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Efficient stochastic parallel gradient descent
training for on-chip optical processor
Yuanjian Wan1,2†, Xudong Liu1,2†, Guangze Wu1,2, Min Yang1,2,
Guofeng Yan1,2, Yu Zhang1,2 and Jian Wang1,2*

In recent years, space-division multiplexing (SDM) technology, which involves transmitting data information on multiple
parallel channels for efficient capacity scaling, has been widely used in fiber and free-space optical communication sys-
tems. To enable flexible data management and cope with the mixing between different channels, the integrated reconfig-
urable optical processor is used for optical switching and mitigating the channel crosstalk. However, efficient online train-
ing becomes intricate and challenging, particularly when dealing with a significant number of channels. Here we use the
stochastic parallel gradient descent (SPGD) algorithm to configure the integrated optical processor, which has less com-
putation than the traditional gradient descent (GD) algorithm. We design and fabricate a 6×6 on-chip optical processor on
silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.
Moreover,  we  apply  the  on-chip  processor  configured  by  the  SPGD  algorithm  to  optical  communications  for  optical
switching and  efficiently  mitigating  the  channel  crosstalk  in  SDM  systems.  In  comparison  with  the  traditional  GD  al-
gorithm,  it  is  found that  the  SPGD algorithm features  better  performance especially  when the  scale  of  matrix  is  large,
which means it has the potential to optimize large-scale optical matrix computation acceleration chips.

Keywords: optical communications; optical signal processing; channel descrambling; optical neural network chip; silicon
photonics
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 Introduction
The rapid  development  of  the  internet  and  artificial  in-
telligence  has  put  forward  ever-increasing  requirements
for higher and higher data information capacity of  fiber
and  free-space  optical  communications.  Space-division
multiplexing  (SDM)1,2 employs  multiple  orthogonal
channels  in  space  to  simultaneously  carry  and  transmit
data  information  for  capacity  scaling,  which  has  been
realized in few-mode fibers (FMFs)3,4, multi-core fiber5,6,
ring-core  fiber7,8, and  free-space  communication  sys-

tems9,10. However, many SDM schemes suffer from inev-
itable  channel  crosstalk  because  of  the  mixing  between
different  channels  when  transmitting  data  information
together, which leads to the degradation in signal quality
at the receiver. Therefore, digital signal processing (DSP)
is  always  required  to  mitigate  the  channel  crosstalk  and
recover  the  original  signal  in  the  electrical  domain11−13.
Unfortunately, high-speed DSP chips in the electrical do-
main  are  highly  complex,  difficult  to  design,  and  high
power  consumption14.  In  this  scenario,  a  laudable  goal 
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would be  to  undo the spatial  channel  mixing in  the  op-
tical domain1. Additionally, optical switching function in
SDM optical communication systems is also highly desir-
able to facilitate flexible data management15−17.

In  recent  years,  the  integrated  reconfigurable  optical
processor  can  perform  linear  transformation  like
filter18−20,  switching21,22,  temporal  integration23,  temporal
differentiation24,  Hilbert  transformation25 and  matrix
multiplication26 and  has  been  widely  used  in  photonic
microwave filter27, channel equalization28, optical switch-
ing29,  multi-task  photonic  signal  processor20,30−32,
quantum computing33 and optical computing34−37.  What’
s  more,  it  has  also  been  reported  to  undo  the  crosstalk
caused  by  mode  mixing  in  multi-mode  waveguide38,
FMF39,40 or MZI29 mesh automatically and get better sig-
nal  quality  after  optimization.  However,  most  existing
integrated linear optical  processor or optical  neural  net-
works  (ONNs)  are  implemented  by  pre-training  the
weights of the matrix in electronic computer and adjust-
ing  the  phase  shifter  voltage  according  to  the  training
result,  which  is  very  inefficient16,30.  Additionally,  due  to
external  disturbance,  thermal  crosstalk  inside  the  chip
and  fabrication  tolerance  of  the  complementary  metal
oxide semiconductor  (CMOS) process,  there  is  always  a
certain difference between the actual matrix of the integ-
rated photonic chip and the target matrix, which will in-
crease geometrically as the size of the chip increases. To
cope  with  this  problem,  researchers  proposed  on-chip
training  schemes  for  ONNs,  including  gradient  descent
(GD) algorithm and its deformation41, such as numerical
gradient descent algorithm29, genetic algorithm (GA)42,43,
particle swarm optimization (PSO) algorithm44, bacterial
foraging  optimization  algorithm  (BFOA)45 and  so  on.
However, in the optimization process of GD algorithm, it
is usually  necessary  to  establish  a  relatively  clear  math-
ematical  model,  but  it  is  difficult  for  the  training  of
ONN.  Although  Swarm  Intelligence  algorithm  like  GA,
PSO or BFOA does not  depend on the establishment of
mathematical network models, a sufficiently large popu-
lation  size  is  required  to  guarantee  the  reliability  of  the
optimization results,  which  leads  to  increased  complex-
ity. Generally,  compared  to  GA,  PSO  and  BFOA  al-
gorithms,  the  SPGD  algorithm  has  less  computational
load. Furthermore,  since  the  strategy  of  Swarm  Intelli-
gence algorithm is based on guessing and searching, it is
difficult  to  determine  their  complexity  and  their  results
are not stable enough.

