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Pluggable multitask diffractive neural networks
based on cascaded metasurfaces
Cong He1, Dan Zhao2, Fei Fan2, Hongqiang Zhou1,3, Xin Li1, Yao Li4,
Junjie Li4, Fei Dong5, Yin-Xiao Miao5, Yongtian Wang1* and
Lingling Huang 1*

Optical  neural  networks  have  significant  advantages  in  terms  of  power  consumption,  parallelism,  and  high  computing
speed, which has intrigued extensive attention in both academic and engineering communities. It  has been considered
as one of the powerful tools in promoting the fields of imaging processing and object recognition. However, the existing
optical  system  architecture  cannot  be  reconstructed  to  the  realization  of  multi-functional  artificial  intelligence  systems
simultaneously. To push the development of this issue, we propose the pluggable diffractive neural networks (P-DNN), a
general paradigm resorting to the cascaded metasurfaces, which can be applied to recognize various tasks by switching
internal  plug-ins.  As  the  proof-of-principle,  the  recognition  functions  of  six  types  of  handwritten  digits  and  six  types  of
fashions are numerical simulated and experimental demonstrated at near-infrared regimes. Encouragingly, the proposed
paradigm  not  only  improves  the  flexibility  of  the  optical  neural  networks  but  paves  the  new  route  for  achieving  high-
speed, low-power and versatile artificial intelligence systems.
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 Introduction
Deep learning  is  a  form  of  machine  learning  that  at-
tempts  to  imitate  the  principles  of  the  human  brain  for
data interpretation. It  has been applied to many specific
tasks,  including  image  classification1,2,  image
encryption3, intelligent photonic devices4,5, speech recog-
nition6,7, and language translation8. However, deep learn-
ing  is  a  data-driven  algorithm  that  requires  frequent

reading and writing of large amounts of data using exist-
ing  electronic  computers.  The  calculation  abilities  of
electronic  computers  are  limited  by  the  von  Neumann
architecture, which stores data and programs separately9.
The bottleneck of computing performance caused by the
mismatch  between  data  reading  and  processing  speed
and  the  huge  energy  consumption  caused  by  frequent
data reading and writing have become blocks to the fur-
ther development of artificial intelligence. 
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In  the  last  several  decades,  optical  neural  networks
(ONNs)10−18 have  provided  a  solution  by  exploiting  the
unique properties of light and possess the advantages of
high speed,  high  parallelism,  and  low  energy  consump-
tion. Recently,  deep  neural  networks  have  been  imple-
mented in  optical  systems  using  diffractive  optical  ele-
ments and validated in imaging processing and object re-
cognition. The  terahertz  diffractive  deep  neural  net-
works (D2NN) fabricated by 3D printing is the landmark
example for ONNs19.  Each unit structure of D2NN is re-
garded as a neuron, and the interconnections of neurons
between layers are realized by diffraction of light. Metas-
urfaces, composed of subwavelength elements, are a nov-
el  type  of  two-dimensional  planar  structures,  which
provide promising platform for ultrathin flat optics com-
pared  to  traditional  diffractive  optical  elements20,21.  The
amplitude and phase of light can be controlled simultan-
eously  by  changing  the  size,  arrangement  and  shape  of
meta-atoms  inside  the  metasurface.  The  realization  of
D2NN with  metasurfaces  is  helpful  to  realize  miniatur-
ized and multifunctional intelligent integrated devices22.

