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High performance “non-local” generic face
reconstruction model using the lightweight
Speckle-Transformer (SpT) UNet
Yangyundou Wang 1,2*, Hao Wang3 and Min Gu1,2*

Significant progress has been made in computational imaging (CI), in which deep convolutional neural networks (CNNs)
have demonstrated that sparse speckle patterns can be reconstructed. However, due to the limited “local” kernel size of
the convolutional operator, for the spatially dense patterns, such as the generic face images, the performance of CNNs is
limited. Here, we propose a “non-local” model, termed the Speckle-Transformer (SpT) UNet, for speckle feature extrac-
tion of generic face images. It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong compar-
ative performance with Pearson Correlation Coefficient (PCC), and structural similarity measure (SSIM) exceeding 0.989,
and 0.950, respectively.
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 Introduction
Imaging through scatters  is  a  classical  inverse  problem1.
As  a  direct  forward  modeling  method,  deep  learning
(DL) was  recently  implemented  in  computational  ima-
ging (CI),  and it  provided high-quality  solutions to sev-
eral  CI  problems2.  Seminal  works  have  demonstrated
that deep convolutional neural networks (CNNs) can ex-
tract  statistical  features  of  speckle  patterns3−13. Com-
pared  with  the  support  vector  regression  (SVR)14,  deep
convolutional  UNet  architectures  demonstrated  better
performance  on  sparse  feature  extraction  and  certain
generalization  ability.  The  UNet  architecture  IDiffNet,
first proposed  by  S.  Li  et  al.,  realized  speckle  image  re-
construction,  especially  for  the  sparse  patterns4.  Y.  Li  et

al.  demonstrated  a  network  for  scalable  diffusers  with
various microstructures  for  different  sparse  pattern  re-
constructions5.  The  PDSNet  was  proposed by  E.  Guo et
al.  for  sparse  feature  extraction.  For  the  generic  human
face dataset, the network achieved far less accuracy with
SSIM is about 0.756.  In other words, the performance of
deep  convolutional  UNet  on  the  spatially  dense  speckle
feature extraction and reconstruction is limited.

Due  to  the  limited  size  of  the  convolutional  kernel,
CNNs are a “local” model. As a “non-local” mechanism,
the  attention weighs  the  significance  of  each part  of  the
input  data  and  extracts  long-term  dependencies  of  the
feature  maps15. The  generalization  ability  of  the  atten-
tion  mechanism  has  revealed  an  excellent  performance
in  speckle  reconstructions  of  sparse  patterns16.  The 

1Institute  of  Photonic  Chips,  University  of  Shanghai  for  Science  and  Technology,  Shanghai  200093,  China; 2Centre  for  Artificial-Intelligence

Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,

China; 3School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
*Correspondence: YYD Wang, E-mail: ywang0606@usst.edu.cn; M Gu, E-mail: gumin@usst.edu.cn
Received: 7 March 2022; Accepted: 25 May 2022; Published online: 8 October 2022

Opto-Electronic 
Advances 

Article
February 2023, Vol. 6, No. 2

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.

220049-1

 

https://doi.org/10.29026/oea.2023.220049
http://orcid.org/0000-0001-9613-2195
http://orcid.org/0000-0001-9613-2195
http://creativecommons.org/licenses/by/4.0/.


transformers are modules that rely entirely on the atten-
tion  mechanism  and  can  be  easily  parallelized17.
Moreover,  the  transformer  assumes  minimal  prior
knowledge about  the  structure  of  the  problem  as  com-
pared to its convolutional and recurrent counterparts in
deep learning. In vision, transformers have been success-
fully  used  for  image  recognition18,19,  object  detection,
segmentation20,  image  super-resolution21, video  under-
standing22,23,  image  generation24,  text-image  synthesis25

and so on26.  However, based on our knowledge, none of
the  investigations  has  explored  the  performance  of  the
transformers in CI, such as speckle reconstruction.

