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Nonlinear optics with structured light
Wagner Tavares Buono * and Andrew Forbes *

The interest in tailoring light in all its degrees of freedom is steadily gaining traction, driven by the tremendous develop-
ments in the toolkit for the creation, control and detection of what is now called structured light. Because the complexity
of these optical fields is generally understood in terms of interference, the tools have historically been linear optical ele-
ments that create the desired superpositions. For this reason, despite the long and impressive history of nonlinear optics,
only recently has the spatial structure of light in nonlinear processes come to the fore. In this review we provide a con-
cise theoretical framework for understanding nonlinear optics in the context of structured light, offering an overview and
perspective on the progress made, and the challenges that remain.
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Introduction
Structured light1 refers to the modern-day ability to tail-
or light  in all  its  degrees of  freedom (DoFs),  spatial  and
temporal,  to  create  complex  optical  fields  in  both  the
classical2−5 and  quantum6,7 domains.  Combining  DoFs
have given rise to novel  and exotic states of  light as 2D,
3D and even 4D fields, including optical knots8,9, skyrmi-
ons10,11,  Mobius  strips12,  spatio-temporal  fields13−16,  ray-
wave  structured  fields17,18,  quantum-like  classical
light19−21 and  photonic  wheels22. But  although  the  pro-
gress has been rapid of late, the topic itself can be dated
back  to  Thomas  Young  and  his  double  slit  experiment,
where arguably the first structured light was created. In-
deed, the very essence of structured light is the notion of
superpositions, where interference (not necessarily in in-
tensity) gives rise to the desired structure. Today one can
formulate all of structured light as a linear superposition
principle1, giving rise to geometric representations of the
superpositions,  from  the  orbital  angular  momentum
(OAM)23,  to the total angular momentum24 of light,  and

more  recently  a  generalised  framework  for  multiple
DoFs25.  For  example,  even  simple  plane  waves  hold  the
potential for structure: one plane wave may have a phase
gradient,  two  plane  waves  will  give  rise  to  an  intensity
structure  (as  done  by  Young  more  than  200  years  ago),
three plane waves can produce an optical phase singular-
ity,  while  multiple  plane  waves  can  give  rise  to  exotic
families  of  structured  light,  for  instance,  planes  waves
travelling on a cone give rise to Bessel beams26. If the in-
terfering plane waves are allowed to hold information in
another  DoF,  say  polarization,  then  just  two  can  create
exotic  polarization  structures27 and if  focussed,  will  cre-
ate synthetic chiral light in 3D28. It is clear that there is a
strong  link  between  interference,  a  linear  effect,  and
structured light. For this reason, the vast bulk of studies
involving structured light  have considered linear optical
elements, with only much more recent progress in non-
linear  optics  with  structured  light,  the  topic  of  this
review.

The invention of  the laser29 is  seen as fundamental  to
the development of the research field of nonlinear optics, 
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with the first nonlinear optical demonstration of second
harmonic  generation  (SHG)30 following  quickly,  soon
after  by  third  harmonic  generation31 and  SHG  carrying
spin  angular  momentum  (SAM)32.  The  reason  for  the
strong historical linkage is simple: nonlinear optical phe-
nomena  are  weak  and  typically  need  a  coherent  high
power  source  to  be  observed.  This  knowledge  can  be
dated back as far a Fresnel, who already understood that
wave  superpositions  could  transcend  the  linear  regime.
With  the  development  of  stronger  laser  sources  and
more  efficient  nonlinear  materials,  we  have  overcome
this requirement. It is only natural then that the study of
nonlinear  optical  phenomena  shifts  from  asking  “how
much  light  is  there? ”  based  on  efficiency  concerns  (in-
tensity being the key to address this),  to “what does the
light  look  like? ”  (the  structure  of  the  light).  Seminal
works  began  analysing  the  structure  of  the  generated
light  three decades ago33 with early  work demonstrating
the doubling of the number of singularities in the gener-
ated  field34.  Following  the  link  between  orbital  angular
momentum (OAM)  and  these  so-called  screw  disloca-
tions (see ref.35 and references therein), the use of OAM
carrying  Laguerre-Gaussian  (LG)  modes  in  nonlinear
optics  was  demonstrated36 followed  a  little  later  by  the
first production of quantum structured photons by non-
linear optics, demonstrating OAM entangled states37. Al-
though these important works set the scene, further pro-
gress has been slow, until only recently.

In this review we follow the progress in the field, from
intensity drive processes that serve to alter the frequency
of  the  pump  light,  to  the  present  day  nonlinear  toolkit
for the  creation,  manipulation  and  detection  of  struc-
tured light. We begin with the familiar wave mixing pro-
cesses of second order, which have been deeply explored
and continue to develop to this day, serving to exemplify
how counter-intuitive these interactions can be with the
introduction  of  structured  light.  We  then  move  on  to
show  the  types  of  media  that  allow  these  process  and
how they can also be structured, playing a crucial role in
recent advances. We expand into higher-order paramet-
ric  processes,  including  third  harmonic  generation  and
the generation of optical vortex solitons. Finally,  we cite
recent  developments  in  high  harmonic  generation,  an
extreme non-parametric process, and the unusual applic-
ations of nonlinear processes in the quantum regime. 

Theoretical background
The field of nonlinear optics is a venerable topic, and the

reader is referred to excellent textbooks on the topic38−40.
For the  benefit  of  the  reader,  We  begin  by  briefly  out-
lining the core theory needed for the review, and to this
end we begin with Maxwell's equations in the presence of
a medium. If condensed and rewritten in terms of a wave
equation, one finds,  [

∇×∇×+
1
c2

∂2

∂t2

]
E = −4π

c2
∂2P
∂t2

, (1)

E Pwhere  is  the  electric  field  and  is  the  polarization of
the medium. This describes the response of the medium
to the input electric field, and the counter response of the
polarised medium on the  field.  In  a  analogy  to  the  har-
monic  oscillator,  we  can do a  perturbative  expansion of
the medium polarization in a power series of the electric
field strength, 

Pi = χ(1)ij Ej + χ(2)ijk EjEk + χ(3)ijklEjEkEl + · · · , (2)

Pi i P χ(n) n−
n−

where  is the  component of  and  is the th or-
der susceptibility tensor, a tensor of the th order. The
first term is responsible for the well known linear optical
effects,  such  as  refraction  and  birefringence.  All  other
terms  are  referred  to  as nonlinear  parametric  effects,
which this review will mostly feature. This expansion de-
scribes  a  plethora  of  nonlinear  optical  effects,  such  as
wave-mixing,  self  and  cross  phase  modulation,  among
many.  For  example,  the  second  order  term,  with  its
second  order  susceptibility  tensor,  allows  the  medium
polarisability  to  be  separated  in  frequency  components.
Second  order  wave  mixing  can  result  in  effects  such  as
second harmonic generation, sum frequency generation,
difference frequency generation and optical rectification,
with a well understood rule set.

