randomly  distributed  over  the  percolative
network of interconnected WS2 flakes.

We also  studied  the  role  of  temperature  in  the  per-
formance of the WS2 photodetectors. As indicated in Fig.
S7,  the  photocurrent  and  responsivity  both  increase
upon temperature increase, yielding slopes of 7.2 nA °C−1

and 34.3  μA W−1 °C−1, respectively.  In  general,  the  con-
ductivity of  2D  materials  is  increased  with  higher  tem-
perature.  Structural  defects  such  as  grain  boundaries
would also lead to large density of localized gap state.  It
is  very  likely  that  the  mobility  of  WS2 increased  during
heating  up  at  high  temperature70.  Both  Mott  variable
range hopping,  and  an  Arrhenius-type  activated  trans-
port  could  contribute  to  the  conductivity  of  WS271.  A
more thorough  characterization  on  the  temperature  ef-
fects  of  WS2 photodetectors  is  beyond  the  scope  of  this
paper.

The  spectral  responsiveness  of  the  paper-based  WS2

photodetection device was evaluated at a fixed power in-

tensity  of  13  mW  cm−2 using  17  high-power  fiber-
coupled LED sources  with different  wavelengths. Figure
4(a) summarizes  the  time-resolved  photocurrent  of  the
WS2 photodetector (device B) in response to light stimu-
lation  with  various  wavelengths  ranging  from  365  nm
(ultraviolet)  to  940  nm  (near-infrared).  The  fabricated
paper-based  WS2 photodetector exhibits  a  broad  spec-
tral  response,  which  could  be  attributed  to  the  photon
absorption capability of active WS2 ultrathin sheets over
a  vast  spectrum  range72. The  extracted  responsivity  val-
ues  over  different  spectra  ranges  are  shown in Fig. 4(b).
The  WS2 photodetector delivers  a  maximum responsiv-
ity value of 14.4 mA W−1 at 660 nm and reduces slightly
to  11.2  mA  W−1 when the  illumination  wavelength  ex-
ceeds  850  nm.  This  spectral  response  above  900  nm
could be due to thermally activated indirect band gap ab-
sorption as multilayer WS2 indirect gap is 1.32 eV73. An-
other  plausible  explanation  for  the  broadband  spectral
response and the lack of strong excitonic features in the

 
Table 1 | Comparison of  typical  device characteristics of  the present WS2 in this work and other TMDCs-based and paper-supported
photodetection devices. Response time values highlighted with r or f represent the rise time and fall time values, respectively.
 

Material/Device Substrate Fabrication technique
Bias voltage

(V)
Power intensity

(mW cm−2)
Responsivity

(mA W−1)
Response

time (s)
Ref.

WS2/Graphene
Technical paper

(PEL P60)
Inkjet printing 2.5 44.1−172.6 0.61 ~5 ref.59

Graphene(bottom)/
WS2/Graphene(top)

Technical paper
(PEL P60)

