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Highly efficient vectorial field manipulation
using a transmitted tri-layer metasurface in the
terahertz band
Huan Zhao1,2, Xinke Wang2, Shutian Liu1* and Yan Zhang2*

Polarization is a basic characteristic of electromagnetic waves that conveys much optical information owing to its many
states. The polarization state is manipulated and controlled for optical information security, optical encryption, and optic-
al communication. Metasurface devices provide a new way to manipulate wave-fronts of light. A single ultrathin metasur-
face device can generate and modulate several  differently  polarized light  fields,  and thus carries  optical  information in
several different channels. Terahertz (THz) waves have become widely used as carrier waves for wireless communica-
tion. Compact and functional metasurface devices are in high demand for THz elements and systems. This paper pro-
poses a tri-layer metallic THz metasurface for multi-channel polarization generation and phase modulation with a high ef-
ficiency of approximately 80%. An azimuthally polarized THz vectorial beam generator is realized and characterized for
use  as  a  THz  polarization  analyzer.  The  incident  polarization  angle  can  be  observed  graphically  with  high  accuracy.
Moreover, a vectorial hologram with eight channels for different linear polarization states is demonstrated experimentally.
The information in different holograms can be hidden by choosing the polarization channel for detection. This work con-
tributes to  achieving multi-functional  metasurface in  the THz band and can benefit  THz communication and optical  in-
formation security.
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 Introduction
Terahertz (THz)  waves  have  attracted  increasing  atten-
tion  for  decades  because  of  their  distinctive  properties
such  as  low  photon  energy  and  fingerprint  spectra  for
materials.  They  have  been  widely  applied  for  non-de-
structive detection1−3, security checking4,5, and biomedic-
al  science6,7.  The  high  carrier  frequencies  of  THz  waves
promise  unprecedented  channel  capacity,  which  makes

them candidates for carrier waves in wireless communic-
ation8,9.  However,  traditional  THz  elements  are  bulky
owing  to  the  longer  wavelengths  of  THz  waves.
Moreover,  THz  devices  have  low  efficiency  because  of
the lack of THz-transparent materials. The emergence of
metasurfaces provides  new  possibilities  for  THz  ele-
ments and devices. THz metasurface devices such as ab-
sorbers10,11,  metalenses12−14,  and  wave-plates15−17 have
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been  demonstrated.  These  provide  a  new  approach  for
constructing THz systems.

Metasurfaces are  widely  used  to  manipulate  electro-
magnetic  wave-fronts  owing to their  multiple  geometric
parameters18−21. When metasurfaces were first used, only
the phase for the specified polarized state could be mod-
ulated.  Many  functional  metasurface  devices  were
achieved  such  as  abnormal  refractors22−24,  polarization
elements25,26,  special  beam  generators27−29,  and  meta-
hologram  devices30−33. Along  with  the  rapid  develop-
ment of material science and fabrication technology, the
properties  of  electromagnetic  waves  can  be  modulated
more  freely  and  their  functions  became  more  varied.
Metasurface  devices  are  becoming  increasingly  practical
and  multi-functional34−37.  Moreover,  the  amplitude,
phase, and polarization of electromagnetic waves can be
individually modulated simultaneously38, which provides
an opportunity to generate and modulate vectorial optic-
al  fields.  Versatile  polarization  control  plays  a  key  role
for  a  functional  metasurface.  Anisotropic  dielectric
metasurfaces  have  different  effective  refractive  indexes
along two  birefringent  principal  axes  and  allow  in-
creased control of polarization states39.  The phase of the
transmitted wave can be modulated by adjusting the geo-
metric parameters  along the two principal  axes,  and ro-
tating the whole structure by an angle can modify the po-
larization of the transmitted wave. Such a metasurface is
highly  efficient  because using dielectric  materials  avoids
metallic ohmic loss. Special vectorial beams40,41, polariza-
tion-sensitive  metalenses42−44,  and  holograms45−50 have
been  demonstrated  using  this  kind  of  metasurface,  thus
giving  rise  to  multi-channel  functional  devices.  On  one
hand, it is difficult to fabricate dielectric metasurfaces in
the  THz  band  owing  to  the  large  wavelength  of  THz
waves  (several  hundred  micrometers).  On  the  other
hand,  a  bilayer  diatomic  metasurface  has  been designed
for vectorial field control in the visible band based on the
detour  phase  method51,52.  The  device  includes  a  layer
with  a  periodic  metallic  antenna  array  and  a  metallic
mirror layer, so it can work in reflection mode with 70%
efficiency53,54. Every basic modulated unit consists of two
orthogonal meta-atom antennas. The phase of the reflec-
ted wave  can  be  modulated  by  changing  the  displace-
ment  between  the  center  and  border  of  the  diatomic
metasurface.  The  polarization  state  can  be  tuned  using
the displacements between all diatomic structures in the
unit  cell  and  the  rotation  of  the  structure.  This  kind  of
metasurface  is  easily  fabricated  because  of  the  metallic

