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A highly sensitive LITES sensor based on a
multi-pass cell with dense spot pattern and
a novel quartz tuning fork with low frequency
Yahui Liu1,2, Shunda Qiao1,2, Chao Fang1,2, Ying He1,2, Haiyue Sun1,2,
Jian Liu3 and Yufei Ma1,2*

A highly sensitive light-induced thermoelectric spectroscopy (LITES) sensor based on a multi-pass cell (MPC) with dense
spot pattern and a novel quartz tuning fork (QTF) with low resonance frequency is reported in this manuscript. An erbi-
um-doped fiber amplifier (EDFA) was employed to amplify the output optical power so that the signal level was further
enhanced. The optical path length (OPL) and the ratio of optical path length to volume (RLV) of the MPC is 37.7 m and
13.8  cm-2,  respectively.  A  commercial  QTF and a  self-designed trapezoidal-tip  QTF with  low frequency  of  9461.83  Hz
were used as the detectors of  the sensor,  respectively.  The target gas selected to test  the performance of  the system
was  acetylene  (C2H2).  When  the  optical  power  was  constant  at  1000  mW,  the  minimum  detection  limit  (MDL)  of  the
C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-
al-tip QTF. An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-
cial QTF with the trapezoidal-tip QTF.
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 Introduction
Gas  sensing  technology  is  playing  an  important  role  in
human  production  and  activities1−11,  and  the  gas  sensor
based  on  laser  absorption  spectroscopy  (LAS)  is  one  of
the  mainstream types.  It  offers  some unique  advantages
such as  high  selectivity,  high  sensitivity  and  rapid  re-
sponsiveness12−21.  According  to  the  different  detective
modes, the LAS can be segmented into three types: 1) the
direct detection technology including tunable diode laser
absorption  spectroscopy  (TDLAS)22; 2)  the  cavity  en-

hanced  absorption  spectroscopy  (CEAS)23−25;  3)  and  the
indirect detection  technology  whose  typical  representa-
tions  are  photoacoustic  spectroscopy  (PAS)  and  quartz
enhanced  photoacoustic  spectroscopy  (QEPAS)26−29.
Among these  technologies,  PAS  inverts  the  gas  concen-
tration  by  detecting  the  acoustic  signal  generated  after
the  laser  is  absorbed by  the  gas,  and thus  it  can achieve
the  no  background  detection30,31.  QEPAS  replaces  the
traditional microphone with quartz tuning fork (QTF) as
a  detection  element,  which  can  effectively  filter  the  1/f
noise of the system32. 
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Although  QEPAS  offers  an  outstanding  performance
for  gas  sensing,  there  are  some  shortcomings  prevent  it
from  being  used  in  some  special  application  scenarios.
For example, since QTF generates an effective signal only
when  placed  in  an  environment  filled  with  the  test  gas,
QEPAS  is  powerless  to  detect  the  corrosive  and  acid
gases  such  as  hydrogen  fluoride  (HF),  hydrogen  sulfide
(H2S) and hydrogen chloride (HCl)33−35. In order to im-
prove the disadvantages of  QEPAS, Ma et  al.  reported a
different detection technology named light-induced ther-
moelectric  spectroscopy  (LITES)  in  201836. The  detec-
tion  segment  of  this  method  is  still  QTF,  but  the  signal
generation no longer  relies  on acoustic  wave.  When the
modulated  laser  is  absorbed  by  the  test  gas  in  a  gas
chamber, the  transmitted laser  will  carry  the  concentra-
tion information of the gas. After absorbing the energy of
this part of the laser, the QTF will perform a signal con-
version process from light to heat and then to electricity.
By  demodulating  the  electrical  signal,  the  concentration
information  of  the  gas  can  be  obtained37−39.  In  LITES
based  gas  sensors,  the  QTF needn't  be  surrounded  with
the  test  gas,  which  makes  it  possible  to  achieve  non-in-
vasive  detection40−42.  In  addition,  since  LITES  relies  on
the thermoelastic  deformation generated  by  the  absorp-
tion of laser energy to generate current signals, it has an
extremely wide  response  bandwidth  compared  to  tradi-
tional photodetectors and is expected to become a means
of detecting gases in the full-band spectrum43,44.