Here,  we  propose  a  high-performance  “non-local ”
generic  feature  extraction  and  reconstruction  model  -
SpT UNet. The network is a UNet architecture including
advanced  transformer  encoder  and  decoder  blocks.  For
better  feature  reservation/extraction,  we  propose  and
demonstrate three  key  mechanisms,  i.e.,  pre-batch  nor-
malization  (pre-BN),  and  position  encoding  in  multi-
head  attention/multi-head  cross-attention  (MHA/
MHCA), and self-built up/down sampling pipelines. For
the “scalable” data acquisition, four different grits of dif-
fusers within the 40 mm detection range are considered.
We further quantitatively evaluate the network perform-
ance with four scientific indicators, namely Pearson cor-
relation  coefficient  (PCC),  structural  similarity  measure
(SSIM), Jaccard  index  (JI),  and  peak  signal-to-noise  ra-
tio  (PSNR).  The  SpT  UNet  shows  less  computational
complexity and far better reconstruction and generaliza-
tion  ability  compared  with  the  other  state-of-the-art
transformer models in vision18,27.

 Method

 SpT UNet implementation

 The architecture of the SpT UNet
As shown in Fig. 1, the network is based on the UNet ar-
chitecture. The skip connections are used to transfer in-
formation  directly  between  blocks  of  the  same  size.
Three  blocks  of  the  identical  structure  are  included  in
both the encoder and decoder. In the encoder, the block
contains two layers, i.e., the MHA mechanism and posi-
tion-wise  Feed-Forward  Network  (FFN).  We  employ  a
residual connection28 around each of the two layers. The
pre-batch normalization (Pre-BN), and residual connec-
tion are implemented for the stabilization in the training
of the network.

Besides the  two  layers  in  each  encoder  block,  the  de-

Q
Q

coder block contains an extra MHCA layer which is used
to  aggregate  the  feature  through  the  skip  connections.
The embedded label is fed to the MHCA layer as  in the
first  block  of  the  decoder,  whereas  the  in  the  second
and third blocks is a feature map that transmits through
the skip connections. The activation function for the out-
put  layer  is  Sigmoid  and  the  loss  function  is  cross-
entropy (CE).

 Transformer module for the SpT UNet

QKV
Transformer adopts  attention mechanism15 with Query-
Key-Value ( ) module. To be specific, we define the
attention function for the SpT UNet as: 

Attention(Q,K,V) = softmax
(
QKT

dk

)
V , (1)

Q ∈ Rdmodel×dk×dk K ∈ Rdmodel×dk×dk V ∈ Rdmodel×dv×dv

dmodel

Q K V
dk × dk dv × dv

dk

where  the  spaces  for  queries,  keys,  and  values  are
, ,  and ,

separately.  Here,  denotes  the  number of  channels,
i.e., the number of feature maps for , , and , respect-
ively.  And ,  and  represent  the dimension
of the feature maps for keys (or queries)  and values,  re-
spectively.  Moreover,  the  softmax  is  applied  in  a  row-
wise  manner  to  get  the  attention  matrix  between  each
pixel, and  is a scaling factor that is implemented to al-
leviate gradient vanishing.

The  core  of  SpT  UNet  encoder  blocks  is  the  multi-
head attention (MHA) mechanism for joint information
extraction from different representation subspaces at dif-
ferent positions.  The  MHA  based  model  can  be  ex-
pressed as: 

MHA(Q,K,V) = Concat(head1, · · · ,headH)WO ,

where headi = Attention(QWQ
i , KWK

i , VWV
i ) . (2)

WQ
i WK

i

WV
i Q K

V WO

Here,  the  projections  are  parameter  tensors , ,
and  which  are  the  linear  transformations  on , ,
and ,  respectively.  What’s  more,  is  the  projection
for the output of all  heads.  In this work,  the head num-
ber H varied in both the encoder and decoder blocks.