antenna  design.  Moreover,  it  can  work  in  a  broadband
range  and  is  insensitive  to  the  incident  angle.  However,
this  bi-layer  diatomic  metasurface  works  with  the  first-
order reflected mode, which leads to measurement diffi-
culty  in  the  THz  band.  Furthermore,  the  diffraction
angle  changes  when  the  working  frequency  is  changed,
which  is  an  obstacle  for  broadband  design  and
measurement.

This study designs and demonstrates a tri-layer metas-
urface  that  can  realize  individual  modulation  of  the
phase and linear polarization of a transmitted THz wave.
The  basic  cell  consists  of  three  metallic  structure  layers
and  two  dielectric  space  layers.  The  top  and  bottom
metallic  layers  are  two  orthogonal  metagrating  arrays
that serve as polarization filters. Each THz wave is incid-
ent through the top layer.  The polarization of the trans-
mitted wave can be tuned at will  by changing the direc-
tion of the metagrating. The middle layer consists of a C-
shaped antenna array whose opening angle is adjusted to
modulate the  phase  of  the  transmitted  THz  wave.  Be-
cause of  the  tri-layer  arrangement,  the  amplitude  trans-
mission of the metasurface at the designed frequency can
reach 0.8. A designed metasurface device, which can gen-
erate  an  azimuthally  polarized  THz  focused  beam,  is
used as a THz polarization analyzer. Moreover, a vectori-
al  hologram  device  with  eight  polarization  channels  is
realized. The hologram information in a specific channel
can  be  hidden  by  choosing  the  polarization  state  to  be
detected, which  indicates  that  this  is  a  robust  and  effi-
cient device.  This  new  design  will  hopefully  inspire  de-
velopment of multifunctional metasurface devices in the
THz band, which can pave the way for THz communica-
tion and information security.

 Results and discussion
For the  proof  of  concept,  two  functional  THz  polariza-
tion elements  were  realized  using  the  tri-layer  metasur-
face.  A  THz  polarization  analyzer  was  experimentally
demonstrated that can give the direction of  polarization
of the incident wave by detecting the output image distri-
bution. The  distribution  of  the  measured  pattern  indic-
ates the polarization angle of the incident wave. The de-
tected THz field was changed along with the incident po-
larization  state.  Another  proposed  metasurface  device
can generate a complex THz vectorial  field under circu-
larly polarized incident waves, as illustrated in Fig. 1. The
transmitted field had eight channels with different polar-
izations. The holograms, which are numbers from 1 to 8,
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were  generated  at  different  positions  on  the  detected
plane.  By choosing the polarization state  to be detected,
different  images  can  be  observed  and a  specific  channel
can be hidden. The designed metasurface devices work at
0.75 THz in the transmission mode with an efficiency of
approximately 40%.

 Metasurface design
The  designed  metasurface  has  a  tri-layer  structure,  as
shown in Fig. 2(a).  It  consists  of  three  layers  of  metallic
structure and two space layers. The whole metasurface is
fabricated  on  a  500-μm-thick  high-resistance  silicon
freestanding substrate. The top and bottom layers are or-
thogonal metallic metagrating arrays that serve as polar-
ization filters. The THz wave is incident through the top
layer.  The middle layer consists of a C-shaped split-ring
antenna  array,  which  is  used  to  modulate  the  phase  of
the transmitted wave. The layers are made of the dielec-
tric  material  polyimide  (PI).  All  of  these  layers  form  a
complex optical resonant cavity to achieve high working
efficiency in  transmission  mode.  The  multi-layer  trans-
mitted  metasurface  has  been  demonstrated  to  have  a
high  working  efficiency  of  70%–90%, which  can  be  at-
tributed to the Fabri–Porit like effect55−56 (see Section 1 of
the Supplementary  information  for  more  details).  Con-
structive  interference  can  be  produced  at  the  designed
frequency  by  tuning  the  length  of  the  resonant  cavity.

