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Brillouin scattering spectrum for liquid
detection and applications in oceanography
Yuanqing Wang1, Jinghao Zhang2, Yongchao Zheng2, Yangrui Xu1,
Jiaqi Xu1, Jiao Jiao3, Yun Su2*, Hai-Feng Lü3, 4* and Kun Liang1*

The Brillouin scattering spectrum has been used to investigate the properties of a liquid medium. Here, we propose an
improved  method  based  on  the  double-edge  technique  to  obtain  the  Brillouin  spectrum of  a  liquid.  We  calculated  the
transmission ratios and deduced the Brillouin shift and linewidth to construct the Brillouin spectrum by extracting the Bril-
louin edge signal through filtered double-edge data. We built a detection system to test the performance of this method
and measured the Brillouin spectrum for distilled water at different temperatures and compared it with the theoretical pre-
diction. The observed difference between the experimental and theoretical values for Brillouin shift and linewidth is less
than 4.3 MHz and 3.2 MHz, respectively. Moreover, based on the double-edge technique, the accuracy of the extracted
temperatures and salinity is approximately 0.1 °C and 0.5%, respectively, indicating significant potential for application in
water detection and oceanography.
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 Introduction
The  concept  of  light  scattering  was  better  understood
after explaining why the sky is blue by Lord Rayleigh in
18711.  Einstein2 further related scattered light to refract-
ive  index  fluctuations  and  noticed  that  the  determining
factor for these fluctuations is density fluctuations. These
observations  formed  the  main  pioneering  study  of
Rayleigh scattering3−4.  Later, light scattering by adiabatic
fluctuations (inelastic scattering, the fine structure of the
Rayleigh line) of the density fluctuations was first invest-
igated  by  Mandel’shtam  in  19185 and proposed  inde-
pendently by Brillouin in 19226. Since then, this inelastic

scattering,  named  Brillouin  scattering,  has  been  well
studied in gases7−12, liquids13−16, and solids17−22.

Brillouin  scattering  refers  to  the  acoustic  modes  that
manifest  as  Brillouin  peaks  away  from  the  central
Rayleigh peak  in  the  spectrum.  As  these  dynamics  de-
pend  on  the  scattering  medium’s  properties,  the  optical
resolution of the Brillouin spectrum can be used to ana-
lyze the elastic properties, such as the velocity and atten-
uation of sound. The physical properties of the medium
can  be  deduced  based  on  the  Brillouin  spectrum.  For
Brillouin  scattering  in  liquids,  the  Brillouin  spectrum
generally  adopts  a  Lorentzian  functional  form3,23.  This
clear  and  simple  analytical  feature  of  the  spectrum 
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provides unique advantages for further applications. For
instance,  in  water,  by  detecting  whether  the  Brillouin
peaks appear,  one  can  judge  the  existence  of  the  sub-
merged object24. In addition, the Brillouin shift and Bril-
louin linewidth can be extracted from the Brillouin spec-
trum  and  used  to  calculate  related  physical  quantities,
such as temperature25−27, sound velocity28,29, and bulk vis-
cosity30,31.  Currently,  the  measurement  of  the  Brillouin
spectrum has  become  an  important  method  for  detect-
ing the inner physical properties of matter.

Experimentally,  there  are  two  typical  techniques  for
obtaining  the  complete  Brillouin  spectrum32.  The  first
technique  involves  using  the  Fabry–Perot  etalon  (FPE)
and  intensifier  charge-couple  device  (ICCD)33,34.
Through  FPE,  a  2D  interference  fringe  pattern  of
Rayleigh–Brillouin  (RB)  scattering  will  be  recorded  on
the ICCD.  The pattern contains  the  entire  spectrum in-
formation to  enable  the  extraction of  the  Brillouin scat-
tering characteristics. However, this technique is limited
by the  response  threshold  of  ICCD and the  extra  meas-
urement error caused by the ICCD pixel size.  The other
technique  involves  using  Fabry  Perot  interferometer
(FPI) and photomultiplier tube (PMT)29,35. In this meth-
od,  the  entire  spectrum  was  obtained  by  scanning  the
FPI  and  the  accuracy  of  the  water  temperature  is  3  °C.
Unfortunately,  this  method  is  not  suitable  for  real  time
application  because  the  scanning  process  is  time-con-
suming.  For practical  applications,  these two techniques
have their respective deficiencies. Thus, it is highly desir-
able to explore new methods to improve Brillouin spec-
trum measurement.