In  this  paper,  we  use  the  Stochastic  Parallel  Gradient

Descent algorithm (SPGD) to train the integrated optic-
al processor experimentally, which is universally used in
adaptive  optics  systems46,47 because  of  its  advantages  of
simple parameters, low complexity, high convergence ef-
ficiency  and  good  stability.  Moreover,  we  compare  it
with the GD, GA, and PSO algorithms and draw a con-
clusion  that  the  processor  trained  by  SPGD  algorithm
needs less computation than other algorithms, especially
when the scale of matrix is large. Lastly, using the fabric-
ated on-chip optical processor trained by SPGD, we im-
plement  6  channels  self-configurable  optical  switching
and  channel  descrambling  with  favorable  performance,
which  may  find  potential  applications  in  fiber-optic
communication systems  based  on  mode-division  multi-
plexing  (MDM),  a  subset  of  SDM,  as  illustrated  in Fig.
1(a).

 Concept and principle

U V†

Σ
M

U V Σ
M = UΣ VH

θ ϕ

The concept and principle of the integrated optical pro-
cessor  are  shown  in Fig. 1(b),  which  can  be  divided  to
three parts.  Parts  (1)  and  (3)  are  unitary  optical  pro-
cessors,  representing  unitary  matrix  and , respect-
ively,  and  part  (2)  represents  the  diagram  matrix .  As
we all know, arbitrary matrix  can be decomposed in-
to two unitary matrixes ,  and a diagram matrix  as

 by  the  singular  value  decomposition
(SVD)48,49.  When  the  power  split  ratio ρ=0.5  and  the
phase  shifter  phase  is  and ,  the  transport  matrix  of
Mach−Zehnder  interferometers  (MZI) can  be  expressed
as: 

UMZI =
1
2

(
eiϕ(eiθ − 1) i(1+ eiθ)
ieiϕ(1+ eiθ) 1− eiθ

)
=

( u11 u12
u21 u22

)
.

(1)
UMZI · U†

MZI = E

θ ϕ

U(2)
U(N)
U(2)

It  can  be  seen  that  so  the  MZI  can
represent any rotational operation in a two-dimensional
unitary space. In other words, by changing  and  con-
trolled by voltage we can achieve any second-order unit-
ary matrix .  It  can be proven that any N×N unitary
matrix  can  be  decomposed  into  the  product  of  a
series of  as: 

U(N) = R12R13 · · · Rlm · · · Rn(n−1) . (2)

Therefore, we  can  use  cascaded  MZI  mesh  to  con-
struct any N×N unitary matrix and real matrix.