Based  on  the  principle  of  Beer-Lambert's  law,  the
strength of the absorbed signal in a gas sensing system is
proportional  to  the  gas  absorption  length45.  Multi-pass
cells (MPCs) are usually adopted to increase the absorp-
tion length and therefore regarded as a key device to im-
prove  the  detection  performance  of  LITES  system46,47.
Herriott cell is the most widely used MPC because of its
simple  structure  and  high  stability.  In  2019,  He  et  al.
firstly reported a LITES sensing system combined with a
Herriott  cell  with  an  effective  absorption  length  of  10.1
m48. Recently, MPCs with dense spot patterns are gradu-
ally being used as a new gas absorption device49−53. MPCs
with dense spot patterns have a large ratio of optical path
length to volume (RLV) which makes it potentially a key
element for integrated ultra-highly sensitive LITES based
sensors.

Another vital component in LITES system is QTF54−56.
Currently, the standard commercial  QTFs with a reson-
ant  frequency  of  ~32.76  kHz  are  most  commonly  used.
In  order  to  match  the  resonance  frequency,  the  system

also  need  a  high  modulation  frequency.  In  a  very  short
modulation period, the QTF can only absorb a very lim-
ited  amount  of  laser  energy,  and  thus  converts  a  weak
piezoelectric signal. Using a low-frequency QTF as a de-
tector  provides  a  longer  energy  accumulation  time,
which will  effectively  improve  the  detection  perform-
ance of the LITES system.

In  this  manuscript,  a  highly  sensitive  LITES  sensor
based  on  a  MPC  with  dense  spot  pattern  and  a  novel
QTF  with  low  frequency  is  reported  for  the  first  time.
The MPC has an optical path length (OPL) of 37.7 m, a
volume of 272 mL, and forms a spot distribution pattern
with  4  concentric  rings  on  the  mirrors  to  enhance  laser
absorption.  Besides,  a  self-designed  trapezoidal-tip  QTF
with  low-frequency  of  9461.83  Hz  was  used  to  further
enhance the sensing performance. Acetylene (C2H2) was
selected as the target gas for testing to evaluate the sensor
performance.

 Experimental setup

 Design of multi-pass cell
The  White  cell  and  the  Herriott  cell  are  the  two  most
typical  MPCs  and  have  a  long  history  of  application  in
gas sensing57−59. Especially the Herriott cell has many ad-
vantages  such  as  simple  structure,  stable  optical  path,
and easy adjustment, which makes it almost has been the
unquestionable  choice  in  gas  sensors.  However,  it  also
has some drawbacks that  limit  further  improvements  in
sensor performance.  The  spots  distribution  of  it  is  usu-
ally  individually  circular  or  elliptical,  which  makes  its
mirror utilization extremely low. Furthermore, when the
number of reflections increases, spots with adjacent posi-
tions  tend  to  overlap  and  it  will  introduce  interference
noise  into  the  system.  MPC  with  dense  spot  patterns  is
an improve design of the Herriott cell, which not only re-
tains the previous features, but significantly improves the
mirror utilization60,61.

In order to obtain the parameters of MPC, a computa-
tional model  based  on  vector  reflection  theory  was  de-
signed. It  is  capable  of  tracing  beam  transmitted  by  re-
flection  between  two  identical  spherical  mirrors  placed
co-axially. The key parameters in the MPC, including in-
cident  position,  incident  angle,  diameter  of  the  mirror,
radius of curvature and distance between the two mirrors,
are  varied  to  obtain  different  spot  distribution  effects.
There are several requirements that can be used as criter-
ia for parameter selection: 1) In multiple reflections, the
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beam does not overflow from the edge of the mirrors un-
less  it  is  emitted  from  the  set  perforation  position;  2)
Having a  regular  and non-overlapping spot  distribution
pattern  to  facilitate  optical  path  length  adjustment  and
avoid interference  noise;  3)  Achieving  as  many  reflec-
tions as possible with a short base length; 4) The outgo-
ing  beam  exits  the  outlet  completely  with  good  beam
quality.