Besides  the  MHA mechanism,  we  propose  the  multi-
head cross-attention (MHCA) mechanism for SpT UNet
decoder blocks which can be expressed as: 

MHCA(Q,K,V) = Concat(head1, · · · ,headH)WO ,

where headi = Attention(f(Q∗)WQ
i , KWK

i , VWV
i ) .
(3)

f(Q*)

Q*

Here,  is  the  function  for  the  feature  embedding
with  representing  the  embedded  label  or  the  feature
maps that transmit through the skip connections.
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 Module-level modification of SpT UNet

 Pre-batch normalization (Pre-BN)
For better training of the network, pre-normalization in
each block is  implemented for stabilized convergence of
the gradients. As each batch contains more varied cross-
speckle  features  compared  with  the  features  between
channels, we  further  upgrade  the  pre-layer  normaliza-
tion  to  the  pre-batch  normalization.  As  shown  in Fig.
1(b) and Fig. 1(c), batch normalization (BN), along with
residual  connection,  is  considered  as  a  mechanism  for
stabilizing  training  of  the  network  (e.g.,  alleviating  ill-

posed  gradients  and  model  degeneration).  Therefore,
Pre-BN  included  transformer  encoder  and  decoder
blocks can better extract the cross-speckle features of the
spatially dense images, i.e., generic face images with high
training efficiency  and  less  sensitivity  to  the  initializa-
tion of the network.

 Position encoding in MHA/MHCA
The SpT UNet backbone is  a  transformer module using
MHA  and  MHCA  as  the  core.  MHA  and  MHCA  are
coped with three-dimensional position encoding, i.e., the
inductive  deviation.  The  purpose  of  the  position
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Fig. 1 | SpT UNet architecture for spatially dense feature reconstruction (a) with the multi-head attention (or cross attention) module (b) included

transformer encoder block (c) and decoder block (d).
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t
Pt = (Px,t;Py,t)

Pt ∈ Rdmodel Px,t Py,t

f (t, k) x y

encoding is for stable and efficient feature extraction. In
specific, we designed a three-dimensional absolute sinus-
oidal position encoding for feature maps. For the index 
in  feature  maps,  we  define  a  vector  pair 
with .  And  and  are sinusoidal  func-
tions,  i.e.,  in  and  coordinate with pre-defined
frequency, as shown below: 

f(t, k) =
{
sin(t/10000k), if k is even
cos(t/10000k), if k is odd

, (4)

k = [0,1, · · · ,
dmodel−1].
where k is  the  index  of  the  vector,  i.e., 

 Puffed downsampling and leaky upsampling
For  better  speckle  feature  extraction,  we  invent  two
sampling methods, i.e., puffed downsampling with sand-
wich-like  autoencoder  structure,  and  leaky  upsampling
with  a  bottleneck  structure  inspired  by  compressed
sensing.

As shown in Fig. 2, the first two layers of convolution-
al (Conv), BN, and ReLU expand channels of the feature
map four times. The max pooling layer is sandwiched in
between the five-layer autoencoder, and the last two lay-
ers  of  Conv,  BN,  and  ReLU  compress  channels  of  the
feature  map  to  two  times  smaller  as  the  input  for  “ sal-
vage” speckle feature information.

As  shown  in Fig. 3,  the  bilinear  interpolation  layer  is
positioned  in  the  middle  of  the  bottleneck  structure.
Compared  with  the  conventional  upsampling  methods
in UNet, leaky upsampling retains the most valuable fea-
tures,  and  discards  the  less  valuable  features  with  high
computational efficiency.