Optical switching  in  optical  networks  can  be  de-
scribed by  a  matrix.  For  example,  the  matrix  means  the
switching  state.  Besides,  crosstalk  between  channels  in
and SDM communication system can be represented by
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Ũ
U

UŨ = E

a  matrix , so  descrambling  is  to  train  the  optical  pro-
cessor  to  enable  its  transmission  matrix  to  satisfy

,  which means  the  data  information mixed into
other channels is returned to the original channel. Thus,
we generate a unitary matrix randomly and use 

J =
N∑
j=1

N∑
k=1

∣∣Usim
jk − Ejk

∣∣2 , (3)

Usim UŨ E

Δu γ T
U

ui

J [ui]

Δui ui + Δui

ui − Δui J [ui + Δui] J [ui − Δui]

ΔJ = J [ui + Δui]− J [ui − Δui]

ui+1 = ui + γΔuΔJ i
i

i T

J [ui]

as the Loss function (  is  and the  is the diagon-
al  matrix)  to  train  the  optical  processor  by  Stochastic
Parallel  Gradient  Descent  (SPGD)  algorithm,  which  is
more  suitable  for  the  optimization  of  complex  systems
with many control variables and cannot establish accur-
ate mathematical models. The flow chart is shown in Fig.
2. Before  optimization  begins,  we  set  random  perturba-
tion , learning rate , the total number of iterations 
and  randomly  generated ,  then  we  reset  the  voltages
applied  to  all  phase  shifters  and calculate  the  evalu-
ation  function . Next  we  generate  random  disturb-
ance  voltage  and  individually  apply  and

 to calculate  and . Then we
get  and  update  voltages
by .  Finally,  we  judge  whether  is
greater than T. If  is greater than T, we end the loop, and
if  is not greater than , we continue the loop until the
condition is met. Compared to the GD algorithm, it can
change all variables together and get the evaluation func-
tion  rather than changing each variable one by one

to calculate the evaluation function in a iterations, which
greatly reduce the amount of computation.

I1 − O2

I2 − O1 I3 − O5 I4 − O6 I5 − O3 I6 − O4

Ũ

J

To verify  the optimization effect  of  the algorithm, we
use  an  electronic  computer  to  train  the  on-chip  optical
processor for optical switching, optical channel descram-
bling,  and  achieving  both  of  them  together  (i.e.  optical
channel descrambling and switching), with the obtained
results  shown  in Fig. 3. Figure 3(a−c) are  the  results  of
optical  switching  matrix.  The  light  power  distributions
matrix is  calculated  by  unitary  matrix  cascade  men-
tioned above. It is easy to prove that there is a total of 720
6×6 optical switching matrices, all of which are encoded
as 1–720 and can be set as targets for optimization. The
emulated  light  power  distributions  after  training  are
shown  in Fig. 3(a) when  the  switching  state  is ,

, , , , , whose normal-
ized light intensity distributions is shown in Fig. 3(b) and
the  evaluation  function  changing  with  iteration  rounds
of optimization is shown in Fig. 3(c). During the optical
channels  descrambling process,  we randomly generate a
set  of  phases  in  the  part  (1)  of  our  chip  to  emulate  the
crosstalk  matrix  and  optimize  the  phase  shift  of  the
MZI  in  the  part  (1)  of  our  chip  to  minimize  evaluation
function . Figure 3(d) shows the  normalized  light  in-
tensity distributions before descrambling and Fig. 3(e) is
the normalized light intensity distributions after training.
Figure 3(f) is the evaluation function changing with iter-
ation  rounds.  On  this  basis,  we  set  optical  switching
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MDM communication system Optical processor
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Fig. 1 | (a) Conceptual diagram of the on-chip optical processor for optical switching and channel descrambling in MDM communication systems.

(b) Schematic configuration of the integrated reconfigurable optical processor. θ and ϕ mean the phase shift of the phase shifters. MDM: mode-

division multiplexing; MUX: multiplexer; DEMUX: demultiplexer.
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I1 − O5 I2 − O3 I3 − O2

I4 − O4 I5 − O1 I6 − O6

matrix T as  the  target  and  optimize  the  phase  shift  to
make evaluation function  minimum, which means op-
tical  switching  and  channel  descrambling  functions  are
achieved on the same chip. Figure 3(g) is the normalized
light intensity distributions before training with crosstalk
when  the  switching  state  is , , ,

, , . Figure 3(h) is  the  normalized
light  intensity  distributions  after  training  with  crosstalk
in the same switching state and Fig. 3(i) is the evaluation
function changing with iteration rounds.