For convenience, the design of MPC was based on reg-
ular-sized mirrors with a diameter of 2 inches and a radi-
us of curvature of 100 mm. In order to simulate the spots
shape  on  the  mirror,  several  parallel  straight  lines  were
used  to  construct  the  beam  model,  and  the  diameter  of
the  beam  was  set  to  600  μm.  The  parameter  settings  of
MPC  are  shown  in Fig. 1(a).  The  perforation  diameter
on the mirrors was set to 2 mm to allow for incident and
outgoing beams. Based on the established computational
model,  when  the  distance  of  the  mirrors,  the  incident
angles θ and Φ were set to 137.78 mm, −7.23° and −5.43°,
respectively, and the incident position coordinate was set
to  20.18  mm  and  3.42  mm,  the  spot  distribution  with
four  concentric  circles  was  obtained.  The simulation on
the incident mirror is shown in Fig. 1(b). The beam was
reflected 274  times  and  then  exits  through  the  exit  per-
foration  located  on  the  other  side.  The  volume  of  the
MPCs  was  considered  to  be  the  cylindrical-like  region
between the  two  spherical  mirrors,  which  is  approxim-
ately  equal  to  the  volume  of  sample  gas  that  the  gas
chamber can hold. The volume of this MPC is 272.6 mL
and the OPL is 37.7 m, which gives a RLV of 13.8 cm−2.
Compared  to  a  commercial  Herriott  cell  (HC10L-M02,
Thorlabs) whose RLV is about 1.49 cm−2, there was a ~8-
fold improvement.  The plano-concave spherical  mirrors

with through-holes  were  processed  based  on  the  ac-
quired parameters and subsequently coated with silver to
achieve  a  high  reflectivity  across  a  broad  range  of
wavelengths. It can provide greater than 95% reflectivity
in the wavelength range of 400–12000 nm. The spot dis-
tribution  obtained  using  a  He-Ne  laser  is  shown in Fig.
1(c). Although the quality of the beam is degraded due to
multiple reflections  and  some  of  the  spots  become  un-
clear, the shape of the actual spot still matched well with
the simulation.

 The self-designed QTF
The QTFs used in this manuscript are shown in Fig. 2(a),
and  QTF1  and  QTF2  represents  the  commercial  QTF
and  the  self-designed  trapezoidal-tip  QTF,  respectively.
Compared to the standard commercial QTF, the self-de-
signed QTF has an optimized dimension. A 3D model of
the QTF was  built  based  on COMSOL software,  and fi-
nite element analysis was used to optimize the paramet-
ers  such  as  the  width  and  length  of  the  fork  fingers  as
well as  the  thickness  in  order  to  obtain  a  lower  reson-
ance  frequency,  the  highest  average  charge  density  and
maximum  surface  stress.  In  addition,  it  has  a  unique
trapezoidal tip that enables it  to generate a larger piezo-
electric  signal  at  resonance,  which  is  because  the
trapezoidal-tip  improves  the  stress  distribution  in  the
fork  fingers  and  facilitates  an  increase  in  the  Coriolis
force and charge generation rate. The resonant frequen-
cies  of  two  QTFs  were  measured,  and  the  normalized
data  was  fitted  using  the  Lorentz  function,  as  shown  in
Fig. 2(b).  The  resonance  frequencies  (f) of  the  commer-
cial  QTF  and  the  trapezoidal-tip  QTF  are  32.753  kHz
and 9641.83 Hz, with response bandwidths of Δf1 = 3.12
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Hz and Δf2 = 1.47 Hz, respectively. And the related quality
factors  (calculated  with  the  formula Q=f/Δf)  are  10565
and  6559,  respectively.  Compared  to  commercial  QTF,
the trapezoidal-tip  QTF  has  a  ~70%  decrease  in  fre-
quency and is  beneficial  to increase the energy accumu-
lation  time62.  In  addition,  instead  of  using  silver-plated
electrodes  as  in  commercial  QTFs,  the  trapezoidal-tip
QTF uses gold-plated electrodes to reduce resistance.

