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Deep learning enabled single-shot absolute
phase recovery in high-speed composite fringe
pattern profilometry of separated objects
Maciej Trusiak* and Malgorzata Kujawinska*

A recent article in the Opto-Electronic Advances (OEA) journal from Prof. Qian Chen and Prof. Chao Zuo’s group intro-
duced a new and efficient 3D imaging system that captures high-speed images using deep learning-enabled fringe pro-
jection profilometry (FPP). In this News & Views article, we explore potential avenues for future advancements, including
expanding the measurement range through an extended number-theoretical approach, enhancing quality through the in-
corporation of horizontal fringes, and integrating data from other modalities to broaden the system's applications.
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High-speed and high-precision 3D imaging has  become
a crucial aspect of numerous scientific and industrial ap-
plications1,2.  From  robotics  and  autonomous  navigation
to biomedical  imaging  and  cultural  heritage  preserva-
tion, the demand for accurate non-contact and real-time
measurements  of  3D  surface  geometry  continues  to
grow. Structured  light  (SL)  based  3D  imaging  tech-
niques3,4 have  already  proven  their  great  usefulness  and
capability in  meeting  these  demands.  However,  tradi-
tional  SL  approaches  often  require  multiple  frames5,6 to
achieve  high-resolution  reconstructions,  leading  to
longer acquisition times and potential motion artifacts.

Nevertheless,  high-precision  3D  reconstruction  using
only  one  single  pattern  has  been  the  ultimate  goal  of
structured light 3D imaging in perpetual pursuit.  Fouri-
er transform profilometry (FTP)7,  in which the wrapped
phase is  decoded  by  Fourier  filtering  in  the  fringe  pat-
tern  spatial  frequency  domain,  enables  to  demodulate
the phase from a single fringe pattern. However, the FTP

technique  limited  to  measuring  smooth  surfaces  with
limited height variations. In addition, the wrapped phase
retrieved by FTP suffers from periodic ambiguity, which
typically requires  multi-frequency  temporal  phase  un-
wrapping methods to unwrap and obtain the continuous,
absolute  phase  distribution8. Spatial  carrier  phase  shift-
ing methods were also proposed, with similar single-shot
limitations9.

To solve the phase ambiguity problem, Takeda et al.10

introduced frequency  multiplexing  (FM)  to  fringe  pro-
jection  profilometry1−4 to  encode  two  fringe  patterns
with  different  spatial  carriers  into  a  single  snapshot
measurement  which  can  be  demodulated  from  the  FM
composite fringe  to  remove  the  periodic  phase  ambigu-
ity.  Alternatively,  Zhang  et  al.11 proposed the  color  fre-
quency multiplexing  SL  method,  in  which  three  sinus-
oidal fringe  patterns  with  different  frequencies  are  en-
coded into the red,  green and blue (RGB) channels  of  a
color  image  and  three  wrapped  phases  with  different 
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frequencies can be demodulated from the RGB channels
of  the  captured  image.  However,  as  derivatives  of  FTP,
these FM techniques  achieved limited success  for  meas-
uring complex  surfaces  due  to  the  unavoidable  fre-
quency  overlapping,  spectrum  leakage,  and  channel
crosstalk.

New concept in FPP based SL considers implementa-
tion of  deep learning based frameworks  to  solve  intens-
ity-phase  domain  transition  problem12−16.  It  is  based  on
fringe pattern  analysis  via  especially  tailored  convolu-
tional neural networks. Phase, although the most import-
ant,  is  one of  the parameters  that  describe and thus can
be  demodulated  from  a  fringe  pattern,  alongside  with
fringe  pattern  density17,  orientation18 and
background19,20.  In  the  recent  work21 entitled  “Deep-
learning-enabled dual-frequency  composite  fringe  pro-
jection  profilometry  for  single-shot  absolute  3D  shape
measurement ”  published  in Opto-Electronic  Advances
(DOI:  10.29026/oea.2022.210021),  Prof.  Qian  Chen  and
Chao  Zuo’s  group,  among  main  actors  in  the  DL-based
SL field, proposed a novel single-shot high-precision 3D
imaging method called deep learning-enabled composite
fringe  projection  profilometry  (DCFPP)  technique,
which showcases how deep learning can effectively assist
in recovering  the  absolute  phase,  thereby  enabling  pre-
cise  3D  shape  reconstruction  from  a  single  frequency-
multiplexed fringe image of  intricate or isolated objects.
This  article  was  selected  as  the  back  cover  paper  of
Volume  5,  Issue  5  of  OEA  in  2022  (Fig. 1).  Diverging
from conventional end-to-end network architectures16,22,
which often exhibit  poor accuracy in directly  predicting
absolute phase or depth from images12, this  research in-
troduces a novel approach. It leverages a dual-frequency
compound fringe  pattern  as  the  sole  input  to  the  net-
work and  modifies  the  output  to  three  components  en-
compassing the  wrapped  phase  arctangent  function  nu-
merator and denominator terms and the absolute  phase
map. This  work  opens  new  avenues  for  single-shot,  in-
stantaneous  3D  shape  measurement  of  discontinuous
and/or mutually isolated objects in fast motion.

