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Ultra-high resolution strain sensor network
assisted with an LS-SVM based hysteresis model
Tao Liu, Hao Li, Tao He, Cunzheng Fan, Zhijun Yan, Deming Liu and
Qizhen Sun*

Optical  fiber  sensor  network  has  attracted  considerable  research  interests  for  geoscience  applications.  However,  the
sensor  capacity  and  ultra-low  frequency  noise  limits  the  sensing  performance  for  geoscience  data  acquisition.  To
achieve a high-resolution and lager sensing capacity, a strain sensor network is proposed based on phase-sensitive op-
tical time domain reflectometer (φ-OTDR) technology and special packaged fiber with scatter enhanced points (SEPs) ar-
ray. Specifically, an extra identical fiber with SEPs array which is free of strain is used as the reference fiber, for com-
pensating the ultra-low frequency noise in the φ-OTDR system induced by laser source frequency shift and environment
temperature change. Moreover, a hysteresis operator based least square support vector machine (LS-SVM) model is in-
troduced  to  reduce  the  compensation  residual  error  generated  from  the  thermal  hysteresis  nonlinearity  between  the
sensing  fiber  and  reference  fiber.  In  the  experiment,  the  strain  sensor  network  possesses  a  sensing  capacity  with  55
sensor elements. The phase bias drift with frequency below 0.1 Hz is effectively compensated by LS-SVM based hyster-
esis model, and the signal to noise ratio (SNR) of a strain vibration at 0.01 Hz greatly increases by 24 dB compared to
that of the sensing fiber for direct compensation. The proposed strain sensor network proves a high dynamic resolution of
10.5 pε·Hz-1/2 above 10 Hz,  and ultra-low frequency sensing resolution of  166 pε  at  0.001 Hz.  It  is  the first  reported a
large sensing capacity strain sensor network with sub-nε sensing resolution in mHz frequency range, to the best of our
knowledge.
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Introduction
Discovering the physics and dynamics of the solid earth
is essential to meet the challenges of natural hazards, en-
ergy crisis, and climate changes. Solid earth geoscience is
a data-driven filed which demands large datasets of geo-
logical  events1. For  geoscience  data  acquisition,  it  is  re-
quired  to  sense  the  earth’s  crustal  deformation  with  a
strain  resolution  less  than  10-9 ε  in  a  frequency  region
from static  to  100 Hz2.  Moreover,  in  order  to  refine  the

structure image of the errors induced by the Earth crustal
damage, the  strain  sensing  for  geoscience  research  re-
quires  denser  spatial  coverage  of  individual  sensors  and
more  accurate  recording  instruments3.  The  broadband
seismometer networks represent the state of arts techno-
logy and provide high quality Earth crustal  deformation
waveforms  with  broadband  frequency  content4.
However,  the  dense  seismometer  networks  deployed  in
areas  where  access  and  power  supply  are  limited  will
consume a great effort and resources5. 
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Recently, optical fiber strain sensor has attracted con-
siderable  research  interests  for  geoscience  applications,
owing to  their  unique  advantages  of  passive,  multiplex-
ing, and anti-electromagnetic interference6. For instance,
optical  fiber  Bragg  grating  (FBG)  based  sensors  have
been  widely  exploited  to  monitor  the  earth  tide,  which
possess  a  minimum  static  strain  resolution  of  270  pε2.
However,  the  multiplexing  capacity  of  the  FBG  strain
sensors  is  limited  by  the  bandwidth  of  the  reflection
spectrum.  Moreover,  the  signal  crosstalk  between  the
sensors in the FBG sensor network will increase the noise
floor  of  measurement7.  Hence,  the  sensing  range  and
spatial  coverage  density  of  the  high-quality  single  point
optical fiber  sensor  networks  should  be  further  pro-
moted.

As  an  alternative  approach,  optical  fiber  distributed
acoustic sensor  (DAS),  which  offers  a  long  sensing  dis-
tance  without  blind  area8,9,  has  demonstrated  efficient
seismic acquisition ability in seismology application such
as natural hazard prediction and crust exploration10,11. In
general, DAS, which is realized based on phase-sensitive
optical time  domain  reflectometry  (φ-OTDR)  techno-
logy, can  interrogate  the  strain  and  temperature  vari-
ations along the entire length of an optical fiber12,13. With
current technologies, DAS has achieved a dynamic strain
resolution  down  to  nano-strain  level14.  Moreover,  the
quasi-DAS assisted with ultra-weak FBG array has  been
proposed  with  pico-strain  dynamic  resolution  above  10
Hz frequency range15,16.  Due to the high sensitivity, high
spatial and  temporal  resolution,  DAS  has  been  de-
veloped  and  used  for  broadband  seismic  monitoring  in
oil/gas exploration17. Nevertheless, the frequency shift of
the  laser  source,  as  well  as  the  cross-sensitivity  between
temperature and strain,  severely ruin the signal  to noise
ratio  (SNR)  of  the  DAS  in  low  frequency  band18,19.  The
noise  in  ultra-low  frequency  band  of  the  DAS  system
limits  the  availabilities  for  nature  earthquake  recording
and earth tide monitoring. In order to improve the sens-
ing performance in low-frequency domain, many efforts
have been done to suppress the phase drift of the φ-OT-
DR. F. Zhu proposed an active compensation method to
reduce the laser frequency shift influence by tracking and
comparing the OTDR intensity traces with different fre-
quencies19.  But the response time of this  method will  be
limited by  the  number  of  tuning  frequencies.  Further-
more,  Q.  Yuan  has  demonstrated  the  twice  differential
method  to  compensate  the  influence  of  laser  frequency
shift,  and  successfully  detected  the  strain  variation  with