exp(iℓϕ)
ϕ ℓ

ℓℏ
ℓ

But  what  are  the  governing  principles  when  the  light
has  internal  structure?  In  this  review  we  will  often  use
scalar  and  vectorial  combinations  of  light  that  carries
OAM,  a  highly  topical  example.  Such  modes  of  light
have an azimuthal phase profile given by , where

 is  the azimuthal  angle and  is  the topological  charge,
for photons with  of OAM. For brievity we will refer to
OAM modes by their topological charge, . What are the
selection rules when such complex light fields are used in
nonlinear  processes?  As  we  will  show,  the  development
of  nonlinear  optics  with  structure  light  has  produced
complex behaviour  with  some  as  yet  unanswered  ques-
tions. Further, it is not always possible to find exact solu-
tions for  the  coupled equations  that  describe  these  phe-
nomena.  For  instance,  nonlinear  processes  of  even  the
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second  order  can  generate  coupled  wave  equations
whose  number  increases  directly  with  the  number  of
transverse modes involved.

With  suitable  approximations  (such  as  the  slowly
varying envelope approximation and lossless media) the
generated field in three wave mixing can take the form 

∂E(ω3)
3 (r)
∂z

∝ χ(2)E(ω1)
1 (r)E(ω2)

2 (r) . (3)

E′
3(r)

{E′
1(r) E′

2(r)} E′′
3 (r)

{E′′
1 (r) E′′

2 (r)}
E1(r) = E′

1(r) + E′′
2 (r) E2(r) = E′

2(r) + E′′
2 (r)

Similar differential equations are also derived for each
frequency,  initially  obtaining  three  coupled  differential
equations. While these equations were initally derived as
plane waves, structured light reveals more intricate inter-
actions.  For  example,  the  phases  and  intensities  are  all
intertwined:  reshaping  one  field  can  mean  completely
new  dynamics  and  new  structures  in  all  three  involved
fields. Due to the low conversion efficiency, a character-
istic  of  nonlinear  processes,  in  single-pass  geometry  we
can  make  use  of  the  non-depletion  approximation,
where  the  input  fields  can  be  regarded  as  static  and
therefore do  not  change  on  propagation.  These  equa-
tions  show  one  remarkable  feature  of  nonlinear  optics:
the  nontriviality  of  the  superposition  principle. For  ex-
ample,  let  us  associate  the  generated field  with in-
put  fields ,  and  generated  field  with
input  fields , .  If  now  we  use  as  inputs

 and  it  will

E3(r) = E′
3(r) + E′′

3 (r)

ω3 = ω2 + ω1

ω3 = ω2 − ω1

ω1

ω3 = 2ω1 = 2ω2

not  follow  that .  In  this  equation,
the vector nature of this interaction was omitted for sim-
plicity,  but  it  suffices  to  say  that  input  fields  have  the
same polarization  for  type-I  and  orthogonal  polariza-
tions  for  type-II. Equation  (3) describes  sum  frequency
generation  (where ) and,  if  considered  dif-
ference  frequency  generation ( ),  one  of  the
fields  ( )  would  be  complex  conjugated.  For  second
harmonic  generation  both  fundamental  fields  would
have  the  same  frequency  ( )  and  the  two
fundamental  fields would be identical  for type-I but not
necessarily for type-II.

The  expansion  of  these  fields  into  propagating  waves
in  different  directions  gives  us  the  phase-matching
quantity 

Δk = kω3 · r3 − kω1 · r1 − kω2 · r2. (4)

Δk = 0

That ensures that the light generated is  through a co-
herent  process  and  interferes  constructively  at  each
wavefront generation. When , this is referred to as
perfect phase-matching.

Figure 1 highlights a  few  differences  between  the  lin-
ear  and  nonlinear  regimes,  the  latter  illustrated  using
second harmonic  generation  as  an  example.  We  illus-
trate  that  the  generated  spatial  structure  is  not  simply  a
superposition, but  the  product  of  input  modes.  A  con-
sequence  is  that  while  the  original  modes  may  be
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Fig. 1 | Linear and nonlinear processes. Using second harmonic generation (SHG), we illustrate the differences between linear and nonlinear

processes. (a) Linear processes produce an output mode that is the addition of two input spatial modes of light, while SHG produces the product

of the two modes. The linear superposition of two different modes with orthogonal polarization states generates a vector beam, which has a in-

homogeneous polarization state. The polarization profile is represented as yellow lines across the transverse profile. In SHG, and wave mixing in

general, the polarization profile will dictate where wave mixing happens and thus alter directly the spatial profile. In (b) we show exemplify how

path can also be controlled via polarization and the different phase matching conditions of crystals, including the periodic poling of type-0. The

mechanism which allows these interactions is sketched in (c). Phase-matching is the condition necessary for wave mixing to occur and exploits

birefringence (types I and II) or periodical polling (type-0) to achieve it.
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ℓ = 4 ℓ = −4

eigenmodes  of  free  space,  the  final  mode  may  not.  For
instance, as shown in Fig. 1(a),  if  two OAM modes with
topological  charges  of  and  combine,  then
the superposition creates a petal-like structured which is
stable in  propagation,  while  the  nonlinear  process  cre-
ates a  ring-like  structure  with  no  OAM,  which  is  un-
stable in propagation.

Gm = m2π/Λ
Λ

Polarization also has a non-immediate role. In the lin-
ear  regime,  optical  beams  with  orthogonal  polarization
states  do  not  interfere  to  produce  fringes  (but  they  do
produce fringes in polarization27,41). In contrast,  in non-
linear media, they do interact through the coupled inter-
actions with  the  medium.  If  the  input  beam  has  a  in-
homogenous  polarization  profile,  i.e.  vector  beam,  then
this interaction  is  different  in  every  point  of  the  trans-
verse profile.  We illustrate  this  in Fig. 1(b) where a  vec-
tor beam used as input shows that SHG has different effi-
ciencies across the transverse profile. This can be seen as
a  projection  onto  one  of  the  crystals  axis,  generating  a
beam  with  a  uniform  polarization  state  and  its  spatial
structure is  influenced  by  both  polarization  and  struc-
tures of  the  fundamental  beams.  This  dependency  cre-
ates states that binds path, input polarization and spatial
mode.  To  understand  the  connection,  one  can  consider
the  schematics  in Fig. 1(b).  The  perfect  phase-matching
condition can be fulfilled for more than one propagation
direction at  the  same  time,  each  as  independent  pro-
cesses.  The  wavevectors  in  this  equation  are  considered
inside the matter  (often a  crystal),  where differently  po-
larized beams would see different refractive indices, craf-
ted  specifically  to  fulfill  this  condition in  types  I  and II.
For  type-0,  the  material  is  structured  with  a  periodic
polling,  which  gives  a  contribution  of  to
phase-matching where  is the domain length.