 Experimental results

Ui

Uexp = (U1,U2,U3,U4,U5,U6)

The diagram of  the experimental  setup for online train-
ing is depicted in Fig. 4(a).  Silicon-based photonic chips
can  be  used  to  function  as  a  6×6  matrix.  Continuous-
wave  (CW) light  at  a  wavelength  of  1550  nm is  divided
into 6 paths and coupled into the photonic chip in turn
through a 1×6 optical micro-electro-mechanical systems
(MEMS)  switch  controlled  by  a  computer.  The  optical
power distribution  of the six output ports are detected
by  optical  power  meter  array  and  the  matrix

 is the transmission matrix
of  chip.  Polarization  controllers  (PCs)  are  used  in  each
path  to  change  the  polarization  of  light  to  ensure  the

maximum coupling efficiency between fibers and optical
waveguides.  Phase  shifters  in  the  chip  are  driven  by  a
multiple  outputs  regulated  power  supply  controlled  by
the  same  computer. Figure 4(b) shows  the  microscopy
image  of  optical  processor,  which  is  fabricated  on  the
standard 220-nm-silicon-on-insulator (SOI) wafer using
248 nm deep ultraviolet (DUV) lithography and induct-
ively coupled plasma (ICP) etching in United Microelec-
tronics  Center  (CUMEC).  The  silicon  photonic  chip  is
packaged  on  a  PCB,  and  light  is  coupled  into  the  chip
through an array of fibers.

In  the  process  of  training,  we  randomly  generate  an
arbitrary  exchange  matrix T as the  target  of  optimiza-
tion and use the SPGD to optimize the element configur-
ation  of  the  matrix  online.  The  obtained  results  are
shown  in Fig. 5. Figure 5(a) is  the  evaluation  function
changing with iteration rounds, where the X-axis repres-
ents  the  rounds  of  iteration  and  the Y-axis  means  the
evaluation function defined by: 

J =
N∑
j=1

N∑
k=1

∣∣Uexp
jk − Tjk

∣∣2 . (4)

The  insets  in Fig. 5(a) show the  light  power  distribu-
tions  when  the  round  of  iteration  equals  50,  300,  and

 

Set Δu, γ, T and U

Reset the voltages applied to all phase shifters ui

Generate random disturbance voltage Δui

Update voltages ui

Δu: disturbance voltage

γ: learning rate

T: set iterations

U: object matrix

i: current iterations

J: evaluation function

No

Yes

i>T?

End

Applied voltages ui+Δui and calculate J[ui+Δui]

Applied voltages ui−Δui and calculate J[ui−Δui]

Calculate J[ui]

Calculate ΔJ

i=i+1

Fig. 2 | Flow chart of Stochastic Parallel Gradient Descent (SPGD) algorithm.
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600, respectively.  The  light  power  and  normalized  in-
tensity distributions after training are shown in Fig. 5(b)
and 5(c), respectively, and the crosstalk of all channels is
less than −12.5 dB. In order to reveal the reconfigurabil-

ity of our chip, we choose another switching state as the
target, and the light power and normalized intensity dis-
tributions are shown in Fig. 5(d) and 5(e), respectively.

In  addition  to  the  optical  switching,  we  also  perform

 

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

−40

T
ra

n
s
m

is
s
io

n
 (

d
B

)

−30
−20
−10
0

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

0

N
o

rm
a
liz

e
d

 i
n

te
n
s
it
y

0.2
0.4
0.6

1.0
0.8

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

0

N
o
rm

a
liz

e
d
 i
n

te
n
s
it
y

0.2
0.4
0.6

1.0
0.8

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

0

N
o

rm
a

liz
e

d
 i
n
te

n
s
it
y

0.2
0.4
0.6

1.0
0.8

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

0

N
o

rm
a

liz
e

d
 i
n
te

n
s
it
y

0.2
0.4
0.6

1.0
0.8

a b c

1 2 3 4

Input
Output

5 6

6
5

4
3

2
1

0

N
o
rm

a
liz

e
d
 i
n

te
n
s
it
y

0.2
0.4
0.6

1.0
0.8

d e

g h

7
6

E
v
a
lu

a
ti
o
n
 f

u
n
c
ti
o

n

5
4
3
2
1
0
0 200 400

Iterations

600 800

f

7
8

6

E
v
a
lu

a
ti
o

n
 f
u

n
c
ti
o
n

5
4
3
2
1
0
0 200 400

Iterations

600 800

i

7
8

6

E
v
a
lu

a
ti
o
n

 f
u

n
c
ti
o
n

5
4
3
2
1
0
0 200 400

Iterations

600 800

Fig. 3 | Training results in electronic computer for optical switching, optical channel descrambling, and optical channel descrambling
and switching. (a)  Emulated  light  power  distributions  and (b)  normalized  light  intensity  distributions  after  training  when the  switching  state  is