Generally, the Brillouin spectrum of a liquid indicates
a Lorentzian  line  shape.  The  spectrum  can  be  determ-
ined  if  the  Brillouin  peak  position  (Brillouin  shift)  and
the full width at half maximum (Brillouin linewidth) are
known.  Recently,  the  edge  technique  was  proposed  to
measure the Brillouin shift; it was used for real-time ap-
plications  in  remote  sensing  applications  in  the  ocean36.
Its  principle  is  to  measure  a  small  frequency shift  based
on measuring  a  large  intensity  variation,  and  the  Bril-
louin shift  can  be  obtained  from  the  normalized  vari-
ation of the intensity. The accuracy of the water temper-
ature  measured  by  the  Brillouin  shift  in  this  technique
can reach 0.5 °C(averaging 1000 laser shots)37. However,
as  it  obtains  only  the  signal  intensity  rather  than  the
spectrum, considerable  information will  be lost.  In real-
ity, the  normalized intensity  is  also  affected by  the  Bril-
louin  width.  In  the  experiments,  the  Brillouin  shift  and

Brillouin  linewidth  can  be  obtained  simultaneously  if
two normalized intensities are measured.

Based on this feature, we propose a new method based
on a  double-edge  technique.  When  the  liquid  environ-
ment varies,  the Brillouin spectrum is  different,  and the
energy  intensities  after  the  two  filters  also  change.  The
Brillouin  scattering  spectrum can be  reconstructed  after
building  relationships  between  energy  intensities  and
Brillouin spectrum characteristics. This improved meth-
od can measure the whole Brillouin scattering spectrum
and inherit  the advantages of  the edge technique,  indic-
ating its potential application in liquid detection. The re-
mainder of this paper is organized as follows. In Section
Theory and experiment, the measurement theory and ex-
perimental setup  are  presented.  The  results  are  presen-
ted  and  discussed  in  Section Results  and  discussion to
analyze the  performance  of  the  proposed  method.  Fi-
nally, the conclusion is presented in the last section.

 Theory and experiment

 Theory
Light propagating in a transparent liquid is  scattered by
the density fluctuations of the liquid medium. The dens-
ity fluctuations can be expressed by entropy fluctuations
at constant pressure and pressure (acoustic) fluctuations
at constant entropy; the former corresponds to Rayleigh
scattering, and the latter leads to Brillouin scattering. In
the view of quantum physics, Brillouin scattering is con-
sidered  as  the  process  of  incident  photon  releasing/ab-
sorbing  a  phonon,  producing  two  kinds  of  scattered
photons  of  different  frequencies,  as  shown  in Fig. 1(a).
The scattering that releases phonons and makes the fre-
quency  smaller  than  the  incident  light  frequency  is  the
Stokes  scattering,  and  the  contrary  phenomenon  is  the
anti-Stokes scattering.  The Stokes and anti-Stokes peaks
are symmetrically  distributed  on both  sides  of  the  cent-
ral  Rayleigh  peak.  When  the  medium  environment
changes,  the  Brillouin  spectrum  also  changes. Fig. 1(b)
displays  the  Brillouin  Stokes  spectrum  of  water,  which
varies with temperature.

In the case of Brillouin scattering in liquid, the medi-
um can be treated as a continuum, broadening effects are
homogeneous,  and  both  Stokes  and  anti-Stokes  peaks
adopt a Lorentzian functional form as:. 