χ(2) kx,y,z
Δk

The  combination  of Eqs.  (3) and (4) exemplifies  the
role structured light's degrees of freedom (DoF) in wave
mixing,  encompassing  spatial  profiles  through  the
coupled  wave  equations  (Eq.  (3)),  polarization  in  the
phase-matching  (both  in  and )  and  path  in  the
phase-matching .  Only  by  considering  all  these  DoF
and  their  interaction  we  can  grasp  a  full  understanding
of nonlinear processes with structured light. 

Structured dofs and their nonlinear
coupling
By  choosing  sum-frequency  generation  and  breaking
wavelength degeneracy, it is possible to encode different
structures in each frequency. If one of the fields is phys-

ically  expanded  and  thus  approximated  to  be  a  plane
wave,  we  see  the  directly  transfer  and  manipulation  of
the  spatial  profile  of  a  beam  across  wavelengths42−44.  In
this  case,  the  lack  of  structure  of  one  field  enables  the
generated beam to completely inherit the structure from
the other.  By  using  different  spatial  modes  in  each  fre-
quency,  it  was  possible  to  perform OAM algebra45.  This
creates an interesting interaction where the wavelength is
used as a control parameter for the spatial structure.

ω3 = 2ω2 = 2ω1 E1 = E2

In  initial  works  with  SHG  it  was  observed  that  the
generated  field  would  be  proportional  to  the  square  of
the fundamental frequency36, as it is possible to see in Eq.
(3) if the conditions  and  are set.
This  describes  type-I  phase  matching.  If  the  vectorial
nature of  this  interaction  with  matter  is  chosen  accord-
ingly, it is possible to use type-II phase matching to have
different spatial modes in the same frequency but differ-
ent polarizations46,47, creating in the SHG a profile com-
posed of the product of two different modes of the same
frequency. Even in the collinear geometry configuration,
there is an interplay between the spatial and polarization
degrees of freedom.

The  path  degree  of  freedom  can  also  be  used:  in Eq.
(4) we can see that the phase-matching depends not only
on  the  material  but  on  the  propagation  direction  of  the
beams. If two beams are crossed inside the crystal so that
the phase-matching is fulfilled, a third beam is generated,
as  illustrated  in Fig. 1(c).  Using  this  it  was  possible  to
study  the  transverse  structure  transfer  in  SHG48 and  off
axis singularity combination49. In these cases (the former
is  shown in Fig. 2(a)) one input  wave can be approxim-
ated  as  a  plane  wave  and  the  other  has  nonzero  OAM.
The non-collinear  interaction generates  the  second har-
monic of both input modes with the square of the spatial
profile but also creates a third beam with the product of
them,  having  the  same OAM as  the  input,  but  different
polarization and wavelength.

θ
θ = 0

θ = 22.5

The three process depicted above are independent and
do  not  interfere  with  each  other.  Interestingly,  not  all
nonlinear process are independent. Using polarization as
a control parameter in type-II SHG, the authors realized
that nonlinear process can interfere destructively50. As il-
lustrated  in Fig. 2(b) two  input  beams  with  opposite
OAM and orthogonal  polarization states  pass through a
half-wave plate (HWP) at an angle  and impinge at the
crystal with a small angle. When  the phase match-
ing  conditions  are  only  satisfied  for  one  path.  For

° all  three  paths  have  equal  phase-matching
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θ = 45
conditions  satisfied  and  therefore  equal  intensities.
However,  when ° the  phase  matching  conditions
are satisfied for all paths, but the middle one has zero in-
tensity. This happens because there are two wave mixing
process occurring  on  the  same  path,  but  interfering  de-
structively. This interplay between path and polarization
enabled an opportunity for all-optical switching. 

Scalar structured light
The fields in Eq. (3) can be expanded in the well known
spatial  modes,  and  by  using  orthogonality  relations,  the
right-hand  side  of  this  equation  becomes  a  set  of  three

mode  overlap  integrals.  The  modal  description  of  this
process  has  resulted  in  a  important  result  regarding  the
interaction of light with matter, for example, the conser-
vation of OAM per photon in classical36,51 and quantum37

nonlinear processes.
Interestingly,  the  coupling  is  not  only  between  light

and  matter,  but  between  differences  in  structure  of  the
fields themselves,  particularly within a given family.  For
instance,  the  “untwisting”  of  the  azimuthal  phase  of  an
OAM Laguerre-Gaussian (LG) mode in turn altered the
radial index52,53, with the rules governing this interaction
only  recently  unveiled54,  and  shown to  be  true  for  wave
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Fig. 2 | Wave  mixing  with  different  degrees  of  freedom. In  (a),  the  authors  show  OAM  algebra  in  noncollinear  SHG.  When  type-II  phase-

matching is  used,  the same noncollinear  geometry allows for  polarization switching,  shown in  (b).  This  effectively  couples multiple  degrees of

freedom in a single process: path, polarization, radial and angular transverse structures. The radial selection rules of LG modes in wave mixing

are demonstrated in (c). There is a intrinsic relation between the radial and angular degrees of freedom, which is manifested in the propagation

dependence of the spatial profiles. In (d), a experimental scheme using a Sagnac interferometer achieves faithful frequency conversion of vector

light. Spin and orbital angular momentum are combined in second harmonic generation in (e). Figure repoduced with permission from: (a) ref.48,

Springer Nature; (b) ref.50, © Optica Publishing Group; (c) ref.54, © American Physical Society; (d) ref.69, American Physical Society; (e) ref.70, un-
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mixing processes of any order55. This intricate relation is
illustrated  in Fig. 2(c).  The  first  row  shows  a  process
where  two  different  radial  structures  are  used  as  inputs
and the state generated ends up as a superposition of dif-
ferent  radial  orders,  up  to  a  mode of  order  equal  to  the
sum of  the  input  orders.  On  the  second  row,  the  azi-
muthal phases cancel each other, generating higher radi-
al  orders.  Similar  processes  have  been  observed  with
Hermite-Gaussian  (HG)  modes.  Here,  their  separable
Cartesian form makes the interpretation of the selection
rules  far  more straightforward,  aided further  by the fact
that they are the natural solutions of the anisotropy of a
biaxial  crystal56,  an  important  aspect  in  optical  cavities.
Since these seminal studies, wave mixing with structured
light  has  included  Ince-Gaussian57,58 and  Bessel-Gaussi-
an59−62 modes, confirming  OAM  conservation  and  ex-
ploring the  selection  rules  of  these  families.  OAM  con-
servation  was  not  only  shown  for  integer  but  also  for
fractional topological charges63,64, in an off axis configur-
ation65 and even in plasmonic media66−68.  A summary of
the different behaviours structured light and its different
modes  can  have  in  second  order  nonlinear  wavemixing
are summarized in Table 1.