I1−O2, I2−O1, I3−O5, I4−O6, I5−O3, I6−O4. (d, e) Normalized light intensity distributions (d) before and (e) after training when randomly generating

a set of phases in the part (1) of our chip to emulate crosstalk. (g, h) Normalized light intensity distributions (g) before and (h) after training with

crosstalk when the switching state is: I1−O5, I2−O3, I3−O2, I4−O4, I5−O1, I6−O6. (c, f, i) The evaluation function changing with iteration rounds.
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Fig. 4 | (a) Schematic of experimental configuration. (b) Microscopy image of optical processor. VSA: voltage source array; PD: photodetector array.
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online  automatic  configuration  of  arbitrary  unitary
matrices for mitigating for crosstalk between channels in
MDM  communication  systems.  Before  the  experiment
starts,  we randomly generate a set of voltages applied to
the phase shifter in part (1) of the chip, which is equival-
ent  to  constructing  a  unitary  matrix  and  emulate  the
mixing between  six  modes  in  FMF.  During  the  experi-
ment we use the SPGD algorithm to configure the phase
shifter  voltage  to  make  the  evaluation  function  defined
by 

J =
N∑
j=1

N∑
k=1

∣∣Uexp
jk − Tjk

∣∣2 . (5)

The  evaluation  function  changing  with  iteration
rounds  is  shown  in Fig. 6(a) and  insets  show  the  light
power distributions when the round of iteration equals 1,
300, and 600, respectively. The light power distributions
of  6  outputs  before  descrambling  is  shown  in Fig. 6(b)
and the distributions after descrambling is shown in Fig.
6(c). It is obvious that the crosstalk decreases as the itera-
tions increases  and the crosstalk  is  less  than 11 dB after
descrambling. Figure 6(d) and 6(e) shows  descrambling
results  of  training  when  generating  another  crosstalk
matrix.

Moreover,  we  also  implement  both  optical  switching
and  channel  descrambling  (two  important  modules  in
the MDM system) on the same chip together. Similar to

Ũ
U ŨU = E

I1 − O4 I2 − O1 I3 − O5

I4 − O6 I5 − O2 I6 − O2

I1 − O5 I2 − O3 I3 − O1 I4 − O6 I5 − O2 I6 − O3

descrambling, we also randomly generate a unitary mat-
rix  to emulate the crosstalk and we use the part (2) of
this  chip  to  configure  the  matrix  to  enable .
The  obtained  results  are  shown  in Fig. 7. Figure 7(a) is
the training process and the insets show the light power
distributions  when  the  round  of  iteration  equals  1,  100,
and 400, respectively. The results of the light power dis-
tributions  after  training  are  shown  in Fig. 7(b) and 7(c)
when  the  switching  state  is , , ,

, , . Figure 7(d) and 7(e) are the res-
ults  of  training  when  we  set  another  switching  state  of

, , , , , .
Finally,  in  order  to  compare  the  signal  quality  before

and after descrambling and verify the application of our
photonic  chip  in  the  fiber-optic  communication  system
with high-speed advanced modulation signals, we set up
the  experimental  configuration  shown  in  the Fig. 8(a).
The 16-ary quadrature amplitude modulation (16-QAM)
signal at 20 Gbaud rate is modulated onto an optical car-
rier  by  a  lithium  niobate  in-phase  and  quadrature  (IQ)
modulator  driven  by  the  arbitrary  waveform  generator
(AWG). The light is then split into six branches through
a  1×6  power  coupler,  passing  through  six  fiber  delay
lines for  decorrelation  between  each  channel.  The  out-
put of the chip is connected to a coherent receiver, where
the  received  16-QAM  signals  and  local  oscillator  (LO)
are  mixed  for  coherent  detection.  The  detected  signals
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Fig. 5 | Online training results for optical switching at a wavelength of 1550 nm. (a) The evaluation function changing with iteration rounds

when the switching state is I1−O3, I2−O1, I3−O4, I4−O6, I5−O2, I6−O5. The insets figures show the light power distributions when the round of itera-

tion equals 50, 300, and 600, respectively.  (b)  The measured light power distributions after training. (c) The normalized light intensity distribu-

tions of measured results. (d, e) The measured light power distributions and normalized light intensity distributions when the switching state is