IB(vB, ΓB) =
1
π

{
ΓB

4(v− vB)2 + Γ 2
B
+

ΓB

4(v+ vB)2 + Γ 2
B

}
,

(1)
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where vB is  the  Brillouin  shift  and ΓB is  the  Brillouin
linewidth.  If vB and ΓB are known,  the  Brillouin  spec-
trum can be easily restructured.

Recently,  edge  techniques  have  been  widely  used  to
detect the  Brillouin  echo  signal  since  it  was  first  pro-
posed in ocean applications by Fry et al.36; in their study,
the Brillouin spectrum is locked at a steep transmittance
curve. The slightest variation in the Brillouin shift causes
a large change in the transmitted energy.  Therefore,  the
Brillouin shift can be measured by detecting this energy.
In real applications, the related energy change is used to
reduce  the  influence  of  the  energy  intensity  instability.
More specifically,  the  central  Rayleigh  and  Mie  scatter-
ing  is  first  filtered  by  an  absorption  filter,  and  then  the
filtered scattering light is split into two parts: One is dir-
ectly  received  by  the  detector  as  the  reference  signal, Ig.
The  other  goes  through  an  iodine  cell  used  as  the  edge
filter and recorded by another detector as I1. The related
energy  change S= I1/Ig was  used  for  the  Brillouin  shift
measurement.

In  fact,  the  relative  energy  change S is not  only  af-
fected by the Brillouin shift, but also depends on the Bril-
louin linewidth.  The key point is  that  the Brillouin shift
and linewidth  can  be  measured  using  two  different  re-
lated energies.  Hence,  the  edge  technique  can  be  im-
proved by using double  edges  simultaneously,  as  shown

in Fig. 1(c).
For  the  double-edge  method,  the  back  RB  scattering

signal first passes through an absorption filter to elimin-
ate the Rayleigh scattered light. Then, one part of the re-
maining Brillouin light is used as the reference energy Ig

and  detected  by  a  PMT.  The  other  part  yields  into  a
double-edge  filter  designed  to  allow  the  energy  of  the
steep edge on the two sides of the Brillouin peak to pass.
Light after the double-edge filter is detected by two oth-
er PMTs, I1 and I2. Here we have:
 

Ig =
w +∞

−∞
IB(v, vB) dv , (2)

 

I1 =
w +∞

−∞
T1(v− v1, Γ1)IB(vB, ΓB) dv , (3)

 

I2 =
w +∞

−∞
T2(v− v2, Γ2)IB(vB, ΓB) dv , (4)

Ti(i=1,2) is  the  instrument  function  of  the ith edge  filter,
expressed by the Airy function:
 

Ti =

[
1+

(
2FSRi

π Γi

)2

sin2
(

π
FSRi

v
)]−1

, (5)

FSRi is  the  free-spectrum  range  of  the ith filter. Γi is  the
linewidth of the ith filter.

Then the relative energy S1 and S2 are written as:
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Fig. 1 | (a) Vector diagram of Brillouin scattering in view of quantum physics with the process of incident photon releasing and absorbing a phon-

on. (b) Brillouin spectra of water varies as the temperature changes. (c) Principle of the Brillouin spectrum measurement using double edge tech-

nique. Two edge filters are set at the steep edge of the Brillouin Stokes spectrum BS(vB, ΓB ), where vB is the Brillouin shift ΓB and is the Brillouin

linewidth. For BS, the energies after these two filters are I1(vB, ΓB ) and I2(vB, ΓB). vB and ΓB can be deduced from I1 and I2, and Brillouin spec-

trum BS can be reconstructed. When the Brillouin spectrum changes to BS′, new energies  and  will be acquired and the corresponding Bril-

louin shift and linewidth can be deduced and used for BS′ reconstruction.
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S1 =
I1
Ig
, S2 =

I2
Ig

. (6)