One might ask if there is there a recipe for the input to
the nonlinear process in order to obtain a desired output
structured field? The answer can be trivial, where one or
more  of  the  input  profiles  are  plane  waves  and  one  of
them  contains  the  desired  structure.  By  this  approach,
LG and HG structured modes have been created, as well
as general structured images71. When this is not possible,
the  HG basis  is  suggested  to  be  optimal72,  and has  been
used  for  high  fidelity  mode  generation73.  Because  wave
mixing allows for  light  modulation by  light,  the  process
can  be  adapted  to  be  used  as  a  detector  of  structured
light71,74,75,  and  has  been  used  to  detect  LG  and  HG
modes with very little modal cross-talk, in a manner ana-
logous to modal  decomposition76.  Even complex images
can be handled in this manner, with the benefit of noise
reduction (squaring a  signal  will  amplify  the strong and
the  decrease  weak).  For  this  reason,  this  has  been  an
emerging application  of  SHG,  with  demonstrations  in-
cluding  augmented  edge  contrast77,78 and contrast  en-
hancement  to  improve  recognition  of  human  faces  and
QR codes79. 

Vectorial structured light
So far we have considered the case where the structured

 
Table 1 | Behaviour of various structures of light in second order nonlinear wave mixing. Here, nx/ny are the indices for HG modes, ℓ, p
are the azimuthal/radial indices for LG modes and p/m are the parameters for Ince-Gaussian modes. Indices with primes, such as ℓ′′
are of fundamental field modes and the ones without are of the frequency generated.
 

Structure Behaviour observed Relations

Laguerre-Gaussian
OAM operations36,47,51

Radial selection rule53,54

ℓ = ℓ′ + ℓ′′
p ≤ p′+ p(ℓ′× ℓ > 0)

p ≤ min(|ℓ′|,|ℓ|) + p′+ p(ℓ′ × ℓ < 0)

Hermite-Gaussian
Independent selection rules56 nx ≤ n′x + n′′ (mod 2)

Optimal base for conversion72 ny ≤ n′y + n′′y (mod 2)

Ince-Gaussian DoF coupling 57
p ≤ p′+ p′′ (mod 2)

m0 ≤ m ≤ p (mod 2)

Helical Ince-Gaussian OAM conservation 57

p ≤ p′+ p′′ (mod 2)

m0 ≤ m ≤ p (mod 2)

mNet = m′ + m′′

Bessel-Gaussian
OAM doubling in SHG59

Transverse wavenumber superposition 60

ℓ = 2ℓ′
k⊥ = 2k′⊥

Bessel bottle beams Self-healing and divergence increase 62 -

Airy beams
Focusing distance related to wavelength
Vortex phase preservation(Ring-Airy)120

Direction switching in DFG121

-
-
 

Fractional OAM
Topological charge transfer 122

Birth of vortex and creation of radial orders 63

-
-

Anti-chiral vortices Radial-azimuthal coupled diffraction 55 -

Vector beams
Polarization singularity doubling in SHG 82

Faithful frequency conversion 69

Phase conjugation in StimPDC 90

-
-
-
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light  is  scalar,  so  that  the  polarization  is  homogenous
across the field. A complex vectorial structure is achieved
by  combining  orthogonally  polarized  states  such  that
each  has  its  own  unique  spatial  mode.  If  the  spatial
modes are  also  orthogonal,  then  the  polarization  struc-
ture of the field will be maximally inhomogeous3. On the
right-hand side of Fig. 1(a) we have an example of a vec-
tor beam with spin-orbit coupling. Two beams of ortho-
gonal circular polarization states and opposite OAM are
combined  to  form  a  complex  polarization  pattern.  The
yellow  lines  represent  the  linear  polarization  state  at
every  point  in  the  transverse  profile  at  a  given  angle.
Since nonlinear  wave  mixing  depends  on  both  the  spa-
tial mode and polarization DoFs, it might seem that a in-
homogenous  polarization  structure  would  be  bound  to
change  when  frequency  converted.  In  fact,  frequency
conversion of  vector  structured beams has  been charac-
terized as producing non-trivial scalar patterns in type-II
SHG80,81 and  having  an  altered  vector  structure  when
generated in SHG with sandwiched crystals82 and using a
Sagnac loop83.  In this sense,  the inhomogeneous state of
polarization  has  been  proposed  as  a  control  parameter
for  nonlinear  process50,84.  Recently  an  elegant  approach
was  realized  using  a  Sagnac  loop,  making  it  possible  to
convert a vector beam in frequency69,85,86 while retaining
the  polarization  structure,  as  illustrated  in Fig. 2(d).
Here, one input is a vector beam and the other a auxili-
ary beam, the latter having a somewhat flat intensity and
phase  distribution.  A  polarizing  beamsplitter  (PBS)  is
used  to  separate  the  vector  beam  into  two  components
where the loop shape makes them propagate in opposite
directions.  By  inserting  a  half-wave  plate  (HWP)  in  the
loop,  each  component  of  the  vector  beam  is  combined
with  an  orthogonally  polarized  co-propagating  plane
wave,  which  enables  faithful  frequency  conversion  of
each component independently. Lastly, the same PBS re-
combines both components back into a vector beam with
the same  spatially  structured  polarization  but  at  a  con-
verted  wavelength.  Some  observed  effects  of  vector
beams in wave mixing process are summarized in Table
1.  The  examples  provided  only  deal  with  second  order
processes.  A  theoretical  approach  was  already  proposed
to  characterize  the  full  vectorial  nature  of  wave  mixing
for  every  nonlinear  process  order,  based  on  input  and
output fields87, but has yet to be realised.

