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High-performance warm white LED based on
thermally stable all inorganic perovskite
quantum dots
Jr-Hau He*

All inorganic CsPbBr3 quantum dots (QDs) are regarded as excellent candidates for next-generation emitters due to their
high photoluminescence quantum yield (PLQY) and defect tolerance. However, the poor stability and degraded lumines-
cent performance may impede their further commercialization because of the separation of conventional ligands from the
QDs surfaces. Recently, Zang replaced the regular oleic acid with 2-hexyl-decanoic acid (DA), which possesses higher
binding energy on the QDs surfaces, to act as ligands of QDs, exhibiting PLQY of 96% and excellent stabilities against
ethanol and water. WLEDs with DA-modified CsPbBr3 QDs achieved improved thermal stability, a color rendering index
of 93, a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K, implying their promin-
ent applications in solid-state lighting and displays.
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It is well known that more than 20% of global electronic
energy is consumed by lighting and displays every year1,
which is identified as the major challenge of reduced car-
bon release2.  Thus,  it  is  quite urgent to develop efficient
light sources to save massive amounts of electric power3.
As  a  kind  of  potential  solid-state  light  source,  white
light-emitting diodes  (WLEDs)  have  received  substan-
tial attention due to their high power efficiency and eco-
friendly.  Conventional  WLEDs' white emission  origin-
ates from rare-earth phosphors excited by blue or ultra-
violet LED chips4. However, the supply shortage of rare-
earth  phosphors  and  complex  manufacturing  processes
hinder  the  large-scale  and  commercial  applications  of
conventional  WLEDs.  In  addition,  their  development
suffers  from  the  highly  correlated  color  temperature
(CCT)  and  low  color  rendering  index  (CRI),  in  which
the cold white emission may hurt the naked eyes of hu-

mans and cause a chromatic issue. To meet the require-
ment  of  high-performance  warm  WLEDs,  researchers
pay more attention to the exploration of emitting materi-
als with facile preparation and high PLQYs5.

Due  to  the  high  PLQY and low-temperature  solution
processability,  the  inorganic  CsPbBr3 perovskite
quantum dots  (QDs)  have  been  regarded  as  the  prom-
ising candidate for emitters of efficient warm WLEDs6,7.
Despite  the rapid advances  of  CsPbBr3 QDs, their  com-
mercial  application  in  efficient  warm  WLEDs  has  been
impeded,  which  is  resulted  from  the  poor  stability  of
CsPbBr3 QDs induced by the separation of conventional
oleic acid (OA) ligands from the QDs surfaces. The sep-
aration  of  OA  ligands  is  attributed  to  the  weak  binding
between  the  ligands  and  QDs  surfaces8.  As  a  result,  the
study and design of novel ligands binding strongly to the
QDs  surfaces  enhances  the  stability  and  luminescent 
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efficiency of both emitters and WLEDs.
In  the  recent  work  published  in Opto-Electronic Ad-

vances, DOI: 10.29026/oea.2022.200075,  Prof.  Zhigang
Zang et al. propose a facile strategy to introduce 2-hexyl-
decanoic  acid  (DA)  ligands  to  replace  conventional  OA
ones9. The DA ligands exhibit larger binding energy than
that in OA ligands (ΔE = 0.202 eV), indicating the strong
binding of DA ligands to the QDs surfaces. The reduced
separation of DA ligands from QDs is found to decrease
surface defects, resulting in increased PLQYs of QDs up
to 96% but unchanged crystal structure and PL spectra10.
Furtherly, the DA ligands binding on QDs enable to isol-
ate  the  QDs  from others,  suppressing  the  interaction  of
QDs11. Consequently, the aggregation and PL quenching
of QDs are reduced, ascribed to the improved stability in
solvents and  enhanced  luminescent  performance,  re-
spectively.

The transient PL spectra and atomic force microscopy
characterization  can  prove  and  clarify  them.  Compared
with  CsPbBr3 QDs  with  OA  ligands,  the  ligand-modi-
fied  QDs  with  DA  possess  enhanced  optoelectronic
properties  and stability  against  water  and ethanol.  They
are  employed as  emitters  in  WLEDs12. The  authors  fab-
ricated warm WLEDs combining the green DA-CsPbBr3

and  red  AgInZnS  QDs  with  broad  spectra  on  blue
chips13,  exhibiting  a  high  CRI  of  93,  a  proper  CCT  of
3018  K  and  a  high  power  efficiency  of  64.8  lm/W.  This
stand  out  among  the  reported  WLEDs.  The  excellent
thermal  stability  of  operating WLEDs indicates  the vital
role  of  DA-CsPbBr3 QDs  and  the  prominent  potentials
of  the  fabricated  WLEDs  in  applications  of  solid-state
lighting and display14.