I1−O3, I2−O6, I3−O4, I4−O2, I5−O1, I6−O5.
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are  collected  by  an  optical  real-time  oscilloscope  (OSC)
and  sent  to  computer  to  get  the  constellations  and  the
bit-error rate (BER) by off-line DSP. The erbium-doped
fiber amplifier (EDFA) is used to amplify the signal light.
Meanwhile,  a  variable  optical  attenuator  (VOA)  is  used
to change the optical signal-to-noise ratio (OSNR) of the
output signal  for  measuring  the  BER  transmission  per-
formance. The obtained results are shown in Fig. 8(b−f).
The BER performance under four conditions is shown in

Fig. 8(b).  The  BER  performance  after  descrambling  is
nearly  one-tenth  of  it  before  descrambling  at  the  same
OSNR, so  it  is  clear  that  the  quality  of  the  signal  is  im-
proved significantly after descrambling in our chip.  The
constellation chart  of  back-to-back is  shown in Fig. 8(c)
while  the  constellation  chart  of  signal  passing  through
the  chip  without  crosstalk  is  shown  in Fig. 8(d). Figure
8(e) is the constellation chart of signal with random per-
turbations applied by the part (1) of the chip and Fig. 8(f)
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Fig. 6 | Online training results for optical channel descrambling at a wavelength of 1550 nm. (a) The evaluation function changing with iter-

ation rounds. The insets show the light power distributions when the round of iteration equals 1, 300, and 600, respectively. (b) The light power

distributions before training. (c) The light power distributions after training. (d, e) The results of training when generating another matrix .
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is the constellation chart after descrambling. By compar-
ing Fig. 8(e) and 8(f), it is obvious that the signal quality
is greatly improved and the designed and fabricated on-
chip  optical  processor  assisted  by  SPGD  training  has  a
significant effect on signal descrambling.

 Discussion

u1, u2, ..., un

At  present,  the  scale  of  neural  networks  based  on  MZI
mesh  has  reached  64×6450.  The  online  learning  of  such
large-scale  matrices  is  very  time-consuming.  To  get  the
transform  matrix,  we  need  to  toggle  the  optical  input
port  in  turn  through  a  1×6  MEMS  optical  switch  and
collect  optical  light  intensity  distribution  through  the
photodetector  array.  Besides,  the  photocurrents  should
be  converted  into  digital  signals,  and  the  updated
voltages  of  phase  shifters  also  need  to  be  converted  to
analog  signals.  However,  commonly  available  ADC  and
DAC chips on the market typically have a bandwidth not
exceeding  1  GHz  and  the  MEMS  optical  switch  speeds
typically  range  from  kilohertz  to  megahertz,  with  some
advanced designs achieving switching times in the nano-
second  range,  which  is  the  main  time  consumption  of
matrix  online  training.  Traditional  GD algorithm firstly
generates  a  set  of  variables (n is  the  number
of  variables)  randomly  and  calculates  the  evaluation

J[u1, u2, ..., un] Δu

Jk[u1, u2, ..., uk + Δu, ..., un](k = 1, 2, ..., n)

uk J′k =
Jk − J
Δu

∇J = (J′1, J′2, ..., J′n)

function .  Then it  applies  perturbation 
to all variables in turn and get the transport matrix of the
photonic  chip  to  calculate  the  evaluation  function