A  peculiar  effect  observed  in  the  nonlinear  regime  is
phase  conjugation,  where  the  generated  beam  has  the
conjugate (negative) phase of a impinging beam. The al-

lure  of  the  nonlinear  approach  is  that  no  knowledge  of
the initial phase is required for the process, unlike linear
phase  conjugation  that  always  requires  some  wavefront
sensing and adaptive control. In nonlinear optics this ef-
fect  was  first  achieved  and  historically  associated  with
four-wave  mixing,  but  it  has  been  shown  that  a  second
order  effect,  Stimulated  Parametric  Down  Conversion,
can partially achieve it, conjugating the transverse phase
structure88 but not the propagation direction. It has been
demonstrated  with  scalar89 and  as  well  as  vector90−92

beams. 

Spin-orbit coupling

ℓω

Sω
ℓ2ω = ℓω + Sω

In  paraxial  optics,  the  spin  angular  momentum and the
orbital angular momentum of a photon are treated as in-
dependent  degrees  of  freedom.  But  even  in  this  regime,
we can find instances of these two quantities coupled. A
notable example  is  a  special  group of  vectorial  inhomo-
geneous beams made of spatial modes carrying different
OAM in  polarization  components  carrying  SAM.  Be-
sides these vector vortex beams, conical diffraction93 has
been shown to produce optical  vortices  in the linear  re-
gime  depending  on  the  input  SAM,  effectively  coupling
them. Conical  diffraction  is  a  consequence  of  birefrin-
gence and has  been reported to  excite  second harmonic
generation  in  biaxial  crystals94−96.  The  combination  of
conical diffraction with nonlinear process such as second
harmonic generation  can  be  combined  to  create  cas-
caded processes  that  operate  both  on OAM and SAM97.
In  this  interesting  example,  the  SAM  is  converted  into
OAM by conical  diffraction,  but  only  partially.  The two
parts (converted  and  unconverted)  then  act  as  funda-
mental fields for a SHG process of each state. The result-
ing beams  from  this  conversion  also  suffer  conical  dif-
fraction,  having  their  OAM  altered  according  to  their
SAM.  By  starting  with  a  simple  Gaussian  beam  with
SAM, the  authors  show these  two DoFs can be  strongly
coupled  even  in  a  simple  material.  However,  these  two
degrees  of  freedom,  while  independent  and  possibly
coupled,  can  interact  in  a  nonlinear  process70, as  depic-
ted in Fig. 2(e). A spin-orbit coupled beam of OAM  is
combined inside the crystal with another beam only hav-
ing  SAM , resulting  in  the  generation  of  a  beam hav-
ing OAM . 

Intra-cavity dynamics
Lasers  are  a  well  known  nonlinear  device,  and  here  too
structured  light  laser  cavities  have  a  long  history  (see
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ref.98 for  a  review),  with  internal  frequency  generation
used  extensively  for  OAM  generation99 and  even  with
wavelength  tuneability100.  While  a  full  review  is  beyond
the scope of  this  article  (see refs.98−100 for  good reviews),
we briefly highlight some interesting advances. These in-
clude intra-cavity geometric phase101 for helicity control,
spin-orbit  effects102 with  high  purity,  vortex  OPOs103 to
move into the mid-infrared, wavelength and OAM tune-
able  lasers104 based  on  fibre  geometries.  Most  of  these
solutions have been at low power. Nonlinear laser ampli-
fiers  have  been  used  to  raise  the  power  levels,  both  in
bulk  crystals105 and  disks106 with vectorial  light,  includ-
ing  parameteric  amplification  of  ultrafast  structured
light107,  and  with  scalar  structured  light  in  Erbium fibre
amplifiers108 as well as by Raman amplification109.

Frequency  converting  cavities  for  structured  light  at
the source include the use of exotic intra-cavity elements
such  as  spatial  light  modulators  for  radial  modes110 and
metasurfaces  for  super-chiral  OAM  modes111, with  re-
cent  work  extending  to  vortex  lattices112 and  Poincaré
beams113.  Nonlinear optical  elements are often placed in
cavities to enhance the efficiency, but this too can influ-
ence modal structure. Nonlinear cavities such as Optical
Parametric  Oscillators  (OPOs)  show rich  behaviour  not
seen in free-space propagation. For example, controlling
the spatial properties of a Gaussian pumped triple reson-
ant OPO changes its  threshold and allows for  simultan-
eous oscillation of several mode pairs with fixed relative
phases46,  and  can  result  in  multiple  complex
patterns114,115.  A  thorough  study  on  the  influence  of  the
geometrical properties of the OPO on the generated spa-
tial modes can be seen in116 and their applications in con-
tinuous variable entanglement in117. The structured out-
put  can  be  tailored  by  structuring  the  pump56,118,  as  can
the geometry of the cavity itself119, making the cavity se-
lective to specific modes. 

Structured matter for structured light

χ(2)(r)

The nonlinearity we are discussing refers to the interac-
tion of light and matter. The structure of the output light
(created or detected) is therefore tailored by both the in-
put  light  and  the  medium,  allowing  the  latter  to  be
tailored.  This  is  achieved  when  the  medium  higher-or-
der susceptibility is no longer a constant but instead has
a  space  dependency,  e.g.,  for  the  second  order
term. The  structuring  of  the  medium can  be  a  very  im-
portant tool to shape the outcome of a nonlinear process.
We will  now present  two  of  the  more  prominent  struc-
tured media in the field: crystals and metasurfaces. 

Crystals
In  the  past  this  structuring  of  crystals  has  been  done
through  acousto-optic  modulators,  giving  rise  to  effects
such  as  Bragg  and  Raman-Nath  scattering,  modulating
the refractive  index  hence  the  phase  matching  condi-
tions  as  well.  The  modern  toolkit  includes  more  direct
manipulation  of  materials  (e.g.,  structured  photonic
crystal).  Phase  matching  in  nonlinear  photonic  crystals
has been well explained and explored123−125 with periodic
poling  playing  a  important  role  in  the  past  decade126,
branching into many applications, including a nonlinear
version of the Talbot effect127. By introducing a carefully
crafted  spatial  modulation  in  a  nonlinear  crystal,  it  was
shown to be possible to control the amplitude and phase
of the generated fields128−130. One highlight is the work il-
lustrated  in Fig. 3(a) where  the  authors  carefully  exploit
the  inversion  of  dipole  domains  to  “twist ”  light  as  it  is
created130.  At  any  point  in  the  fundamental  beam’s spa-
tial profile  there  is  light  conversion  with  the  same  effi-
ciency,  but  not  the  same  phase.  This  phase  modulation
acts as a medium-enabled nonlinear holography.