In this  article,  the  authors  focus  on  the  critical  chal-
lenge of inorganic perovskite CsPbBr3 QDs15. The ligand

modification  process  is  schematically  shown  in Fig. 1.
They propose a ligand-modified strategy to solve the for-
midable issue of poor stability16. The DA ligands are util-
ized to replace the conventional OA ligands, in which the
shorter lengths and di-branched chains of DA play a vi-
tal role in strong binding to the QDs surface17. As a res-
ult, the DA ligands can not only fill the surface defects of
QDs but also isolate the QDs from others, enhancing the
PLQY  and  suppressing  the  aggregation  of  QDs18.  With
the  DA-ligand  modification,  the  DA-CsPbBr3 QDs ex-
hibit excellent luminescent properties and enhanced sta-
bility  against  water  and  ethanol.  The  introduction  of
novel DA ligands is a “one stone and two birds” strategy,
which  can  enhance  the  performance  of  CsPbBr3 QDs
directly without  changing  the  original  preparation  pro-
cess,  crystal  structures  and  PL  spectra  of  QDs10. Apply-
ing the  modified  QDs  to  efficient  warm  WLEDs  indic-
ates  the  attractive  role  of  ligand  modification19. It  sug-
gests that it is a typical and effective method to promote
the  commercial  development  of  inorganic  perovskite
quantum dots20.

The authors are building on the research of Prof. Hao-
Chung  Kuo,  Prof. Zhong  Chen  et  al21.  The  excellent
brightness, low energy consumption, and ultra-high res-
olution of micro-light-emitting diodes (micro-LEDs) are
significant advantages22. However, the large size of tradi-
tional inorganic  phosphors  and  the  number  of  side  de-
fects  have  restricted  the  practical  applications  of  small
sized micro-LEDs23. Recently, QD and non-radiative en-
ergy transfer (NRET) have been proposed to solve exist-
ing  problems.  QDs  possess  nanoscale  dimensions  and
high luminous efficiency, and they are suitable for NRET
because  they  are  able  to  nearly  contact  the  micro-LED
chip24.  The  NRET  between  QDs  and  micro-LED  chip
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Fig. 1 | The schematic illustration of the surface in the CsPbBr3 QDs with ligand modification process.
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further  improves  the  color  conversion  efficiency  (CCE)
and  effective  quantum  yield  (EQY)  of  full-color  micro-
LED  devices.  In  their  review,  they  discussed  the  NRET
mechanism for QD micro-LED devices,  and then nano-
pillar LED25, nano-hole LED26, and nano-ring LED in de-
tails27.  These  structures  are  beneficial  to  the  NRET
between QD and micro-LED, especially nano-ring LED.
Finally,  the  challenges  and  future  envisions  have  also
been described.

Display  technology  has  gone  through  countless
changes and penetrated every corner of our life. As a dis-
play technology,  light-emitting  diode  (LED)  has  attrac-
ted attention due to its low cost, easy fabrication, and en-
ergy  conservation28.  In  2000,  the  technology  strategy  of
micro-LEDs  was  put  forward  for  the  first  time  at  the
Texas  Tech  University,  which  signified  that  LED  light
sources  had  entered  the  era  of  micro  display29. Com-
pared  with  traditional  LED  screen  display  technologies
such  as  mini-LED,  organic-LED,  etc.,  the  micro-LEDs
have the following advantages:  high brightness,  high lu-
minous efficiency,  low energy consumption,  quick reac-
tion, high contrast, self-illumination, long service life, ul-
tra-high resolution, and good color saturation30.

Similarly,  the  work  of  Prof. Jeongyong  Kim et  al31,
supports  the work of  Zang et  al.  MXene (Mn+1Xn)  is  an
emerging class  of  layered two-dimensional  (2D) materi-
als32, which are derived from their bulk-state MAX phase
(Mn+1AXn, where M: early transition metal, A: group ele-
ment  13  and  14,  and  X:  carbon  and/or  nitrogen)33.
MXenes have found wide-ranging applications in energy
storage  devices,  sensors,  and  catalysis,  owing  to  their
high  electronic  conductivity  and  wide  range  of  optical
absorption.  However,  the  absence  of  semiconducting
MXenes  has  limited  their  applications  related  to  light
emission33.  Research  has  shown  that  QDs  derived  from
MXene  (MQDs)  not  only  retain  the  properties  of  the
parent MXene,  but  also  demonstrate  significant  im-
provement  on  light  emission  and  quantum  yield  (QY).
The  optical  properties  and  photoluminescence  (PL)
emission  mechanisms  of  these  light-emitting  MQDs
have  not  been  comprehensively  investigated34.  Recently,
work  on  light-emitting  MQDs  has  shown  good
progress35, and  MQDs  exhibiting  multi-color  PL  emis-
sion along with high QY have been fabricated36. The syn-
thesis  methods  also  play  a  vital  role  in  determining  the
light  emission  properties  of  these  MQDs37.  The  review
provided an overview of light-emitting MQDs and their
synthesis methods, optical properties, and applications in

various optical, sensory, and imaging devices. The future
prospects  of  light-emitting  MQDs  are  also  discussed  to
provide an insight that helps to further advance the pro-
gress on MQDs.
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