The parameters of the designed metasurface were optim-
ized  using  the  commercial  software  FDTD  solutions  to
model the structure. The working frequency was chosen
as 0.75 THz with a corresponding wavelength of 400 μm.
The size of each cell was optimized as 100 μm. The thick-
nesses of the PI layers and the three metallic layers were
40 μm and 150 nm, respectively. The top views of the top
and  bottom  grating  layers  are  shown  in Fig. 2(b) and
2(d). The gratings of the top and bottom layers have the
same width of 10 μm and period of 20 μm, but different
directions.  The angles between the x-axis and the direc-
tions  of  the  top-layer  and  bottom-layer  gratings  are θ
and θ+90°, respectively. When a circularly polarized THz
wave  is  incident  on  the  cell,  the  top-layer  grating  filters
out the linearly polarized component with a polarization
angle of θ+90°,  and the C-shaped antenna array scatters
the  component  that  is  cross-polarized  with  angle θ.
Then, the bottom-layer grating filters out the wave with θ
polarization. Figure 2(c) presents  the  top view of  the  C-
shaped antenna  in  the  middle  metallic  layer  of  the  de-
signed metasurface.  The  split-ring  antenna  array  trans-
fers the incident linear polarized wave to its cross-polar-
ized  state  with  an  extra  phase18,25.  The  outer  and  inner
radii of the C-shaped antenna are r and R, which are op-
timized to 45 μm and 35 μm, respectively. The symmet-
ric  axis  of  the  C-shaped  antenna  has  an  angle  of θ+45°
with respect to the x-axis, so the antenna can work with

 

Vectorial hologram

Metasurface

LCP incident

Fig. 1 | Schematic of the designed vectorial hologram metasurface device. Different holograms in eight polarization channels can be gener-

ated when the circularly polarized THz wave impinges on the metasurface, because the phase and polarization of the transmitted THz wave can

be individually modulated. The hologram in a channel can be hidden by choosing the corresponding detected polarization state.
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any linearly polarized incident wave.  The opening angle
of  the  C-shaped  antenna  is  2α,  which  can  be  tuned  to
modulate  the  phase  of  the  transmitted  wave.  The  Jones
matrix of the unit cell of the designed metasurface can be
expressed as:  (see  Section  2  of  the  Supplementary  in-
formation) 

J=txyeiφxy(α) ·

 − 1
2
sin2θ cos2θ

−sin2θ 1
2
sin2θ

 , (1)

where θ is the angle between the x-axis and the direction
of  the  top  layer  of  the  unit  cell,  and txy and φxy are  the
amplitude  transmission and phase  modulation of  the y-
polarized output  when the  incident  wave  is x-polarized.
The phase  modulation φxy(α) is  a  function of  the  open-
ing angle  2α of  the C-shaped antenna.  One can see that

the  polarization  state  and  phase  of  the  output  field  are
independent of each other. That is, the polarization state
and the phase of the transmitted wave can be modulated
individually by changing the angles θ and α.

Figure 2(e) shows the  simulated  amplitude  transmis-
sion spectrum txy of the periodic identical unit cell of the
metasurface. In the simulation, the THz wave was incid-
ent through the top layer. The angle θ of the unit cell was
set as 90° so that the device could transfer the incident x-
polarized  wave  into  its  cross-polarized  partner,  which
was y-polarized,  with  high  efficiency.  As  shown  by  the
blue dashed curve,  the transmission of  the output y-po-
larized wave  reached  0.8  at  the  designed  working  fre-
quency  of  0.75  THz.  The  transmission  of  the  output x-
polarized  wave,  which  has  the  same  polarization  as  the
incident  wave,  was  below  0.01,  as  shown  by  the  green
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Fig. 2 | Schematic and characteristics of the designed unit cell. (a) Concept of the designed tri-layer metasurface. The unit cell consists of

three metal structure layers and two polyimide (PI) space layers. The top and bottom metallic layers are metagratings, and the middle metallic

layer is a C-shaped split-ring antenna array. The thickness of the PI layers is 40 μm, and the thickness of the metal structure layers is 150 nm.