Currently,  D2NN has  been  widely  studied  for  various
tasks,  including broadband pulse shaping23,  optical logic
gate  operation24, and  OAM  beam  multiplexing  and  de-
multiplexing25,26 among  others27−29.  In  addition,  some
D2NNs  with  improved  structures  have  been  applied  to
wider fields, such as the multi-view D2NN array scheme
for  3D  object  recognition30,  where  each  D2NN corres-
ponds to a 3D object view, ensemble learning of D2NN31,
which introduces passive filters in space or Fourier space
to preprocess input information and achieve higher-pre-
cision  image  classification,  and  Fourier-space  D2NN32,
which places the diffractive layer on the Fourier plane of
the optical  system  to  achieve  all-optical  saliency  detec-
tion.  However,  once  these  architectures  are  trained  and
fabricated, they cannot be changed. If extra tasks need to
be achieved, the parameters of the entire network have to
be  retrained.  This  process  consumes  a  lot  of  computing
resources to optimize the network parameters. Although
there  have  been  some  studies  on  the  reconfigurability
problem  of  D2NN, such  as  programmable  electromag-
netic metasurface33, optoelectronic fusion computing ar-
chitecture34,  hardware-software  co-design  architecture35,
on-chip polarization  multiplexed  diffractive  neural  net-
works. These methods introduced additional energy con-
sumption  and  required  complex  experimental  setups.
Recently,  the  on-chip  polarization  multiplexing  neural
network  has  been  proposed  to  achieve  multitasking  in

the visible light band36. However, this approach has lim-
ited performance with a single-layer metasurface.

Here,  we  proposed  the  pluggable  diffractive  neural
networks  (P-DNN),  which  can  realize  the  switching  of
various recognition tasks such as handwritten digits and
fashions  by  switching  the  pluggable  components  in  the
network.  It  improves  the  flexibility  of  network  design
while effectively  reducing  the  consumption  of  comput-
ing  resources  and  training  time.  We designed  two-layer
cascaded  metasurfaces37 to  demonstrate  the  capabilities
of  P-DNN  by  using  handwritten  digits  and  fashions  as
input, respectively. Considering the experimental feasib-
ility, the phase-only metasurfaces were used for verifica-
tion. The experimental classification accuracies of hand-
written  digits  and  fashions  classification  tasks  exceed
91.3%  and  90.0%,  while  similar  classification  accuracies
(91.8% and 90.2%) are obtained in P-DNN experimental
verification. P-DNN is a general model for various classi-
fication tasks and provides an alternative for reconfigur-
ability  problems  of  D2NN.  In  addition,  P-DNN  can  be
used as an integrated component of artificial intelligence
systems  with  different  functions  to  provide  low-energy,
high-speed  computing  for  specific  tasks  in  the  future,
such  as  microscopy  imaging,  and  autonomous  driving
assistance.

 Results and discussion
The framework  of  the  proposed  P-DNN can be  used  to
recognize  various  types  of  datasets  such  as  handwritten
digits  and fashions,  as shown in Fig. 1. We took the ob-
ject to be classified as input,  phase-encoding neurons as
hidden layers  and discretized  detection plane  as  output.
Our P-DNN can be divided into two parts: the first layer
is  a  common layer  for  preprocessing input  information,
and the second layer is an alternative task-specific classi-
fication layer. We divide the detection output plane that
corresponds to  handwritten  digits  into  six  discrete  re-
gions,  representing  digits  0–5.  When illuminating  plane
wave to the object (a mask of a specific shape), the amp-
litude-encoded incident  information of  equal  phase  was
obtained. The diffractive light was focused on the corres-
ponding  horizontally  arranged  detection  area  through a
two-layer  P-DNN.  Then,  the  fashion  classification  was
implemented  by  replacing  the  second  plugin  layer.  The
detection  plane  was  divided  into  six  vertically  arranged
discrete  regions  representing  six  fashions  (T-shirts,
trousers,  coats,  sneakers,  bags,  and  ankle  boots).  Our
chosen  training  dataset  is  a  subset  of  two  classic
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machine learning datasets,  that is,  Modified national in-
stitute of standards and technology (MNIST)38 and Fash-
ion-MNIST39.

The P-DNN system is trained based on the optical dif-
fraction theory. According to the Huygens-Fresnel prin-
ciple40, every point of the wavefront can be regarded as a
secondary spherical wave source. Each meta-atoms with-
in  the  metasurface  can  be  treated  as  an  optical  neuron,
connecting to the neurons in the next layer by diffraction.

U (rl+1) (l+ 1)
According  to  the  Rayleigh-Sommerfeld  diffraction

theory41,  the  complex  field  from lth  to  th
layer can be expressed as: 
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for  the  first  hidden  layer  with ,  is the  trans-
mitted light encoded by the amplitude of the input layer.
The  complex  field  is  modulated  by  the  spatially  varying
complex transmittance ,  where  and  are
the  amplitude  and  the  phase  of . The  impulse  re-
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where  is  the  illumination  wavelength,

,  and
.