 Optical imaging system and data acquisition
As  shown  in Fig. 4,  the  central  800×800  pixels  of  the
SLM are  illuminated  by  the  filtered  and  collimated  CW
laser  at  632.8  nm.  The  spatial  light  modulator  (SLM,
Thorlabs EXULUS-HD2 pixel size 8 μm, 1920×1200) up-
loads  the  phase  patterns  of  binary  generic  face  images.
Glass diffusers with four grit types (Thorlabs DG10-120-
MD,  DG10-220-MD,  DG10-600-MD,  DG10-1500-MD)
were positioned  at  the  conjugated  plane  of  the  SLM se-
quentially. To match the pixel size of the CMOS camera
(Thorlabs  DCC1645C,  pixel  size  3.6  μm,  1280×1024)
with  that  of  the  SLM,  we  built  a  4F  system  using  two
lenses  L1  (f =  300  mm)  and  L2  (f =  125  mm).  For  the
training,  testing,  and  validation  dataset  collection,  the
CMOS  camera  was  placed  within  a  distance  of  40  mm
from the focal plane of lens 4.

To  collect  the  training  and  testing  datasets,  1500
Faces-LFW  face  images29 were  considered.  We
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experimentally  achieved  a  space-bandwidth  product  of
800×800 pixels  using  up to  12000 training/testing  pairs.
As shown in Fig. 5, it includes four cases, as follows:

Case 1:  Train/test  the  network  with  the  speckles  pro-
duced by a 120 grits diffuser at 0, and 20 mm away from
the image plane.

Case 2:  Train/test  the  network  with  the  speckles  pro-
duced by a 220 grits diffuser at 0, and 20 mm away from
the image plane.

Case 3:  Train/test  the  network  with  the  speckles  pro-
duced by a 600 grit diffuser at 0, and 20 mm away from
the image plane.

Case 4:  Train/test  the  network  with  the  speckles  pro-
duced by a 1500 grit diffuser at 0, and 20 mm away from
the image plane.

To better evaluate the generalization ability of the net-
work especially for varied depth of range,  the validation
dataset consists of 6000 pairs produced by four diffusers

with  1500  seen  Faces-LFW  face  images  at  40  mm  away
from the focal plane.

 Data processing
The  speckle  patterns  were  first  normalized  between  0
and  1,  and  the  labels  for  the  generic  face  images  were
binary  values.  To  reduce  the  parameters  of  the  network
and  the  demand  for  GPU  and  training  data,  the  input
speckle patterns were first downsampled from 800 × 800
pixels to 200 × 200 pixels using the bilinear interpolation
approach. And the network was implemented using Py-
thon version 3.8.5 and PyTorch framework version 1.7.1
(Facebook Inc.) and ran on NVIDIA GeForce RTX 3090.
The network  was  trained  with  200  epochs  with  a  learn-
ing rate of 10−4 for the first 100 epochs, 10−5 for the next
50  epochs,  and  10−6 for  the  final  50  epochs.  The  batch
size  in  the  training/testing  process  is  2.  Moreover,  the
lightweight SpT UNet contains 6.6 million neurons.  For
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the  network  configurations,  Adam  optimizer,  L2  norm
regularizer,  and  the  CE/NPCC  as  loss  functions  were
chosen. Once the model was trained, each prediction was
made within 16 ms.

 Results and discussions
To  intuitively  visualize  the  JI  score,  the  generic  human

faces,  and  related  reconstructed  pictures  are  shown  in
Fig. 6.  The  ground  truth  of  the  face  images  and  their
zoom-in  structures  are  listed  in  the  left  column.  As
shown in the right  column, the related predicted results
are  further  broken  down  into  the  true  positive  (white),
the  false  positive  (green),  and  the  false-negative  (red).
For  the  validation  of  the  untrained  detection  position,
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the facial features (ears included) and facial contour (hair
included) of both the males and females are well extrac-
ted and reconstructed.