(b–d)  Top views of  the top,  middle,  and bottom metal  layers of  the unit.  The period of  the structure P is  100 μm; θ and θ–90° are the angles

between the metagrating direction and x-axis for the top and bottom layers, respectively; θ+45° is the angle between the symmetric axis of the C-

shaped antenna and x-axis; 2α is the opening angle of the antenna; w and d are the width and period of the metagrating, which are 10 μm and 20

μm, respectively; r and R are the inner and outer radii of the antenna, which are 35 μm and 45 μm, respectively. (e) Transmitted spectrum of the

metasurface with θ = 90°. The incident wave is x-polarized, and the transmitted light is y-polarized. (f) Amplitude and phase modulation of the

eight selected antennas at 0.75 THz. Antennas 1 to 4 have opening angles 2α = 130, 96, 50, and 14°, and the angle between the symmetric axis

and x-axis is –45°. Antennas 5 to 8 have the same opening angle as the first four antennas with a symmetric axis at 45°.
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dashed  line.  The  corresponding  experimental  results
were measured using a home-built THz focal-plane ima-
ging system57 (the measurement and evaluation methods
are in Section 3 of the Supplementary information). The
value of txy was over 0.7 in the frequency range of 0.4–1.1
THz  and  reached  0.8  at  the  central  frequency  of  0.75
THz.  The  identically  polarized  part txx remained  about
0.05 in the experiment, which was mainly due to the in-
accuracy  of  the  measured  incident  polarization.  Full-
phase  modulation  of  the  transmitted  cross-polarized
wave was realized using eight C-shaped antennas whose
phase modulations ranged from 0 to 2π with a step of π/8
while the amplitude transmission was maintained as 0.8.
Figure 2(f) shows  the  amplitude  and  phase  modulation
of the selected antennas at the working frequency of 0.75
THz. The angle θ was set as 0. Antennas 1 to 4 had open-
ing  angles  (2α)  of  130,  96,  50,  and  14°,  and  the  angle
between  the  symmetric  axis  of  the  antennas  and  the x-
axis  was –45°.  Antennas  5  to  8  had  the  same  opening
angle as the first four antennas, while the angle between
the  symmetric  axis  of  the  antennas  and  the x-axis  was
45°.  The  unit  cells  of  the  metasurface  were  built  using
combinations of these eight C-shaped antennas and me-
tagratings with different directions.

 THz metasurface polarization analyzer
A THz  polarization  analyzer  was  designed  and  fabric-
ated  using  the  proposed  antennas.  The  metagratings  of
the  top  and  bottom  layers  were  designed  as  radial  and
azimuthal polarization filters, respectively. The C-shaped
antenna array of the middle layer was designed as a lens
(more  details  of  the  phase  and  polarization  modulation
of the  device  can  be  found  in  Section  4  of  the  Supple-
mentary  information).  The designed metasurface  device
was  fabricated  with  conventional  UV  lithography,
thermal evaporation, and the lift-off technique. The fab-
ricated device  was  a  circular  disc  with  a  diameter  of  1.5
cm containing 150 unit cells along the diameter. When a
THz wave polarized with angle β is incident from the top
layer,  the  designed  device  can  generate  a  TEM01-mode
spot  with  a  rotation  angle  of β on  the  focal  plane39,58.
Thus, the polarization direction of the input wave can be
distinguished  by  the  distribution  of  the  light  pattern  on
the  focal  plane.  The  function  of  the  device  was  verified
experimentally.  The  setup  is  shown  in Fig. 3(a).  A  THz
half-wave plate (THWP) whose fast axis has an angle of
β/2  respect  to  the x-axis  was  used  to  generate  a  linearly
polarized wave in the direction of  angle β,  and then the