We explored an optimization algorithm flow based on
transfer  learning.  The  training  criterion  is  to  maximize
each  normalized  signal  corresponding  to  the  detection

region, while minimizing the total signal outside the de-
tection region.  Considering  the  feasibility  of  the  experi-
ment, a phase-only modulation method was adopted and
the sigmoid function was used to restrict the phase para-
meter  in  the  range  of  0–2π.  During  optimization,  we
used a mean squared error (MSE) loss function to evalu-
ate  the difference between the output and truth by light
intensity  of  different  detector  regions.  According  to  the
loss function, the phase parameters are randomly optim-
ized by using stochastic gradient descent and error back-
propagation  algorithm.  More  detailed  model  training
and derivation are described in the Methods section and
Supplementary information.

More specifically,  the P-DNN training process can be
divided into two steps (Fig. 2). Firstly, the common layer
(MS1) and  classification  layer  (MS2)  were  simultan-
eously trained using handwritten digital images from the
MNIST datasets for the task of handwritten digits recog-
nition. The handwritten digit inputs were trained to map
to six longitudinally distributed regions representing 0–5
handwritten  digits.  Next,  the  common  layer  network
parameters were fixed, and the parameters of the fashion
classification  layer  (MS3)  were  trained  using  images  of
fashions from the Fashion-MNIST datasets. The fashion
inputs were trained to map to six distributed regions rep-
resenting  different  categories  of  fashions  (T-shirts,
trousers, coats, sneakers, bags, and ankle boots).

According  to  the  multi-task  P-DNN  design  process,
three  phases  can  be  optimized  by  using  handwritten
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Fig. 1 | Concept of pluggable diffractive neural networks (P-DNN) for multiple tasks. P-DNN is composed of common layers (marked in red)

and classification layers (marked in blue and green, respectively). The recognition of handwritten digits and fashion datasets can be achieved by

switching plugins of classification layers. When parallel light is encoded as a specific input and passed through a two-layer pluggable D2NN, the

light can be focused on a specified region of the detection plane to achieve classification.
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digital  datasets  and  fashion  datasets,  corresponding  to
one sharing  layer  and  two  classification  layers  respect-
ively.  As  a  proof-of-concept,  the  cascaded  metasurfaces
are designed to realize corresponding phase modulation.
The metasurfaces are composed of  rectangular amorph-
ous silicon nanofin deliberately designed on a glass sub-
strate  (Fig. 3(a)). The  Berry  phase  modulation  mechan-
ism provides a dispersionless azimuthal angle dependent
full  phase  control  for  circularly  polarized  light  when  it
converts to its opposite helicity42.

The rigorous  coupled wave  analysis  (RCWA) simula-
tion method  was  used  to  design  and  optimize  amorph-
ous  silicon  nanofins.  The  electromagnetic  response  of
each periodic  array  of  nanostructures  can be  calculated.
The  height  of  the  nanofins  is  fixed  at  600  nm  and  the
period is 500 nm in the x and y directions. The incident
wavelength is  800 nm. Then,  we obtained the simulated
magnitudes of the circularly cross- and co-circularly po-
larized  transmission  coefficients  of  the  nanofins  by
sweeping  the  length  and  width  of  the  nanofins  in  5  nm
steps  from  70  nm  to  300  nm  (Fig. 3(b)).  Finally,  we
choose a nanofin with length L of 210 nm and width W
of 135 nm (marked with white dots) to construct metas-
urfaces.  The  angle  between  the  long  axis  of  the  nanofin
and the x-axis of the substrate is φ as shown in Fig. 3(c).
When  the  incident  light  is  set  as  circularly  polarized
light,  the  phase  modulation  value  obtained  by  rotating
the  nanofin  is  explored  under  cross  circularly  polarized

state. The relationship between the additional phase and
amplitude is related to the rotation angle of the nanofin,
shown  in Fig. 3(d).  The  additional  phase  can  cover  the
range from 0−2π.