The phase-matching conditions involves not only ma-
terial  but  also  energy  constrains.  The  periodic  polling
can  not  only  enable  frequency  control131,132 but  when
multiplexed  it  achieves  phase-matching  for  multiple
wavelengths in the same crystal133. Recently, a novel pat-
tern in the periodic polling named quasi-periodic polling
achieved simultaneous  second  and  third  harmonic  gen-
eration134. Further, the structuring of the media is not re-
stricted to one dimension: by using oblique incidence on
a  periodically  polled  crystal  it  was  possible  to  couple
mode selection with phase matching135, coupling DoFs of
light  and  matter.  Photonic  crystals  can  be  structured  so
that  phase-matching  is  crafted  in  both  longitudinal  and
transverse directions136−138 so that light is structured as it
is  generated.  A  thorough  review  on  this  emerging  area
can be seen in ref.139.

An interesting combination of birefringence and peri-
odic polling can be seen in ref.140, where the spatial mac-
roscopic structure complements the unit cell structure to
achieve both  type-0  and  type-II  phase-matching  simul-
taneously. Besides  changing  the  structure  itself,  chan-
ging the orientation of the medium can achieve interest-
ing results.  The  sandwich  crystal  configuration  (a  com-
bination of two identical crystals optically joined but ori-
ented at  90°)  has  been employed for  the frequency con-
version of vector light82.

As  much  as  the  structured  of  the  medium  dictates
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phase-matching, the other way around also happens: we
can use this property of the medium from a material ana-
lysis  perspective141 and  use  these  nonlinear  process  to
characterize  crystals  according  to  their  symmetry
groups142. 

Metasurfaces
The structuring  of  the  medium is  not  exclusive  to  crys-
tals,  as  metasurfaces have been employed in many areas
and  nonlinear  optics  is  no  exception.  They  have  seen  a
lot of atention recently by achieving high conversion effi-
ciencies.  The  nanostructures  composing  these  crafted
surfaces are  capable  of  confining light  in volumes smal-
ler than the diffraction limit145,146, greatly enhancing non-
linear  effects.  Excellent  reviews  can  be  found  in
ref.145,147,148.  They  are  structured  by  definition  and  can
combine  wavelength  conversion  with  wavefront
control149−151,  spin-orbit  interactions152,  OAM operations
involving  SAM143,  image  encoding153 and  optical
activity154.  Two  illustrative  cases  can  be  highlighted:
OAM-SAM  interactions143 and  metalensing144. By  creat-

ing gold  meta-atoms  with  three-fold  symmetry,  the  au-
thors  in  ref.143 arranged the  metasurface  to  enable  azi-
muthal geometric phase and frequency conversion at the
same time, creating devices depicted in Fig. 4(a) that op-
erates on both SAM and OAM. In the second one, illus-
trated  in Fig. 4(b), the  authors  combine  a  novel  tech-
nique  that  exploits  Mie  ressonance  in  all-dielectric
metasurfaces  and third harmonic generation.  The phase
of  the  generated  wave  inherits  a  metalens  profile  from
the medium structure. This results in a process that illu-
minates an aperture with light of a given wavelength and
then, after passing through the metasurface, it is conver-
ted to its third harmonic and imaged at a focal point. All
in a  flat  and  compact  optical  component.  The  develop-
ment of metasurfaces has allowed tremendous growth in
nonlinear optics,  not  only  because  of  their  high  effi-
ciency,  but  their  fabrication  process  being  scalable  and
the high  damage  threshold  needed  for  laser  sources  in-
tegration.  In  ref.111 the  authors  demonstrate  how  a
metasurface placed inside a laser cavity can generate high
purity OAM modes from the source, depicted in Fig. 4(c). 
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Fig. 3 | Nonlinear Holography. In (a) the structuring of the medium is illustrated: the fundamental field is always the same, but the medium is

not. The selective inversion of the electric domain across the transverse plane creates different spatial structures in the second harmonic field.

The periodical transverse structure is responsible for multiple phase matching mechanisms, both longitudinally and transversely. In (b) it is shown

how non-collinear SHG can transfer a specific intensity pattern from one wavelength to the other. First row shows the imaging arrangement and

the second column shows the phase-matching conditions and an example of output modes. Right below is a experimental demonstration that this

can be used for real-time frequency conversion of computer generated holograms. Figure repoduced from: (a) ref.130, © American Physical Soci-

ety; (b) ref.158, © Optica Publishing Group.

Buono WT et al. Opto-Electron Adv  5, 210174 (2022) https://doi.org/10.29026/oea.2022.210174

210174-9

 



Nonlinear holography
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Since  very  early  in  the  study  of  nonlinear  optics,  it  was
understood  that  wave  mixing  meant  modulation  and
that this could be used for holography155.  In the original
version,  the  counter-propagating  fields  involved  in  the
four-wave  mixing  formed  a  grating  that  changed  the
generated  field.  Nowadays,  we  have  more  advanced
forms of holography. When looking at Eq. (3), it is clear
that  all  fields  involved  in  wave  mixing  influence  each
other  in  amplitude  and  phase.  But  more  importantly,  it
has  come to a  collective  understanding:  the optical  field
involved in wave-mixing can be seen as diffracted by the
other  involved  fields.  Going  back  to Eq.  (3) we  can  set

 to  be  a  plane  wave  and  a  diffraction  pattern,
both  in  a  non-depleting  regime  happening  only  at  a
single  plane in propagation.  This  would generate  a  field

 not  different  than  a  simple  plane  wave  passing
through the same diffraction obstacle.

In  this  sense,  by  shaping  the  fundamental  beam  as  a
hologram it  is  possible  to  modulate  the  generated beam
as it is created156. This process allows for holograms that
are self adaptive and depend on the generating fields, be-

ing  able  to  copy  or  regenerate  optical  modes157,  even
complex  patterns  in  real  time158. In  this  example,  illus-
trated in Fig. 3(b),  the authors  generate  a  hologram and
the light  affected by it  is  filtered in  the  Fourier  domain.
Only the first order, containing the intended pattern, and
the zero-th  order,  containing  a  Gaussian  profile,  are  se-
lected.  Those  are  used  as  inputs  for  non-collinear  SHG,
and  the  result  in  the  intermediate  path  is  the  frequency
conversion  of  any  pattern  encoded  in  the  hologram  in
real time. The authors demonstrate this by encoding the
holograms with frames of a movie of a running horse in
a infrared laser and detecting the same frames on the vis-
ible green light.