β-polarized wave passed through the metasurface device
and generated  a  light  spot  on  the  focal  plane.  Measure-
ments were carried out with four angles: β = 0, 45°, 90°,
and  135°.  The  simulation  results  are  shown  in Fig.
3(b1–b4). The  fabricated  metasurface  device  was  meas-
ured with a THz focal-plane imaging system (see details
in  the  Methods  section).  The  results  are  shown  in Fig.
3(c1–c4). The white arrow represents the incident polar-
ization  state  in  all  amplitude  distribution  images.  The
polarization angle  of  the  incident  wave  can  be  distin-
guished  clearly  in  the  distribution  of  the  focal  spot,
whose brightest part is along the β direction. For further
verification of the function of the THz polarization ana-
lyzer, the amplitude distribution was extracted along the
azimuthal  direction of  all  results,  as  shown by the black
dashed circle in Fig. 3(b1). Figure 3(d1–d4) show the azi-
muthal  amplitude  distributions  for β =  0,  45°,  90°,  and
135°, respectively.  The  gray  curves  represent  the  amp-
litude  distribution  extracted  from  the  simulated  results
while the red curves are from the experiments. The amp-
litude  is  normalized  to  the  maximum  amplitude  in  the
case of β = 0. The maxima of the amplitude distribution
correspond to 0, 45°, 90°, and 135°. The maximum abso-
lute  error  in  the  experiment  is  6.1°  when β =  135°,  and
the average absolute error is below 3° for all experiment-
al  results,  which  is  attributed  to  the  non-uniformity  of
the  incident  THz  waves.  In  contrast  to  a  conventional
polarizer, the  designed  metasurface  polarization  analyz-
er can provide the incident polarization angle via image
analysis. The advantage of the proposed metasurface po-
larization analyzer  is  that  it  can  work  in  single-shot  de-
tection. As it  is  well  known, one needs to rotate the po-
larizer  at  least  180  degrees  to  obtain  the  polarization
angle  when  a  traditional  polarization  analyzer  is  used,
which is inconvenient for measuring the polarization of a
single pulse or transient field. This device can be used to
characterize  the  incident  polarization  angle  through  a
one-shot image with high accuracy.

 THz vectorial hologram generation
On the basis of the designed units, a multi-channel THz
vectorial hologram  metasurface  device  was  demon-
strated  experimentally.  The  device  was  designed  with
eight  polarization  channels,  each  of  which  can  generate
images of numbers 1–8 with different polarization states.
The  designed  device  consists  of  eight  big  cells  named
Channel 1 to Channel 8 (C1 to C8),  whose alignment is
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shown in Fig. 4(a). Each big cell  has 50×50 basic metas-
urface unit cells, which means the total area of the device
is 1.5×1.5 cm2. The polarization state of a wave transmit-
ted  from  C1  to  C8  is  designed  to  increase  from  0  to
157.5° with a step of 22.5°, which equals to the respective
angle θ of each channel. The phase modulations of C1 to
C8 are designed to generate holograms of numbers 1 to 8
using  the  simulated  annealing  algorithm  based  on  the
Rayleigh–Sommerfeld diffraction theory. The diffraction
distance  was  set  to  5  mm  away  from  the  device.  The

phase distribution on the object plane was obtained after
2500 iterations, as shown in Section 5 of the Supporting
information. The aforementioned eight C-shaped anten-
nas with different rotation angles were used for the eight
polarization  states.  The  64  selected  C-shaped  antennas
are  shown in Fig. 4(b). The  rotation angle  of  the  anten-
nas  was  changed  along  the  metagrating  direction.  The
eight channels C1 to C8 were built using combinations of
these  64  antennas  with  the  corresponding  metagrating
layers.  The  phases  and  polarization  modulations  of  the
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Fig. 3 | Schematic and characteristics of the designed THz metasurface polarization analyzer. (a) Schematic of the working process of the

THz metasurface polarization analyzer. An x-polarized THz wave is incident onto a THz half-wave plate (THWP), and the fast axis of the THWP

is along the β/2 direction. The output THz wave is β-polarized and then incident on the metasurface device. The transmitted wave is transferred

to the cross-polarization state, which is along the β–90° direction and focused on the focal plane. The amplitude distribution of the focal spot is

along the θ direction. (b1–b4) Simulated amplitude distributions on the focal plane for β = 0, 45°, 90°, and 135°, respectively. Each white arrow

represents the incident polarization state. (c1–c4) Experimental amplitude distributions on the focal plane for β = 0, 45°, 90°, and 135°, respect-

ively. (d1)–(d4) Amplitude distribution curves extracted from the amplitude distributions along the black dashed circle in Fig. 3(b) for β = 0, 45°,