 Sensor configuration
The  schematic  of  the  C2H2-LITES  sensor  based  on  a
multi-pass cell with dense spot pattern is shown in Fig. 3.
A strong absorption line of C2H2 located at 1530.37 nm
(6534.37  cm–1) was  selected  to  verify  the  detection  per-
formance.  The  system  was  equipped  with  a  continuous
wave  (CW),  distributed  feedback  (DFB)  diode  laser  as

the  laser  excitation  source,  and  the  output  power  was
amplified  by  an  erbium-doped  fiber  amplifier  (EDFA).
The  operating  temperature  and  center  current  of  the
laser  were  set  to  29°C and  92  mA,  respectively,  and  the
output power of the EDFA was in the range of 300 mW
to 1000 mW. The incident beam was initially collimated
and subsequently  directed  through  an  aperture  to  re-
duce the size,  and then entered the MPC at  a  particular
angle. After hundreds of reflections, the beam would exit
from  the  other  side,  two  wedge-shaped  mirrors  were
used as  the  optical  windows  so  that  no  optical  interfer-
ence  occurs.  The  beam  subsequently  hit  the  QTFs  by
means of  a  focusing lens.  The focal  length of  the  lens  is
10  mm  and  the  maximum  signal  was  generated  when
laser hits the root of a QTF, and the target points on QT-
Fs are shown in Fig. 3.
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In  order  to  reduce  the  background  noise,  wavelength
modulation spectroscopy  and  the  2nd  harmonic  de-
modulation techniques were adopted. A function gener-
ator was used to generate a  ramp wave with a  period of
100  s  so  that  the  laser  output  wavelength  was  scanned
through the target absorption line. The lock-in amplifier
generated  a  sine  wave  that  modulated  the  laser
wavelength  and  was  also  used  as  a  reference  signal  for
demodulation. The frequencies of the sine wave were set
to  half  the  resonance  frequencies  of  the  QTFs.  Diode
lasers  have  different  wavelength  response  at  different
modulation frequencies, which result in different optim-
al modulation  currents.  The  higher  the  modulation  fre-
quency,  the  smaller  the  wavelength  response,  which
means  there  is  a  smaller  change  in  wavelength  with  a
unit change of current. Therefore, in order to obtain the
same  range  of  wavelength  change,  a  larger  modulation
current  is  required  at  high  modulation  frequency63.
Therefore, the systems using QTF1 and QTF2 had differ-

ent  current  modulation  depths  of  27.36  mA  and  19.18
mA,  respectively.  The  integration  times  of  the  lock-in
amplifier were respectively set to 120 ms and 240 ms for
those two QTFs, and the detection bandwidths were 577
mHz and 288.5 mHz, respectively.

 Results and discussion

 Experimental results and discussion
Firstly,  2f-LITES  signal  was  measured  in  100  ppm
C2H2:N2 gas mixture. Figure 4(a) and 4(b) show the vari-
ation  of  the  peak  values  with  different  output  power  of
EDFA when QTF1 and QTF2 were used as the detectors,
respectively,  and the insets show the respective 2f signal
waveform. The peak value of the 2f-LITES signal has an
excellent  linear  relationship  with  the  optical  output
power of EDFA. The noise and signal noise ratio (SNR)
at  different  laser  powers  are  shown  in Fig. 4(c),  when
QTF1 and QTF2 were adopted, respectively. The system
using two different QTFs has a similar trend. There is  a
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small increase in noise and a significant increase in SNR
as  the  laser  power  increased.  Therefore,  all  subsequent
experiments  were  performed  with  the  output  power  of
EDFA at 1000 mW, which produced the highest SNR.