The  dependency  of  the  Brillouin  shift  and  Brillouin
linewidth on S1 and S2 can be obtained by establishing a
retrieval model38:  

vB(S1, S2) = r1 + r2ln(S1) + r3ln(S2) + r4ln(S1)2

+ r5ln(S2)2 + r6ln(S1)ln(S2)
+ r7ln(S1)3 + r8ln(S2)3

+ r9ln(S1)ln(S2)2 + r10ln(S1)2ln(S2)
ΓB(S1, S2) = t1 + t2ln(S1) + t3S2 + t4ln(S1)2

+ t5(S2)2 + t6ln(S1)S2
+ t7ln((S1)3) + t8(S2)3

+ t9ln(S1)(S2)2 + t10ln(S1)2S2

,

(7)
in  which  coefficients ri and ti can  be  found  in  ref.38.
Therefore,  when S1 and S2 are  detected,  the  Brillouin
shift  and  linewidth  can  be  calculated,  and  the  Brillouin
spectrum can  be  reconstructed.  Moreover,  the  environ-
mental information  of  the  liquid,  such  as  the  temperat-
ure  or  salinity  of  water,  can  be  extracted  based  on  the
Brillouin spectrum26, as Eq. (8) shown:  

T(vB, ΓB) = m1 +m2vB +
m3

ΓB
+m4v2B

+
m5

Γ 2
B
+

m6vB
ΓB

+m7v3B +
m8

Γ 3
B

+
m9vB
Γ 2

B
+

m10v2B
ΓB

S(vB, ΓB) = k1 +
k2
vB

+
k3
v2B

+
k4
v3B

+
k5
v4B

+
k6
v5B

+ k7lnΓB + k8lnΓ 2
B + k9lnΓ 3

B

+ k10lnΓ 4
B + k11lnΓ 5

B

, (8)

where  coefficients mi and ki are  displayed  in  ref.26.  The
simulation of the retravel model shows that this double-
edge technique can be used to measure the temperature
and  salinity  of  the  water  in  the  temperature  range  of
0–30 °C and salinity range of 0–35%.

 Experimental apparatus
A  setup  built  for  the  Brillouin  spectrum  measurement
was used to evaluate the performance of the double-edge
method. As shown in Fig. 2,  the experimental  apparatus
comprises the following: pulse laser, telescope for receiv-
ing  scattered  light,  water  tank  for  producing  scattered
light, iodine  tube  to  filter  the  Rayleigh  and  Mie  scatter-
ing light, double-edge filter that lets the two sides of one
Brillouin peak get through, and three PMTs to detect the
corresponding intensity of Brillouin light. The apparatus
and  units  are  further  described  in  the  following
subsections.

 Light source
The pulsed laser in this setup uses seed injection techno-
logy  to  achieve  a  single  longitudinal  mode  and  narrow
linewidth  output.  The  laser  frequency  is  locked  to  the
edge  of  the  absorption  line  of  the  iodine  pool  through
iodine molecular frequency stabilization technology, and
then  the  laser  output  frequency  is  shifted  to  the  middle
position  of  the  absorption  peak.  This  laser  outputs
pulsed light with a wavelength of 532 nm and an uncer-
tainty  of  0.0005  nm.  The  repetition  frequency  was  100
Hz with a pulse width of 7.5 ns and energy of ≥20 mJ for
each pulse.

 Characteristic analysis of absorption filter
The  absorption  filter  is  used  to  eliminate  all  elastically
scattered  light,  with  the  central  frequency  same  as  the
laser  frequency,  and  only  leaves  Brillouin  components.
For this,  an iodine cell  was chosen as the absorption fil-
ter as the iodine generated absorption around the light at
532 nm. After simulation of the iodine, a proper absorp-
tion  line  was  chosen with  a  laser  wavelength  of  532.239
nm.  Considering  the  maximum  Rayleigh  filtering  and
Brillouin side  transmission,  the  temperature  of  the  iod-
ine cell was controlled at 40±0.01 °C.