90°, and 135°, where the gray and red curves represent the simulated and experimental results, respectively.
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channels are shown in Fig. 4(c). The bars show the phase
modulation  of  the  corresponding  cross-polarized  wave.
All the phase modulations range from 0 to 360° when the
angle θ is changing. The blue dashed curves through the
red stars  represent  the amplitude modulations of  the 64
selected cells,  which are between 0.74 and 0.88.  This in-
dicates that the designed device has a high working effi-
ciency. The selected cells  are aligned as the designed se-
quence and form the final device. A microscope image of
part of the fabricated device is shown in Fig. 4(d). Figure
4(e–g) show  the  images  of  the  top,  middle,  and  bottom
layers of  the  structure  in  the  white  dashed  frame.  Al-
though  there  are  ghost  images  of  other  layers,  one  can
see the metagrating and the C-shaped antennas are fab-
ricated well.

The  designed  THz  vectorial  hologram  device  can  be
used to hide an image by choosing the polarization state
to be  detected.  The  image  hiding  was  demonstrated  ex-
perimentally. The working frequency was 0.75 THz. The
incident x-polarized wave passed through a THz quarter-
wave plate and generated a THz left-circularly polarized
wave,  which  impinged  on  the  metasurface  device.  The

observed  plane  was  1.5  mm  away  from  the  device.  The
THz focal imaging system enabled recording of the com-
plex amplitude of the transmitted THz wave. The experi-
mental  results  are  shown  in Fig. 5.  First,  the  image  was
measured  with  no  polarization  selected  for  detection.
The images  in  all  channels  C1  to  C8  could  be  distin-
guished  clearly  with  almost  the  same  amplitude,  as
shown in Fig. 5(a). The white arrows indicate the polar-
ization of  each channel.  The working efficiency  was  de-
rived  as  the  amplitude  integral  of  the  transmitted  wave
divided  by  the  amplitude  integral  of  the  incident  LCP
THz wave, which was 0.39 in the experiment. The work-
ing efficiency is almost half of that of the basic cell, which
can be  attributed  to  that  the  top-layer  meta-grating  re-
flects the half electric field of the circularly polarized in-
cident light. The deviation of the experimental efficiency
from  the  simulated  results  consists  of  two  parts.  One  is
the loss  in the hologram design,  and the other is  due to
the experimental  system  (see  Section  6  of  the  Supple-
mentary  information). Figure 5(b–i) show  the  results
when  the  images  of  C1  to  C8  are  hidden,  respectively.
For  the  measurements  in Fig. 5(b–i),  the  polarizations
chosen for detection were 67.5°, 90°, 112.5°, 135°, 157.5°,
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0°, 22.5°, and 45°, respectively. The numbers 1 to 8 in C1
to C8 are hidden, while the images in other channels can
still be  observed  with  different  amplitudes.  The  amp-
litude of each channel can be expressed as:
 

EdCi = ECi · cos(θd − θi), (2)

where EdCi indicates the detected electric field in Ci, ECi

represents the generated electric field in Ci when no po-
larization is selected for detection, θi is the designed po-
larization angle of Ci, and θd is the detected polarization
angle. Figure 6 shows the normalized amplitude for each
detected  polarization  in  each  channel.  The  colored
curves  are  extracted  from Fig. 5(b–i) and  correspond to
channels C1 to C8 when each is hidden. Each red arrow

represents  the  designed  polarization  state  of  the  hidden
channel. The amplitude of the hidden image is about 0.1,
while the amplitude trends of all channels agree well with
Eq. (2). The deviation can be attributed to fabrication er-
rors such as the thickness error of the PI layer, which res-
ults in the phase deviation of the transmitted wave.