Inkjet printing 1 7 ~1 − ref.39

MoS2 Paper Rubbing process 21 7.46−111.94 0.01 ~20−30 ref.5

ZnS-MoS2 Paper Hydrothermal − 19.1 0.01785 11r ref.58

MoS2/WSe2 Paper Drop cast 5 5 124 0.1r; 0.3f ref.37

WSe2/Ag Photocopy paper Rubbing process 1 0.37−0.90 0.0725 7.5 ref.67

WSe2 nanodots Filter paper Dip coating 5 1 17.78 0.68r; 1.01f ref.56

WSe2/Graphite Paper Drop cast 1 5 6.66 0.8r; 1.4f ref.41

ZnO/Graphene Paper Direct writing − 3.9 6.27 8.76r; 18.13f ref.68

WS2 nanosheets Filter membrane Vacuum filtration 5 59.09 4.04 11.6r; 7.9f ref.60

Multilayer WS2 Quartz CVD − − 0.092 5.3×10−3 ref.61

WS2 Si wafer Drop cast 12 140 ~2.5 0.03−0.07 ref.69

WS2 Si wafer Magnetron sputtering 0 15 4 1.1×10−6r ref.65

GOQDs-WS2 Si wafer Mechanical exfoliation 5 − 12.5 0.0326r; 0.0275f ref.66

WS2 PI
Magnetron sputtering and
electron beam irradiation

10 3.9 1.66
0.48−0.86r;
0.70−0.88f

ref.64

Monolayer WS2 PI CVD 10 0.07 5 0.12r ref.62

WS2 PEN CVD 6 8.3×105 ~5×10−3 ~0.08 ref.63

WS2/Graphite PET Mechanical abrasion 2 55 24 11.8r; 20.5f ref.31

WS2/Graphite Paper All-dry abrasion 1−35 35.03

1.2 at 1 V;
6.4 at 5 V;

14.3 at 10 V;
268.7 at 35 V

7.31r; 6.58f This work

WS2/Au Paper All-dry abrasion 5 35.03 193.9 4.12r; 4.14f This work
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photocurrent spectrum  is  the  presence  of  strong  bolo-
metric effect, i.e. change in the channel resistance due to
the increase of temperature induced by light absorption,
in the  photocurrent  generation.  The  linear  power  de-
pendence and the slower response time of the devices in
vacuum further support this scenario where light would
be absorbed by the graphite electrodes, even for photons
with energies lower than the WS2 bandgap, and because
of  the  low  thermal  conductivity  of  paper  substrate  the
WS2 film  would  start  to  increase  its  temperature  that
would  lead  to  a  decrease  of  its  resistance32 and  thus  an
increase of the current flowing through the channel.

The broad-band  photodetection  properties  of  the  pa-

per-supported WS2 photodetector,  along with the linear
dependence  of  the  photocurrent  upon  incident  power,
motivated us to explore its application in optical spectro-
meters. We  constructed  a  proof-of-concept  spectromet-
er as shown in Fig. 5(a), containing a light source, light-
scattering optical element, and detection element. In this
spectrometer system, a diffractive grating scatters the in-
coming  light  beam  passing  through  a  collimator  into
multiple wavelengths, and thereafter the light with a spe-
cific wavelength is collected with the other collimator by
changing the angle of the diffractive grating. The fabric-
ated  paper-supported  WS2 device  is  then  used  to  detect
this  selected  outgoing  light. Fig. 5(b) and 5(c) show  the
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comparison of the spectra measured using a commercial
silicon  photodiode  (Thorlabs,  PM100D)  and  with  our
paper-supported WS2 photodetector (device C). We have
used a  supercontinuum  laser  and  different  spectral  fil-
ters (long-pass or band-pass) to generate the test spectra
to be measured with our proof-of-concept spectrometer.
The remarkable  agreement  between  the  spectra  meas-
ured with the commercial photodetector and our paper-
supported WS2 device  suggest  that  our  WS2 device per-
forms well in the quantitative detection of spectra.

 Conclusions
In summary, we developed a paper-based WS2 photode-
tector through a facile all-dry deposition strategy that in-
volved the abrasion of the WS2 photoactive channel and
pencil  drawing of graphite electrodes. We demonstrated
that  the  weak  van  der  Waals  interactions  between  WS2

layers allow the friction force produced during the abra-
sion process to cleave the layered WS2 crystals, resulting
in the formation of a uniform WS2 film with interlinked
platelets.  The  high  purity  of  such  an  all-dry  deposited
WS2 film leads  to  highly  effective  electron-hole  separa-
tion and hampers the recombination. Therefore, the fab-
ricated  WS2 photodetector shows  high  photoresponsiv-
ity to the incident light in a broad spectral range from ul-
traviolet to  near-infrared.  We investigated  the  photode-
tection  performance  of  the  paper-based  WS2 device  in
vacuum and air conditions, confirming the significant ef-
fect  of  oxygen  molecules  decreasing  the  photoresponse.
In addition,  the  responsivity  can be  markedly  improved
by applying the higher biasing voltage, achieving a max-
imum of ~270 mA W−1 at  a voltage of 35 V. Finally,  we
demonstrated  the  potential  application  of  the  paper-
based  WS2 photodetector  on  spectrometers.  This  work
paves the way for large-scale fabrication of other cost-ef-
fective electronic/optoelectronic devices.
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