 Double-edge filter
The  double-edge  filter  consists  of  two  plane  mirrors.
Considering the Brillouin shift  and linewidth of the wa-
ter  in  the  temperature  range  of  0–30  °C  and  salinity
range  of  0–35% are  around  7.4  GHz  and  0.5  GHz  re-
spectively with  the  laser  wavelength  of  532  nm.  The  in-
ner surface is coated with a reflective film and half of the
edge filter is plated with a step film of about 40 nm, mak-
ing the  edge  a  double-channel  etalon.  The  slight  differ-
ence between the double-channel lengths causes the peak
transmission  frequency  of  the  two  channels  to  have  a
fixed  difference.  The  two etalon  channels  are  integrated
on the same component and share the same set  of  tem-
perature  control  systems,  which  helps  to  improve  the
thermal  and  mechanical  stability  of  the  actual  system.
After testing, the FSR of the two channels is 24.82 GHz.
The  central  frequency  and  linewidth  of  one  half  etalon
are –9.51 GHz and 0.77 GHz and for the other half etal-
on, –5.44  GHz and 0.73  GHz.  The minus  sign indicates
that the double-edge etalon is working in the location of
the Brillouin Stokes location.

 Data acquisition
As  the  energy  after  the  double  edge  is  weak,  the  PMT
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(HAMAMATSU-H11526-01-NF, Hamamatsu) was used
to detect the signal. The PMT is connected by a transim-
pedance amplifier (C1184, Hamamatsu), and the voltage
signal after the amplifier is recorded by a high-speed ac-
quisition card (ADQ12DC, Teledyne SP Devices), which
provides  a  12-bit  resolution  and  a  sampling  rate  of  1
GS/s per channel.

 Results and discussion
In this section, we present the experimental data on Bril-
louin scattering in water and discuss Brillouin character-
istics and spectrum reconstruction. We also evaluate the
accuracy of the retrieved temperature and salinity of wa-
ter under different conditions based on this double-edge
method.

The experiments were performed using distilled water.
The pulsed light enters the water tank, producing a 180°
back-scattering  RB  scattering  signal.  After  passing
through  the  iodine  cell,  Brillouin  light  was  detected  by
three  PMTs. Figure 3(a) shows the  voltage  for  200  suc-
cessive shots recorded from PMT1 and their average for
water  at  room  temperature.  The  upper  spatial  axis  is
computed  from  the  lower  time  axis,  where  the  time  of
the  pulse  peak  out  of  the  telescope  corresponds  to  0  m.
As shown in Fig. 3, the averaged curve becomes smooth,
although  shot  fluctuations  exist  in  the  single  shots.  The
oscillation  at  the  end  of  the  signal  originates  from  the

power  supply  noise. Fig. 3(c) and 3(e) show the  corres-
ponding edge signals recorded by PMT2 and PMT3, re-
spectively.  As  there  is  a  distance  between  PMT1  and
PMT2/PMT3,  the  peak  signals  from  PMT1  and
PMT2/PMT3 have a time difference of 6.2 ns.