amplitude of 5.9 nε at 0.1 Hz20. However, the strain resol-
ution  of  the  DAS  in  the  mHz  range  is  still  much  worse
than  the  high-quality  single  point  optical  fiber  sensor.
Actually, the quasi-static measurement from mHz to Hz
is  essential  to  the  solid  earth  geoscience  research.  To
sense  the  mHz  strain  information  with  high  sensitivity
and  dense  spatial  coverage,  it  is  necessary  for  the  ultra-
low frequency noise of the DAS to be greatly suppressed.

In  this  paper,  we  demonstrated  a  high-resolution
strain  sensor  network  with  large  sensing  capacity  based
on  φ-OTDR  technology  and  scatter  enhanced  points
(SEPs)  array.  In  the  prototype  system,  the  optical  fiber
with SEPs  array  is  divided  into  sensing  fiber  and  refer-
ence fiber. The reference fiber packaged with strain isola-
tion is used to compensate the ultra-low frequency noise
induced by  laser  source  frequency  shift  and  environ-
mental  temperature  change.  The  characteristics  of  the
above  phase  noise  are  systematically  analyzed.  Then,  a
hysteresis  model  based  on  the  hysteresis  operator  and
LS-SVM  is  introduced  to  reduce  the  thermal  hysteresis
between  the  sensing  fiber  and  reference  fiber.  Assisted
with the LS-SVM based hysteresis compensation scheme,
a strain sensor network with high resolution in the ultra-
low  frequency  and  large  sensing  capacity  is  successfully
achieved. 

Experimental section
 

Experimental setup
In order  to  achieve  a  large  sensing  capacity,  the  pro-
posed high-resolution strain sensing network is interrog-
ated by  the  φ-OTDR  technology.  The  schematic  dia-
gram of the proposed sensing network for geoscience re-
search  is  illustrated  in Fig. 1. The  sensing  network  con-
sists of an interrogation office center and a special pack-
aged sensing cable. In the interrogation system, an ultra-
narrow linewidth laser (NKT x15) with linewidth of 100
Hz is used as a light source which is divided into a local
oscillator  laser  and  a  probe  laser  by  a  99:1  optical
coupler.  The  probe  laser  is  modulated  into  a  series  of
pulses with frequency shift of 200 MHz by the acoustical
optical  modulator  (AOM).  After  amplified  by  erbium
doped fiber amplifier (EDFA), the pulses are injected in-
to  the  sensing  cable  by  a  circulator.  The  backscattered
light from the sensing cable is mixed with the local oscil-
lator laser by a 50:50 coupler and then received by a bal-
anced  photodetector  (BPD).  Data  acquisition  card
(DAQ)  is  used  to  acquire  the  heterodyne  beat  signals
from the BPD.
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The  sensing  cable  is  based  on  the  specific  packaged
optical fiber with SEPs array21. The SEPs are inscribed by
laser exposure on the single mode fiber (SMF) with a giv-
en interval.  The  scattering  efficiency  of  the  SEPs  is  im-
proved by 10 dB compared to the Rayleigh scattering of
the  SMF22.  A  pair  of  SEPs  along  with  the  fiber  between
them compose one sensing section.  The fiber with SEPs
array  is  divided  in  to  sensing  fiber  and  reference  fiber
with the same SEPs number23. The sensing fiber is for the
sensing of strain, and the reference fiber is  for the com-
pensation of the phase drift induced by the environment-
al temperature  and  laser  frequency  variation.  The  sens-
ing  sections  in  the  sensing  fiber  and  reference  fiber  are
respectively  defined  as  sensing  channels  and  reference
channels. The SEPs of the sensing channels and the cor-
responding  reference  channels  are  aligned,  and  fixed
with the sensing cable by epoxy curing agents. The sens-
ing fiber in the cable is applied with a pre-strain for sens-
ing of the strain of the cable. While the reference fiber is
loosened  in  the  cable  to  isolate  the  strain  of  the  cable.
Generally,  the  different  packaging  method  will  induce
the length difference between the sensing fiber  part  and
reference  fiber  part,  which  will  introduce  the  different
sensitivity for temperature and laser frequency vibration
as  well.  However,  the  sensitivity  difference  between  the
sensing fiber part and reference fiber part is linear, which
can  be  eliminated  by  linear  fitting.  When  the  spatial
width of  the injected probe pulse is  shorter than the in-
terval between two SEPs of the sensing section, the detec-
ted interference  signal  behaves  as  a  series  of  beat  fre-
quency pulse trains, which can be described as: 