 Conclusions
In conclusion, a device was designed that can generate a
THz  vectorial  beam  using  a  tri-layer  metasurface.  The
phase  and  polarization  of  the  transmitted  wave  can  be
modulated  individually  at  the  same  time  by  tuning  the
geometric  parameters  of  the  tri-layer  metasurface.  Two
THz vectorial devices were demonstrated experimentally.
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Fig. 5 | Experimental results for the image-hiding device. (a) Amplitude distribution of a hologram with no polarization state selected for de-

tection.  (b–i)  Amplitude  distributions  when  an  image  is  hidden  in  channels  C1  to  C8,  respectively,  with  the  detected  polarizations  chosen  as

67.5°, 90°, 112.5°, 135°, 157.5°, 0°, 22.5°, and 45°, respectively. Each white arrow represents the designed polarization state of the correspond-

ing channel.
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One is a THz polarization analyzer that has a phase-dis-
tributed lens and azimuthally polarized modulation. Un-
der  linearly  polarized  illumination,  the  distribution  of
the focal spot is along the polarization angle of the incid-
ent  wave,  so  the  polarization angle  of  the  incident  wave
can  be  obtained  accurately  and  clearly.  Moreover,  an
eight-channel THz  vectorial  hologram  device  was  real-
ized  that  can  hide  the  information  in  a  specific  channel
via selection of the polarization state to be detected. The
images of numbers 1 to 8 were loaded into channels C1
to  C8,  and  the  detected  polarization  angle  was  varied
among  67.5,  90,  112.5,  135,  157.5,  0,  22.5,  and  45°.  The
corresponding  numbers  1  to  8  were  hidden with  a  high
efficiency of 0.79 in the experiment. Overall, this is an ef-
ficient, new method to manipulate a vectorial field using
a  tri-layer  metasurface,  which  is  especially  suitable  for
THz waves. Although the designed metasurface just gen-
erated a linear polarization distribution in the far-field, it
can  be  used  for  arbitrary  polarization  manipulation.  By
rotating the C-shaped antenna in the middle layer, nearly
continuous  amplitude  modulation  of  the  transmitted
wave can be obtained.  In the other word,  the individual
modulation  of  the  amplitude,  phase,  and  polarization
state  can  be  achieved  based  on  the  proposed  tri-layer
metasurface, thus two far fields with arbitrary amplitude
and  phase  distribution  for x-  and y-polarization  can  be
constructed.  The  superposition  of  these  two  fields  with
x-  and y-polarized  will  generate  an  arbitrary  polarized

field in the far-field. This method can also be extended to
other wavebands and adapted for more functions.

 Methods

 Fabrication of the designed metasurface devices
The  designed  metasurface  devices  were  fabricated  with
conventional  UV  lithography,  thermal  evaporation,  and
the lift-off  technique.  Regular  lithography  was  first  car-
ried  out,  and  then  lift-off  was  performed  to  obtain  the
bottom-layer metal metagrating on a 500-μm-thick high-
resistance silicon substrate. The PI was then spin-coated
on  the  metagrating  four  times.  After  each  spin-coating,
gradient baking of the sample was done to turn the PI in-
to a  solid,  and  an  exact  10-μm-thick  PI  sample  was  ob-
tained.  After  four  rounds  of  coating  and  baking,  a  40-
μm-thick PI  spacer  was  obtained.  Then,  regular  litho-
graphy  and  lift-off  were  again  done  to  obtain  the  metal
split-ring  antenna  array  of  the  middle  layer  with  highly
precise  alignment  with  the  bottom  layer  metagrating.
Then, the coating and baking were repeated to obtain an-
other 40-μm-thick  PI  spacer  on  the  metal  split-ring  an-
tenna array. Finally, regular lithography and lift-off were
done to obtain the top layer of the metal metagrating.

 Experimental setup
A THz  focal-plane  imaging  system  was  used  to  charac-
terize  the  performance  of  the  designed  devices.  A  laser
beam  with  a  central  wavelength  of  800  nm  and  average
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power  of  900  mW  was  divided  into  two  parts,  which
were  used  as  the  pump  (880  mW)  and  probe  (20  mW)
beams for generating and detecting THz waves, respect-
ively. The pump beam impinged on a 1-mm-thick <110>
ZnTe crystal to generate the THz beam via optical recti-
fication.  The  horizontally  polarized  (x-polarized)  THz
beam (with a diameter of 15 mm) passed through a THz
polarizer  to  maintain  its  polarization,  then  passed
through a THz quarter-wave plate to generate left-circu-
larly polarized light at a working frequency of 0.75 THz,
and then impinged on the  structure.  The  scattered  THz
beam  was  detected  using  another  <110>  ZnTe  crystal.
The  THz  complex  field  was  extracted  using  balanced
electro-optic detection.
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