If the interaction happens in more than a single plane,
i.e. the medium is longer than a diffraction length, these
approaches  can  be  extended  to  three  dimensions  for
volume  holography159,160 in  nonlinear  crystals,  and  the
reader  is  referred  to  refs.161−163 for  excellent  reviews  on
this topic. 

Four-wave mixing
As  we  consider  higher-order  nonlinear  effects,
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Fig. 4 | Nonlinear  optics  enabled  metasurfaces. These  devices  were  shown  to  enable  non-trivial  interactions  while  frequency  converting

beams.  In  (a)  a  SHG process  coupling  SAM and  OAM.  The  combination  of  frequency  conversion  with  holography  creates  metasurfaces  with

metalensing properties in (b)144. An application taking advantage of the high damage threshold of these materials can be seen in (c)111 where the

inclusion of a metasurface inside an optical cavity creates a laser with OAM from the source. Figure repoduced with permission from: (a) ref.143, ©

American Chemical Society; (b) ref.144, under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License;

(c) ref.111, Springer Nature.
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wave-mixing becomes  increasingly  complex.  For  ex-
ample,  OAM  conservation  in  a  four-wave  mixing
(FWM) process  with  third  order  nonlinearity  was  ob-
served in cold cesium gas in ref.164 where only one beam
was  structured  with  OAM,  resulting  in  the  transfer  of
OAM  to  the  generated  beam  and  similarly  with  modal
superposition165. This was later expanded to include both
probe  and  pump  having  OAM166,167,  where  the  phase
matching  conditions  can  be  fulfilled  in  more  directions
than lower order process and this results in the creation
of a higher number of states created in different paths, as
depicted in Fig. 5(a). Beyond OAM, a hot atomic vapour
of 85Rb was used to generate Bessel  beams from Gaussi-
an  pumps  by  careful  control  of  the  phase  matching168.
With the same medium, a multimode four-wave-mixing
process  was  established  with  two  pump  beams  of  the
same frequency that crossed at  a small  angle,  producing
three photons that are highly correlated and could be ap-
plied  to  multipartite  entanglement  distribution169.  The
idea exploited the simultaneous fulfillment of two phase
matching conditions that reinforce one another.

Using a long medium approximation, radial and angu-
lar mode conversion by FWM in a heated Rb vapour was
demonstrated,  making  evident  the  role  of  the  Gouy
phase-matching  in  this  regime170.  Beyond  just  spatial
DoFs, the  spatial  and  temporal  DoFs  are  not  independ-
ent in this process171, where frequency control enables se-
lection of various spatial modes as outputs.

Recent  developments  with  dielectric  materials  have
been shown  to  enable  four-wave  mixing  with  high  effi-
ciency. These  materials  have  been  crafted  in  the  nano-
scale  as  plasmonic  nanoantennas172,173,
metasurfaces145−148,  nanodisks174, enabling  not  only  fre-
quency  conversion  to  a  wider  range  of  wavelengths  but
the  intrinsic  structure  also  motivated  simultaneous
wavefront shaping144. 

High-harmonic generation
High-harmonic generation  (HHG)  is  an  extreme  pro-
cess, not regarded as perturbative process and cannot be
represented  in Eq.  (2). This  can  be  seen  phenomenolo-
gicaly by the fact that all harmonics generated have com-
parable efficiencies, unlike parametric frequency conver-
sion.  Instead,  HHG  is  defined  by  the  ionization  of  the
medium: light impinging in a medium is strong enough
that it perturbs an electron bound to an atomic system to
the point where it escapes its bounding potential.  When
this electron is recaptured by an identical atomic system,

it  liberates  the  kinetic  energy  stored,  emitting  a  photon
of an  energy  many  times  the  absorbed  ones.  This  de-
scription  is  known  as  the  recombination  model175.  The
different  underlying  physics  makes  this  process  still  a
mystery  to  be  studied  in  the  context  of  structured  light
interaction  with  matter.  In  recent  years,  there  has  been
considerable  progress  tackling  this  problem.  One  might
wonder if OAM would be conserved or how SAM would
affect this process. A few studies observed that the polar-
ization of the impinging light can be controlled176 even at
isolated  pulses  timescale177. Regarding  the  spatial  struc-
ture, some  previously  unseen  behaviour  was  demon-
straded. When using optical phase vortices, OAM opera-
tions  happen  periodically  (along  harmonic  order)178.
Analogous to phase matching conditions in a non-collin-
ear  parametric  process,  it  was  possible  generate  many
other  beams  with  just  two  inputs  having  differing
OAM179, demonstrating OAM algebra. Not only the azi-
muthal  degree  of  freedom  was  studied,  but  the  radial
structure  was  also  studied  in  ref.180 to show  its  depend-
ency on the atomic dipole phase. An exciting application
is the control of generated spectral domain via structur-
ing the pump to generate an effective blazed active grat-
ing  in  gases181,182 and the  generation  of  autofocusing  in-
tense  beams183.  While  these  studies  were  done  separate,
others  show that  these  two DoF are  not  independent  in
this  process and use polarization as a control  parameter
of this process184,185.  Since the output was made of many
different frequencies with different OAM, this effect was
characterized  as  producing  Spatio-Temporal  vortex  in
extreme  UV186 and even  self-torque,  a  behaviour  previ-
ously not seen in light187. 

Space-time coupling
The  medium  cannot  interact  instantly  with  light:  first,
structured  light  interacts  with  a  medium  that  inherits
this structure momentarily. When the first light source is
no longer there,  a  second light source interacts  with the
medium and inherits  the structure of  the first  one.  This
effect  is  known  as  optical  memory  and  is  regarded  as  a
possibility  for  storing  quantum  information  in  a  multi-
dimensional state  space.  A  demonstration  of  this  prin-
ciple was observed in ref.188, where light interacting with
an atomic system (cold cesium gas) induced by a coher-
ence grating  lead  to  OAM  conservation,  a  first  step  to-
wards the  demonstration  of  optical  storage.  This  spa-
tially  dependent  coherence  transferred  to  the  medium
was  shown  be  maintained  in  time189,  reporting  storage
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times of up to 100 μs. It was shown in ref.190 that it is pos-
sible to store OAM in the same system and also retrieve
it  by  employing  Bragg  diffraction.  The  same  effect  was
also  achieved  in  ref.191 but  exploiting  a  different  effect:
coherent population  oscilation,  which  uses  the  long  re-
laxation  time  of  the  ground  state  of  an  open  two-level
system to store information carried by a light field. This
process is depicted in Fig. 5(b), where a writting stage is
the  interference  of  two  beams  carrying  opposite  OAM

