
DOI: 10.29026/oea.2023.230113

A novel method for designing crosstalk-free
achromatic full Stokes imaging polarimeter
Jinghua Teng*

Metasurface-based polarimetry techniques have attracted lots of interests and been extensively studied in the past years,
but are still hampered by narrow operating bandwidth and large crosstalk. Recently, Xian-Gang Luo's group proposed a
new method of  polarization-dependent  phase optimization for  the design of  crosstalk-free,  broadband achromatic,  and
full Stokes imaging polarimeter, which offers a promising platform for a wide range of applications including bio-photon-
ics and integrated optics.
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Polarization comprises  abundant  information  of  sub-
stance, playing  an  essential  role  in  light-matter  interac-
tions. Polarimetry, a method of determining the polariz-
ation states of the scene, has been widely adopted in re-
mote  sensing1,  biomedicine2,  astronomy3, etc.  Conven-
tional  methods  for  polarimetry  demand  beam  splitters,
waveplates, and polarizers for measuring Stoke paramet-
ers in one shot, which ineluctably limiting their applica-
tions in compact and integrated optical systems.

Metasurface has  made  numerous  impressive  applica-
tions  in  imaging4,5,  holography6,7,  catenary  optics8,9, ex-
traordinary Young’s interference (EYI)10, and other areas
for its flexible optical field modulation and potentials in
highly  compact  integration due  to  ultra-thin  nature11−14.
It  also  provides  new  routes  for  polarimetry.  To  date,
various  metasurface-based  dielectric  polarimeters  have
been  developed,  such  as  spectropolarimeters15,  snapshot
imaging  polarimetry16,  Hartmann-Shack  wavefront
sensor17,  and  wide-angle  polarimetry18.  Although  the
performance  of  polarimeters  has  made  considerable
headway,  these  polarimeters  operate  at  a  single

wavelength and have not taken into account the effects of
polarization crosstalk.

Albeit some  works  attempted  to  extend  the  band-
width  of  the  polarimeter  by  using  metagrating15,19,  thee
polarimeters  implement  broadband  dispersion  rather
than  achieving  achromatic  broadband,  constraining  the
practical applications  to  a  certain  extent.  Besides,  tack-
ling  crosstalk  between  polarizations  is  often  lacking,
leading to  significant  errors  in  measurements.  The  ap-
proach  of  employing  calibration  matrix  to  correct  the
measurement  error  proves  inadequate  for  accurately
measuring unknown wavelengths in broadband17,20. Thus
far,  characteristics  of  broadband  achromatic  and
crosstalk-free is still an unreachable feature for metasur-
face-based polarimetry techniques.

In  a  recent  paper  published  on Opto-Electronic Ad-
vances18,  Xiangang  Luo  and  his  colleagues  propose  a
method for the crosstalk-free achromatic full Stokes ima-
ging  polarimeter.  The  proposed  broadband  achromatic
polarimeter  is  designed  to  effectively  separate  arbitrary
incident  light  within  the  operational  bandwidth  into 
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different polarization channels,  focusing them on a pre-
defined focal plane, as illustrated in Fig. 1. The schemat-
ic within the white frame on the right depicts the under-
lying principle of polarization-dependent phase optimiz-
ation, which mitigates crosstalk effects and enhances the
accuracy of polarimetry measurements.

To execute the proposed methodology, a crosstalk-free
broadband  achromatic  full  Stokes  imaging  polarimeter
based on dielectric metasurface is produced, which oper-
ates in wavelength range from 9 μm to 12 μm with a rel-
ative  bandwidth  of  0.2857.  The  polarimeter  consists  of
2×3 polarization-sensitive  dielectric  metalenses,  elabor-
ately designed by the particle swarm optimization (PSO)
algorithm and  polarization-dependent  phase  optimiza-
tion  method.  The  performances  of  the  achromatic
metalenses for linear (X, Y) and circular (L, R) polariza-
tions  are  first  verified.  Both  numerical  simulations  and
experimental  results  demonstrate  that  these  metalenses
accomplish  crosstalk-free  polarization-sensitive
achromatic  focusing  within  the  designated  bandwidth.
Moreover, the  performance  of  the  polarimeter  is  valid-
ated by illuminating various polarization states under 9.3
μm, 9.6 μm, 10.3 μm, and 10.6 μm wavelength.  The po-
larimeter  can  directly  and  accurately  measure  without
calibration at each wavelength, which is of great signific-
ance to the practicality of the device, because various in-
fluencing  factors  are  considered  in  the  early  elaborate
design.  Finally,  the  polarization imaging performance  is
evidenced by utilizing a self-built polarization mask that
carries polarization information.

This work  envisions  the  powerful  roles  of  the  pro-

posed design methodology.  The experimental  results  af-
firm  that  the  designed  polarization-sensitive  metalenses
effectively eliminate  the  chromatic  aberration  while  ex-
hibiting  polarization  selectivity  and  negligible  crosstalk.
Compared  with  the  single-polarization  optimization
method, the average crosstalk has been reduced by more
than three times for incident light with arbitrary polariz-
ation in a wavelength range from 9 μm to 12 μm, guaran-
teeing a more accurate measurement of  the polarization
state.  This  work could  impact  applications  in  wavefront
detection,  remote sensing,  color imaging,  and light-field
imaging.
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Fig. 1 | The  schematic  of  crosstalk-free  achromatic  full  Stokes  imaging  polarimetry  metasurface  enabled  by  polarization-dependent
phase optimization. Figure reproduced with permission from ref.21, under a Creative Commons Attribution 4.0 International License.
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