We build experimental system to demonstrate the per-
formance  of  metasurface-based  multi-task  P-DNN  (Fig.
4(a)).  Considering  the  characteristics  of  the  geometric
phase  modulation  mechanism,  a  linear  polarizer  and  a
1/4  wave  plate  were  used  to  generate  the  polarization
state. The beam carrying the target information was gen-
erated  by  digital  micromirror  devices  (DMD).  In  order
to avoid the diffraction of  the input beam during trans-
mission,  the  4f  system  was  used  to  image  the  encoded
target images  to  the  front  of  the  metasurface  with  dis-
tance of 4 mm as set in design. The pattern of the detec-
tion plane  was  collected  and  amplified  by  the  micro-
scope objective and the polarization state was filtered by
the second set of quarter-wave plates and a linear polar-
izer. Finally, the camera was used to detect the images of
the output plane.

We used two 3D displacement platforms to help align
the cascaded metasurfaces. The distance between the two
metasurfaces is set to 500 μm. Furthermore, a large pixel
consisting of a 10×10 array of nanofins was intentionally
created by repeatedly placing nanofins with the same azi-
muth angle. The size of the metasurface is 500×500 μm2

and contains 100×100 pixels. The side length of each su-
per-pixel  is  5  μm. Figure 4(b) exhibits  the  scanning
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electron  microscope  (SEM)  images  of  the  top  and  side
views of the sample.

In digit  classification  simulation,  the  P-DNN  hand-
written digits  classification  component  has  been  iterat-
ively trained  for  10  periods,  and  the  simulation  test  ac-
curacy  has  reached  91.8%  (Fig. 5(a)).  We  used  6000
handwritten digit  images  as  the  test  datasets,  and  ran-
domly selected 300 images of datasets as the experiment-
al validation  datasets  (50  images  per  classification  cat-
egory). The  test  results  are  presented  using  the  confu-
sion  matrix,  showing  test  details  for  correctly  identified
and misidentified  instances  of  simulation  and  simula-
tion (Fig. 5(b, c)). According to the experimental statist-
ical results,  the  test  accuracy  reaches  90%.  The  experi-
mental results are consistent well with the simulated res-

ΔE = Emax (maximum energy)− Esmax (second maximum energy)

ults,  indicating  that  the  design  theory  is  effective.  The
handwritten digital  image  was  encoded  into  the  amp-
litude  channel  as  input  (Fig. 5(d)).  The  light  intensity
distribution of the detection plane obtained in the simu-
lation and experiment is shown in Fig. 5(e, f). By analyz-
ing  the  energy  distribution  of  the  detection  (Fig. 5(g)),
The  results  show  that  the  system  can  rightly  recognize
handwritten  digits  according  to  the  energy  distribution.
Due to  the  influence  of  experimental  error,  the  maxim-
um  energy  distribution  of  experimental  results  is  a  bit
lower than simulation results. In order to clearly display
the difference between the percentage of  maximum and
second  maximum  energy,  we  have  introduced

 
as  an  indicator  of  the  energy  distribution  difference,
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where  blue  numbers  represent  simulation  data  and  red
numbers represent experimental data. It can be observed
that the maximum energy is at least 71% higher than the
second maximum energy in simulations, and at least 34%
higher in experiments.  The results  indicate  that  P-DNN
is capable  of  achieving high recognition accuracy and is
not easily affected by errors.

Furthermore, we test the classification performance of
P-DNN  on  more  complex  image  datasets,  by  replacing
the  classification  layer  plug-in  for  fashion  recognition.
The datasets consist of six different fashion products (T-
shirts, pants, jumpers, sneakers, bags, and ankle boots). It
is  worth  noting  that  the  training  of  the  fashion  plugin
has  achieved  high  classification  accuracy  after  only  five