In this experiment, there was some stray light, mainly
caused by the laser light reflected from the lenses of  the
receiving telescope. The stray light can pass through the
absorption filter  and  cannot  be  eliminated.  As  the  dis-
tance  between  the  telescope  and  the  water  tank  is  just
0.26  m,  this  stray  light  is  mixed  with  the  RB  scattering
signal  and  simultaneously  detected  by  the  PMTs.  The
background stray light was measured as illustrated in Fig.
3(b), 3(d),  and 3(f), and subtracted from the data recor-
ded by  the  three  PMTs to  extract  the  pure  single. Fig. 4
shows  the  time  dependence  of  the  pure  signal  from
PMT1 Ig,  the  pure  signal  from  PMT2 I1,  and  the  pure
signal from PMT3 I2. The position of the peaks is where
the light passes through the center of the water tank. By
using  the  time-dependent  voltages Ig, I1,  and I2, the  de-
sired  transmission  ratios S1 = I1/Ig and S2 = I2/Ig of  the
double-edge filter are also displayed in Fig. 4 with a dark
yellow color. Experimentally, in the ideal case, the trans-
mission  ratios  should  remain  the  same  during  the
propagation of laser light in the water tank for each con-
dition.  However,  due  to  the  fluctuations  of  background
noise and shot noise, the two ratios S1 and S2 are not flat
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signals. As illustrated in Fig. 4, the signals obtained dur-
ing all  instances  of  measurement  show  strong  fluctu-
ations, especially  at  the  beginning and end of  the  meas-
urement  time,  where  the  received  signals  are  relatively
weak; therefore, these signals cannot be entirely used. To
obtain  relatively  stable  ratios  for  each  temperature  and
salinity  for  calibrations,  a  time  window  of  7  ns  around
the position of  the  peaks  is  chosen to  determine the  ra-
tios S1 and S2, as shown in Fig. 4 with the gray region; the
amplitude  fluctuation  is  under  15%  in  this  regime.  The
final ratios were obtained by averaging over this particu-
lar time window.

S′1
S′2

SC1 = F1(S1) S′1

In  this  double-edge  method,  the  transmission  ratios
are related to the Brillouin shift and linewidth. The rela-
tionships  between  the  theoretical  transmission  ratios 
and  with the Brillouin shift and the Brillouin linewidth
are easy to build based on simulation, following proced-
ures  as  discussed  in  ref.25.  As  there  is  a  difference
between  the  theoretical  ratios  and  the  experimental
voltage ratios S1 and S2, a calibration is required by map-
ping  the  experimental  ratios  to  theoretical  ratios;  to
achieve  this, S1 and S2 were  first  recorded  when  water
was  set  at  different  temperatures.  Then,  the  calibration
relationships  between S1 and  and
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SC2 = F2(S2) S′2

SC1 SC2

 based  on S2 and  are  established.  With
these two  relationships,  based  on  the  measured  experi-
mental voltage ratios S1 and S2,  the calibration values of

 and  were obtained,  as shown in Fig. 5(a). In addi-
tion,  the  calibration  accuracy  was  tested  by  comparing
the theoretical values of the Brillouin shift and linewidth
to the values  deduced from the calibration transmission
ratios S1 and S2 at  different  temperatures,  as  shown  in
Fig. 5(b) and 5(c). The maximum difference between the
theoretical  and  deduced  values  for  Brillouin  shift  and
linewidth are 4.3 MHz and 3.2 MHz, respectively.

SC1 SC2

vCB Γ C
B

vTB
Γ T

B

vCB vTB
Γ C
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B

After calibration, this setup can measure the Brillouin
shift  and linewidth of  water  to  reconstruct  the Brillouin
spectrum  and  acquire  information  about  temperature
and salinity.  To  demonstrate  the  accuracy  of  the  Bril-
louin spectrum with this  method, the data for the water
temperature of 20.4 °C were measured and the Brillouin
spectrum  was  reconstructed  as  displayed  in Fig. 6(a).
Under this condition, the relative voltage ratios  and 
were  0.0274  and  0.0342,  respectively,  after  calibration
with averaging number of 170. Based on these ratios, the
calculated  Brillouin  shift  and  Brillouin  linewidth 
were determined to be 7.4515 GHz and 0.5734 GHz, re-
spectively. For water at a temperature of 20.4 °C and sa-
linity  of  0%,  the  theoretical  Brillouin  shift  and
linewidth  were 7.4459 GHz and 0.5772 GHz, respect-
ively. The difference between the  and  as well as the

 and  were  5.7  MHz  and  3.8  MHz,  respectively.
Moreover,  the  corresponding  simultaneously  retrieved
temperatures and  salinity  were  20.59  °C  and  0.45%,  re-
spectively, and the differences between the experimental
and theoretical predictions were 0.19 °C for temperature

and 0.45% for salinity. With an increase in the averaging
times,  the  accuracy  of  the  Brillouin  shift  and  Brillouin
linewidth  increased  considerably. Figure 6(b) presents
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the changes in the errors  of  the Brillouin shift  and Bril-
louin linewidth between the retrieved and theoretical val-
ues  for  the  water  temperature  of  20.4  °C.  It  shows  that
when the averaging number is more than 500, the mean
deviation for Brillouin shift and linewidth is less than 2.2
MHz and 1.4 MHz.