In  comparison  to  the  traditional  Fourier  transform
method,  the  presented  approach  mitigates  the  reduced
3D  measurement  accuracy  caused  by  spectrum  aliasing
resulting from generally low spatial frequency of the pro-
jected  double-frequency  pattern.  The  proposed  method
achieves  performance  similar  to  that  of  the  traditional
12-step  phase-shifting  method,  which  is  a  remarkable
result for  a  single-shot  approach.  The  study  demon-

strates the efficacy of deep learning in synthesizing both
temporal  and  spatial  information,  effectively  addressing
the  spectrum-aliasing  problem.  The  article  concludes
that this  approach  overcomes  the  limitations  of  tradi-
tional  multi-frequency  composite  methods  and  single
end-to-end  deep  learning  networks.  The  utilization  of
two joined  networks  proves  advantageous  as  it  decom-
poses the problem into two lines, aligning with the inher-
ent working principle of networks that decompose prob-
lems into subsets of convolutional layers.
 
 

Fig. 1 | Back cover of Volume 5, Issue 5 of OEA in 2022.
 

However, obtaining  high-quality  absolute  phase  in-
formation remains  challenging  due  to  variations  in  re-
flectance,  shadows,  and  high  directional  gradients  in
shape. Also, the depth of a measured 3D scene (a meas-
urement  range)  is  limited.  The  authors  emphasize  their
plans to explore advanced network structures and integ-
rate  more  suitable  physical  models  into  deep  learning
networks to achieve higher speed, accuracy, and robust-
ness in  3D  shape  measurement  using  fewer  neural  net-
works or  in  an end-to-end manner.  These  AI  based en-
hancements can be assisted by modification of the meas-
urement scenario followed by the proposed DCFPP pro-
cessing  scheme.  In Fig. 2 we present  two  possible  aven-
ues for future research. The first scenario can be utilized
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when the  extension  of  the  measurement  range  is  re-
quired.  In  such  a  case  third  or  additional  wavelengths
(fringe pattern frequencies) can be added to project more
complex  composite  fringe  pattern  (Fig. 2(a, b)) and  fol-
low a similar framework as proposed in the Gushov-So-
lodkin  algorithm23.  In  this  way  the  measurement  range
W is  expanded  from LCM(λh; λl)  ≥ W for  two
wavelength  scheme  up  to LCM(λh; λm; λl)  ≥ Wext for
three  wavelength  scheme,  where  LCM  represents  the
least  common  multiple  function.  The  second  proposed
modification relies on projection a cross fringe compos-
ite pattern, namely both vertical and horizontal (or gen-
erally inclined  with  a  given  angle)  fringe  families  fol-
lowed  by  utilizing  of  the  proposed  DCFPP  processing
scheme  separately  for  the  information  extracted  from
vertical  and  horizontal  fringes  and  finally  merging  the
reconstructed phases (Fig. 2(c)).

Such  measurement  and  processing  scenario  could  be
investigated to minimize directional errors including re-
duction of  the  influence  of  variations  of  reflectance  and
occurrence of shadows in an object.

Another promising  avenue  for  future  research  in-
volves merging information from other modalities, such
as digital image correlation, to enable dynamic 3D shape
and  displacement  mapping24,  potentially  advancing  the
fields of experimental mechanics and structural integrity.
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Fig. 2 | Possible future extension of the proposed DCFPP technique: (a) the example triple-frequency projected vertical and cross fringe patterns

and their spectra, (b) the hardware system and (c) the enhanced shape reconstruction using cross fringe pattern and two channel reconstruc-

tions for vertical and horizontal composite fringe patterns.
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