We further quantitatively evaluate the performance of
the network using PCC, JI, SSIM, and PSNR. The PCC is
essentially  a  normalized  measurement  of  covariance,
with  the  value  1  representing  perfect  correlation.  The
SSIM evaluates the similarity between reconstructed pat-
terns  and  related  ground  truth.  It  is  a  decimal  value
between  0  and  1,  value  1  represents  perfect  structural
similarity, and 0 indicates no structural similarity. Simil-
ar to the SSIM, the JI gauges the similarity and diversity
between  prediction  and  its  ground  truth.  The  PSNR  is
used  to  quantify  the  quality  of  the  reconstruction:  the
higher  PSNR,  the  better  the  reconstructed  image.  As
shown in Table 1, for the four different diffusers, the val-
ues  of  the  PCC,  JI,  and SSIM are  all  above 0.989,  0.976,
and 0.950,  respectively.  Like  the  PCC,  JI,  and SSIM,  the
value of the PSNR increases slightly as the increase of the
girt number of diffusers.

Moreover, to  evaluate  the  loss  and reconstruction ac-

curacy  of  the  SpT UNet.  The  plots  of  loss  and accuracy
for the trained SpT UNet as the function of the epoch are
shown in Fig. 7.

We  also  quantitatively  evaluate  the  complexity  of  the
Spt  UNet  and  its  downsize  version —SpT  UNet-B.  The
performance  of  the  SpT  UNet  and  the  SpT  UNet-B  is
shown  in Table 2.  For  the  SpT  UNet-B,  we  reduce  the
position-wise  feed-forward  network  (FFN)  parameters
by 50%,  and  the  number  of  the  heads  or  parallel  atten-
tion  layers  in  MHA  and  MHCA  is  decreased  by  50%.
Moreover, we implement the bottleneck for the first and
third  convolution  layers  for  the  Leaky  and  Puffed
sampling.

It  is  worth  noting  that,  as  a  lightweight  network,  the
SpT UNet and Spt UNet-B reveal less than one order of
parameters  compared  with  ViT22, and  SWIN  trans-
former23. The comparison is shown in Table 3.

 Conclusions
We  have  proposed  a  “non-local ”  spatially  dense  object

 
Table 1 | The validation performance of the trained SpT UNet.

 

Indicator
Diffuser/grit

120 220 600 1500

PCC 0.98986 0.98988 0.98990 0.98994

JI 0.97655 0.97658 0.97661 0.97666

SSIM 0.95001 0.95009 0.95024 0.95035

PSNR/dB 19.3826 19.3887 19.3954 19.4052
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Fig. 7 | Quantitative analysis of the trained SpT UNet using NPCC as the loss function (a) and SSIM as the indicator for accuracy (b).
 

Table 2 | Performance of the SpT UNet.
 

Method Image size FLOPs/109 Parameters Throughput (image/s)
Inference time

(batch/ms)
SpT UNet 256×256 31.7 6.6 M 62.5 31.34

SpT UNet 224×224 24.3 6.6 M 83.3 24.02

SpT UNet 200×200 19.4 6.6 M 86.9 23.02

SpT UNet-B 256×256 19.6 4.0 M 78.5 25.46

SpT UNet-B 224×224 15.0 4.0 M 90.8 22.02

SpT UNet-B 200×200 12.0 4.0 M 95.1 21.02
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feature  extraction  and  reconstruction  model,  i.e.,  the
lightweight SpT  UNet.  It  shows  an  excellent  perform-
ance with comparative values on the scientific indicators
for generic face images through varied types of diffusers
at  different  detection  planes.  Although  we  just  consider
the reconstruction of binary generic face images, the re-
construction of spatially dense images at grayscale using
the  SpT  UNet  can  be  considered  in  the  future.  For  the
biomedical  imaging,  we believe  that  the  network can be
further implemented in complex tissue imaging to boost
the  image  contrast  and  depth  of  range.  For  photonic
computing, as the paralleling processing model, the SpT
UNet can  be  further  implemented  as  an  all-optical  dif-
fractive neural  network  with  surpassing  feature  extrac-
tion  ability,  light  speed  and  even  lower  energy
consumption.
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