inside the medium. The reading stage is a Gaussian beam
that enters the medium and exits with information from
a  beam  which  was  no  longer  there.  In Fig. 5(c) it  is
shown that  different  nonlinearity  orders  exhibit  differ-
ent  time  signatures,  which  can  be  used  as  a  control
mechanism192. Advancing on the path of long lived optic-
al memory  storage,  by  exploring  electromagnetic  in-
duced transparency, in ref.193 the authors were able to ex-
ecute  OAM storage  and  retrieval  as  a  reversible  process
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in single photon level.
While  the  process  described  above  couples  a  specific

structure  to  another  during  a  time  window,  there  are
light structures that are notorious for having its time and
space  non-separable:  the  spatiotemporal  optical
vortices14,194.  These  beams  exhibit  OAM  transverse  to
propagation  direction,  instead  of  usual  longitudinal
OAM of phase vortex beams. One might wonder if these
space-time structures  would  hold  in  the  nonlinear  re-
gime. Recent  works  showed that  in  SHG the spatiotem-
poral  OAM  is  also  conserved195,196,  while  also  reporting
effects such as time astigmatism and singularity splitting
due to group-velocity dispersion. 

Spatial solitons

χ(3) < 0

The self-focusing  action  of  a  medium  can  balance  pre-
cisely the diffraction of a beam, resulting in the creation
of  optical  solitons.  The  first  observed  optical  solitons
were  dark  vortex  solitons,  which are  phase  vortices  that
propagate  in a  self-defocusing medium with third order
nonlinearity 197. This means that the beam mod-
ulate  itself,  with  a  defocusing  effect  shaped  across  the
transverse plane  by  the  intensity  profile.  The dark  cent-
ral of a vortice would naturally increase due to propaga-
tion,  but  a  self-defocusing  effect  in  the  bright  regions
would  redistribute  the  intensity  of  the  ring  back  to  the
center.  The  balance  of  these  two  process  creates  a  dark
soliton: a  dark  region that  does  not  diffract  in  propaga-
tion.

On  the  other  hand,  bright  phase  vortices  suffer  from
azimuthal  modulation instability  in  self  focusing  media,
which results in their splitting and thus, were hard to be
observed. This type of instability in the transverse modu-
lation is  similar  to  one responsible  on the  filamentation
of beams and generation on trains of optical solitons198.

However,  by  using  non-centrosymetric  metal-dielec-
tric nanocomposites, higher-order nonlinear effects such
as  fifth  and  seventh  order  become  dominant  and  cause
self-phase  modulation199,200.  This  ultimately  allowed  for
the  observation  of  stable  bright  vortex  solitons  in
ref.201−204.  In Fig. 5(d) this  is  illustrated  in  two  columns:
lower  intensity  (left)  and  higher  intensity  (right).  For
lower  intensities,  the  natural  diffraction  of  the  beam
propagation happens as usual as the beam size increases
in  propagation.  For  higher  intensities,  the  beam  size
stays  roughly  the  same  in  a  short  propagation  distance
inside this medium. This happens because the self-mod-
ulation effect is  caused by nonlinear polarization of odd

orders which alternate in sign. The lower orders can sat-
urate, so by increasing intensity,  the higher  orders  non-
linear effects  becomes  dominant  and  balances  defocus-
ing with focusing. For more detailed information, excel-
lent reviews are found in refs.205−208. 

Quantum regime
Nonlinear  processes  have  long  been  associated  with
quantum optics as the source of entangled photons. The
most common source  of  entangled  photons  is  Spontan-
eous Parametric Down Conversion (SPDC)210, a  nonlin-
ear  process  at  its  core.  By  harnessing  entanglement  and
the  transverse  structure  of  the  photons  it  is  possible  to
increase  the  dimensions  of  quantum  protocols6.  This  is
often  achieved  by  post-selecting  a  particular  state,  the
choice of which affects the bi-photon entanglement spec-
trum in both its shape and dimensionality. This was first
realized using OAM37 and subsequently many transverse
structures were studied211−215,  as well as inhomogenously
polarized  beams92,216 and  multi-path  schemes217,218.  Soon
after it followed that it was possible to engineer the pump
profile to manipulate the bi-photon spectrum and gener-
ate  a  entanglement  spectrum  straight  out  of  the
source219−223.  Beyond  nonlinear  optics  for  creation,  the
detection  and  control  of  quantum  states  by  nonlinear
processes has been far less studies,  and very much in its
infancy.

Although  quantum  technologies  have  experienced
rapid  development  in  recent  years,  with  light  playing  a
key role, this has mostly been restricted to linear optical
solutions,  e.g.,  the  ubiquitous  beam  splitter.  For  optical
systems,  a  photon-photon  interaction  in  vacuum  is  not
possible. While this is partially true in matter as well, we
observe in the nonlinear regime a photon-photon inter-
action mediated  by  the  medium.  Unfortunately  this  in-
teraction is very unlikely to happen, but it does not mean
impossible as this mixture have seen important advances
recently (see ref.224 for a good review), with the building
block of  single  photon wave mixing225.  Nonlinear  optics
have  been  suggested  in  various  quantum processes226−229

and even used for Bell filters230 for polarization, entangle-
ment  swapping231 and  a  quantum  repeater  device232,233.
Only  recently  has  structured  light  entered  the  equation,
with a nonlinear version of spatial teleportation demon-
strated with up to 10 modes, overcoming the significant
hurdle of  ancilliary photons and settting a new state-of-
the-art of 10 dimensional teleportation234. 
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Conclusion
In  this  review  we  have  touched  many  topics  regarding
nonlinear optics  with structured light.  Unlike linear op-
tics,  which generally act on only one degree of freedom,
these  process  have  the  intriguing  feature  of  coupling
many DoFs  through the  properties  of  the  medium.  The
possibility is for compact solutions for the creation, con-
trol  and  detection  of  structured  light,  yet  many  open
questions  remain:  what  structures  can  we  create?  How
can  we  transfer  structures  within  and  between  DoFs?
What  is  the  exact  input  one  would  need  to  generate  a
specific  desired  output?  These  questions  are  still  open
even  in  the  lowest  order  of  wave  mixing.  As  new  light-
matter interactions  are  discovered  in  the  nonlinear  re-
gime, it is exciting to see how their structures couple and
what insights can be deduced.

From  real  time  holographic  transmission  to  optical
memory effects, from bulk crystalline media to sparse gas
jets, there are many physical phenomena that are nonlin-
ear optical processes. The development of new materials,
techniques and interactions, alongside ever more power-
ful laser sources, all signal an exciting future for nonlin-
ear control of structured light,  and structured light con-
trol of nonlinear processes.
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