.  The  partial

derivative  for  is  calculated  by  and  the

gradient  of  the  evaluate  function J can  be  expressed  as:
.  Finally,  we  update  the  variables  in

new  round  and  so  on  until  the  evaluate  function  is  less
than  the  threshold.  Therefore,  in  order  to  train  a N×N
unitary  matrix  with N(N−1) phase  shifts,  we  need  up-
date  the  voltage N(N−1) times,  measure  the  transmis-
sion  matrix N(N−1)  times,  and  calculate  the  evaluation
function N(N−1) times in one iteration round by the GD
algorithm.  If  the  number  of  iterations  is T,  we  need  to
update  the  variables  and  get  the  transform  matrix
N(N–1)×T times. Additionally,  Swarm  Intelligence  al-
gorithms like GA and PSO need to generate a group, in
which each individual  represents a  set  of  variables to be
optimized.  During  training,  all  individuals  in  the  group
should  be  calculated,  and  the  best  individual  should  be
selected. Therefore,  we  need  to  calculate  the  transmis-
sion matrix and evaluation function M (M represents the
population size,  typically  ranging from 10 to  100)  times
in one  iteration  round.  Thus,  we  need  update  the  vari-
ables and get the transform matrix M×T times. Whereas,
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the SPGD algorithm used  in  our  experiment  apply  per-
turbation  to  all  variables  together.  Consequently,  it
only  needs  to  update  the  voltage  of  phase  shifters  three
times.  As  a  result,  we  only  need  to  update  the  variables
and obtain the  transformation matrix  3×T times  during
the optimization. This significantly reduces the time and
power consumption  for  optimization.  In  order  to  fur-
ther verify this conclusion, we study the performance of
GD,  GA,  PSO  and  SPGD  algorithms  to  train  the  same
6×6,  10×10,  16×16,  and  32×32  matrices  numerically.
Specifically,  we  generate  a  random  unitary  matrix  as
crosstalk  and use  the above four algorithms to optimize
the  on-chip  processor  to  make  the minimum.
A threshold is set for making the program automatically
jump out  of  the  loop  when  the  evaluate  function  is  be-
low it  and  the  number  of  iterations  is  recorded.  Due  to
the random of the SPGD algorithm, we take the average
of  the  calculated  results  to  ensure  the  reliability  of  the
results. It is worth mentioning that both GA and PSO al-
gorithm  need  a  large  enough  population  size  to  ensure
the  performance  of  optimization  but  a  too  large  group
will lead to the waste of computation. Therefore, we train
the  photonic  chip  with  difference  population  size  and
took the best. The results are shown in the Table1.

From Table 1, It can be seen that the SPGD algorithm
requires  much  less  computation  compares  to  the  GD,
GA  and  PSO  algorithms.  Especially,  when  the  matrix
sizes are 6×6, 10×10 and 16×16, there is not much differ-
ence  of  the  total  amount  of  computation  between  these
four algorithms.  However,  When  the  matrix  size  in-
creases to  32×32,  the  number  of  updates  for  SPGD  al-
gorithm is close to only one fifth of the traditional GD al-
gorithm. This can be explained by the fact that the num-
ber of iterations for the GD algorithm is N(N−1)×T, in-
dicating a square relationship with N. Consequently, it is
foreseeable that  the  difference  will  become more  appar-
ent as the size of  the matrix expands further.  Therefore,
the algorithm has significant implications for larger scale
optical matrix computation acceleration chips.

 Conclusion
We propose  and  demonstrate  an  integrated  reconfigur-
able  optical  processor  trained  by  SPGD  algorithm  and
use it for unique optical switching and channel descram-
bling. On  this  basis,  we  apply  it  to  optical  communica-
tion systems with 20-Gbaud 16-QAM signals and meas-
ure  the  constellations  and  BER  performance,  through
which we  can  draw  the  conclusion  that  the  6×6  integ-
rated  optical  processor  has  the  application  prospect  in
robust  optical  switching  and  channel  descrambling  of
MDM-based fiber-optic  communication systems.  In ad-
dition, it can also be applied to various application scen-
arios in SDM-based fiber and free-space optical commu-
nication  systems.  Lastly,  we  compare  it  with  traditional
GD algorithm  and  show  its  distinct  advantages,  espe-
cially  when the  matrix  size  is  large.  The  suggestion  that
the SPGD algorithm has the potential to optimize large-
scale  optical  matrix  computation  acceleration  chips
points  to  a  significant  breakthrough  in  computational
optics. This innovation holds the promise of accelerating
complex optical  matrix  computations,  which  are  funda-
mental to various optical processing applications, includ-
ing signal processing and optical computing. It hints at a
future where optical processors can handle even more in-
tricate tasks efficiently.
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