training epochs. Compared to the training without trans-
fer learning,  the  training  time  and  parameters  are  re-
duced  by  half.  We  used  6000  fashion  images  as  the  test
dataset, the numerical test has an accuracy rate of 90.2%
(Fig. 6(a)).  As  above,  we  used  the  confusion  matrix  to
display  the  statistical  results,  and  selected  300  images
from the test  datasets  for  experimental  verification (Fig.
6(b, c)). It  can  be  seen  that  the  experimental  test  accur-
acy  reached  90%. Figure 6(d) shows  the  fashion  images
which were encoded to the amplitude channel.  The sys-
tem successfully  realizes  the  classification  of  fashion ac-
cording  to  the  energy  distribution  of  the  output  plane
(Fig. 6(e, f)).  It  turned  out  that  P-DNN  only  needs  a
small amount  of  retraining  based  on  the  original  para-
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Fig. 6 | Simulation and experiment result of fashion-P-DNN. (a) Training accuracy is 91% after training 5 epochs. (b, c) Simulation and exper-

imental results of confusion matrix for fashions classification. The Simulation and experimental results test accuracy is 90.2% and 90% respect-

ively, which is obtained by dividing the sum of elements on the main diagonal of confusion matrix by the sum of all elements. In the simulation

and experimental results, the test accuracy reaches 90.2% and 90%, respectively. (d) Fashion input images were encoded into amplitude chan-

nel. (e, f) Output plane energy distribution maps of fashions in simulations and experiments. (g) Energy distribution percentage of experimental

and simulated results of fashions. ΔE represents the difference between the percentage of maximum and second maximum energy.
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meters,  and  other  more  difficult  tasks  can  also  achieve
good recognition performance.

 Conclusions
Generally, the D2NN can only achieve a single task after
the design is completed and the physically manufactured
network  cannot  be  modified.  If  other  tasks  need  to  be
achieved,  D2NN  needs  to  be  completely  retrained  and
manufactured. Here we demonstrate that P-DNN can be
applied  to  recognize  various  tasks  in  the  near-infrared
band by switching internal plug-ins. To verify the feasib-
ility,  we  design  cascaded  metasurfaces  for  handwritten
digits  and  fashion  recognition.  It  can  work  similarly  to
the  pluggable  components  in  optical  communication.
According  to  user  requirements,  classification  layer
(pluggable  layer)  plug-ins  can be  customized to  be  used
in combination with common layer plug-ins to achieve a
variety  of  specific  tasks  (not  limited  to  classification
tasks).  The experimental  test  accuracies were 91.3% and
90.0%, respectively,  which were in good agreement with
the  numerical  simulation  results.  Such  plug-ins  have
good  reconfigurability  and  can  easily  complete  more
tasks through plugging and unplugging. It  has the char-
acteristics  of  ultra-low  energy  consumption  and  light-
speed  calculation,  and  may  provide  extra  flexibility  for
neural  networks.  Our  proposed  P-DNN  can  achieve  a
wide range of applications, such as intelligent optical fil-
tering in microscopy imaging and real-time object detec-
tion in autonomous driving systems.

 Material and method
 Training of the P-DNN
Our  P-DNN  is  trained  using  Python  version  3.7.0.  and
TensorFlow framework version 2.4.1  (Google  Inc.)  on a
desktop  computer  (Intel(R)  Core(TM)  i5-10500  CPU
@3.10 GHz with 32 GB RAM, running the Windows 10
operating  system  (Microsoft)).  In  the  training  process,
mean  square  error  loss  is  selected  as  the  loss  function,
which is usually used for target classification of machine
learning,  and the  Adam optimizer  is  used to  update  the
phase value of each layer in the network. We used 36000
handwritten digital  images  and fashion images  as  train-
ing datasets with a training batch size of 8 and a learning
rate of 0.01.

 Fabrication
The  dielectric  metasurface  of  amorphous  silicon  (α-Si)
nanofins  was  fabricated  on  SiO2 substrate.  Firstly,

amorphous silicon films with a thickness of 600 nm were
prepared by  plasma-enhanced  chemical  vapor  depos-
ition.  Subsequently,  the  polymethyl  methacrylate  resist
layer was spin-coated.  The pattern is  then patterned us-
ing standard  electron  beam  lithography.  After  develop-
ment, a 30 nm thick chromium layer is plated on the sur-
face of the sample. Finally, we performed the lift-off pro-
cess  in  hot  acetone  and  employed  inductively  coupled
plasma reactive ion etching to transfer the desired struc-
ture from chromium to silicon.
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