Two  gas  mass  flow  meters  were  used  to  control  the
flow  rate  of  a  bottle  of  100  ppm  C2H2:N2 standard  gas
mixture and a bottle of pure N2 to obtain different con-
centrations  of  C2H2.  It  should  be  noted  that  the  total
flow  rate  of  the  gas  was  kept  at  240  mL/min.  The  2f-
LITES signals  detected at  different  concentrations  when
QTF1 and QTF2 were used as detectors are shown in Fig.
5(a) and 5(b),  respectively.  At  a  concentration  of  100
ppm, the 2f signal peak measured with QTF1 was 176.92
μV, while the value measured with QTF2 was 250.30 μV.
The latter is 1.4 times higher than the former, which can
be  attributed  to  the  lower  resonance  frequency  of  the
trapezoidal-tip QTF. This character has led to an exten-
ded  duration  for  energy  accumulation. Figure 5(c) and
5(d) display  the  peak  values  of  the  2f signal  at  various

concentrations,  as  well  as  the  results  after  linear  fitting.
Both exhibit an excellent level of linearity.

The  background  noise  was  measured  when  pure  N2

was used to fill the MPC with a flow rate of 240 mL/min
and the output wavelength of the laser was locked at the
target  absorption  line  of  C2H2.  The  standard  deviation
(1σ)  noise  obtained  from  continuous  monitoring  of  2f
amplitude for 60 s and values of 85.50 nV for the system
using  QTF1  as  well  as  61.80  nV  for  the  system  using
QTF2  is  shown  in Fig. 6.  Consequently,  the  minimum
detection  limit  (MDL)  of  C2H2-LITES sensor  using  two
different  QTFs  can  be  calculated  from  the  ratio  of  the
standard gas  concentration  to  the  SNR  of  the  corres-
ponding system. The achieved MDL for the C2H2-LITES
sensor based on QTF1 and QTF2 were 48.3 ppb and 24.6
ppb,  respectively.  There  is  an  enhancement  of  the
system's detection performance by a factor of 1.96 when
replacing  the  commercial  QTF  with  the  self-designed
trapezoidal-tip QTF.
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The long-term stability  of  the system can be reflected
by  the  Allan  deviations  shown  in Fig. 7,  where Fig. 7(a)
shows  the  results  probed  with  QTF1  and Fig. 7(b) with
QTF2.  The  raw  data  were  obtained  by  locking  the  laser
output wavelength at the target absorption line and con-
tinuously  monitoring  the  2f signal  amplitude  for  more
than 2 hours in a pure N2 atmosphere. The MDL of the
QTF1 based C2H2-LITES sensor can be improved to 2.61
ppb when the average time is 100 s and the MDL of the
QTF2  based  system  can  be  enhanced  to  1.29  ppb  when
the average time is 140 s. Due to its large size of QTF, the
system  using  trapezoidal-tipped  QTF  had  better  long-
term stability.

 Conclusion
In conclusion, a highly sensitive LITES sensor based on a
MPC with dense spot pattern and a novel QTF with low
resonance frequency is  reported for  the first  time.  C2H2

was selected  as  the  target  gas  to  examine  the  perform-

ance of the system. The MPC has an OPL of 37.7 m and
an  excellent  RLV  of  13.8  cm−2.  Additionally,  a  self-de-
signed QTF with trapezoidal-tip  and low resonance fre-
quency of 9641.83 Hz was used to improve the detection
performance.  An  EDFA  was  employed  to  amplify  the
output power of the used diode laser to further enhance
the  signal  level.  At  an  optical  power  of  1000  mW,  the
MDL of the C2H2-LITES sensor based on trapezoidal-tip
QTF  was  determined  to  be  24.6  ppb,  which  was  1.96
times  better  than  the  system  using  a  commercial  QTF
with a  resonance  frequency  of  32.753  kHz.  Allan  devi-
ation  analysis  showed  that  the  MDL  of  the  commercial
QTF based C2H2-LITES sensor could be reduced to 2.61
ppb at  an average time of  100 s,  whereas the system us-
ing the trapezoidal-tip QTF could achieve a MDL of 1.29
ppb at an average time of 140 s. The detection perform-
ance of  this  system  can  be  further  enhanced  by  design-
ing  MPCs  with  a  larger  RLV  and  better  output  beam
quality. In addition, research on the design of new QTFs
with low resonance frequency and high Q-factor can fur-
ther  promote  the  development  of  LITES  technology.
Furthermore,  the  study  of  QTF  structures  that  enable
multiple  excitations  will  also  be  effective  in  enhancing
the system performance.
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