This proposed method can realize the measurement of
the Brillouin  scattering  spectrum and is  used  for  simul-
taneous acquisition of temperature and salinity, which is
important for water environment monitoring. To test its
ability, five groups of experiments, named A, B, C, D and
E, for water were performed. The water temperatures of
the  five  groups  were  20.4  °C,  22.6  °C,  24.8  °C,  26.6  °C
and  28.2  °C,  respectively;  all  water  salinities  were  0%.
The measurement results are shown in Fig. 7.

Figure 7 depicts the absolute deviations of the temper-
ature and salinity between the retrieved and real values at
different averaging times. Color lines represent the devi-

ation  for  different  groups,  and  black  dots  represent  the
square  root  of  the  averaging  number  where  a  factor  is
multiplied for comparison purposes. Due to the random-
ness  of  the  noise  signal,  the  differences  between  the
measured values  and  real  values  measured  by  the  ther-
mometer  are  large  at  a  low  number  of  averages.  As  the
averaging number  increased,  the  accuracy  of  the  meas-
ured temperature and salinity was considerably enhanced.
When  the  average  number  reaches  5000,  the  difference
between the retrieved and actual temperature is less than
0.1  °C;  for  salinity,  the  difference  is  less  than  0.5%.  In
general, the  temperature  deviations  and  salinity  are  in-
versely  proportional  to  the  square  root  of  the  averaging
number. Nevertheless, the accuracy is limited by the shot
noise  due  to  the  limited  number  of  detected  Brillouin-
scattered photons. Due to the intrinsic error of the system,
the  measurement  accuracy  gradually  tends  to  the  limit
with a further increase in the average number of times.
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In the  final  system,  used  in  real  applications,  the  dis-
tance between the telescope and the surface of the liquid
can be tuned to be longer. Correspondingly, the error in-
duced by the background stray light was partly removed.
The circuit  design,  optical  elements,  and path  also  need
to  be  further  optimized  to  improve  the  accuracy  of  the
retrieved temperature and salinity. This improved meth-
od  can  realize  the  water  profile  measurement  with  high
accuracy,  showing  a  potential  application  prospect  in
marine surveys.

 Conclusion
In  summary,  a  method  of  Brillouin  scattering  spectrum
measurement  is  proposed  based  on  the  double-edge
technique. By  detecting  two  edge  energies  of  the  Bril-
louin  peak  by  a  double-edge  filter,  the  corresponding
Brillouin shift and Brillouin linewidth can be calculated,
and the Brillouin spectrum can be reconstructed. An ex-
perimental setup was  built  and carried out  in  water  un-
der different conditions to verify the effectiveness of this
method. In this experiment, three signals—the reference
Brillouin scattering energy and two edge energies of  the
Brillouin peak  after  a  double-edge  filter —were  first  re-
corded.  After  calibration,  the  Brillouin  shift  and
linewidth were obtained and used for Brillouin spectrum
reconstruction.  The  calibrated  Brillouin  shift  and
linewidth were compared with theoretical predictions to
demonstrate the accuracy of the reconstructed spectrum.
The  differences  between  the  calculated  and  theoretical
values for Brillouin shift and linewidth were less than 4.3
MHz and 3.2 MHz, respectively. Furthermore, the exper-
imental  results  indicate  high  accuracy  of  the  retrieved
temperature and salinity, up to 0.1 °C and 0.5%, respect-
ively. This  improved  double-edge  method  has  signific-
ant potential  for  applications  in  water  profile  measure-
ments and oceanography.
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