I(t) = A
N∑

n=0
[rect

(
t− zn · n0/c

τp

)
· cos(2πfdt+φn)] ,

(1)
where A is the amplitude of the interference signal, N is

the  number  of  the  SEPs  in  the  fiber, n0 is  the  refractive
index of the fiber core, c is the light speed in the vacuum,
τp is the pulse width of the probe laser, zn is the location
of  the n-th  SEPs  in  the  fiber,  and φn is  the  phase  of  the
scattering  light  of  the n-th  SEP. φn can  be  demodulated
from  the  interference  signal  by  the  digital  orthogonal
phase discrimination method, which is deduced as: 

φn = arctan(
In(t) · cos(2πfdt)
In(t) · sin(2πfdt)

) , (2)

where In(t)  is  the interference signal  scattering from the
n-th  SEP.  Theoretically,  the  phase  difference  between
two SEPs is only dependent on the change of optical path
in  the  sensing  section24, which  can  be  obtained  by  sub-
tracting the phase of two SPEs in the sensing section, as
expressed blow: 

φ(k) = φk+1 − φk =
4πn0νLεk

c
, (3)

where k=1,2,  ···, N−1 is  the  number  of  the  sensing  sec-
tion  in  the  fiber, ν is  the  optical  frequency  of  the  laser,
and εk is  the  strain  applied  on  the k-th  sensing  section.
When ν and n0 are constant, the phase signal in the k-th
sensing section will be only proportional to εk. However,
it  can  be  observed  clearly  that  the  phase  signal  of  the
sensing section φ(k)  will  be  also  influenced by variation
of  the  laser  frequency ν and  refractive  index n0. Gener-
ally, the laser frequency ν will shift along with the envir-
onmental temperature drift, and the refractive index n0 is
also significantly  influenced  by  the  temperature  vari-
ation of the fiber core. Thus, the laser frequency shift and
fiber  temperature  fluctuation  are  the  dominant  noise
sources in the ultra-low frequency domain.

In  the  proposed  strain  sensor  network,  a  reference
fiber with  strain  isolated  package  is  employed  to  com-
pensate  the  phase  noise  in  low  frequency  band  induced
by environmental temperature and laser frequency shift.
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Fig. 1 | Schematic diagram of the proposed high-resolution strain sensor network.
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The  compensation  efficiency  is  dependent  on  the  phase
relationship between  the  sensing  channel  and  corres-
ponding  reference  channel.  In  order  to  investigate  the
phase variation  characteristics,  the  laser  frequency  vari-
ation and temperature change were applied on the sens-
ing  cable  for  test.  When  the  laser  frequency  variation
with  amplitude  of  600 MHz and frequency of  1  Hz was
introduced  by  frequency  demodulation,  the  phase
change of the sensing part and reference part are respect-
ively plotted in the Fig. 2(a). The phase waveforms of the
sensing channel and reference channel are identical with
the variation of  the  laser  frequency.  Moreover,  the  rela-
tionship of  the phase change between the sensing chan-
nel and reference channel is linear, which is illustrated in
Fig. 2(b). Therefore, the phase noise induced by laser fre-
quency shift  can  be  compensated  by  direct  differenti-
ation.

Furthermore, the temperature fluctuation and the cor-
responding  phase  change  are  plotted  in  the Fig. 3(a),
where  the  trigonometric  temperature  fluctuation  with
the amplitude of 5 °C was applied by a TEC. From Figs.

3(b) and 3(c), the  hysteresis  phenomenon  can  be  ob-
served  between  the  temperature  and  phase.  Moreover,
the relationship between the phase change of the sensing
channel  and  reference  channel  also  exhibits  an  obvious
hysteresis  characteristic,  as  shown  in  the Fig. 3(d).  The
hysteresis stems  from  different  temperature  features  in-
duced by the different package methods, which will bring
about a  significant  compensation  error  by  direct  differ-
entiation.  Therefore,  a  precision  hysteresis  model
between  the  sensing  channel  and  reference  channel
should be built to reduce the temperature compensation
error. 

Hysteresis operator
Research on the hysteresis has a long history about a cen-
tury.  The  Preisach  model,  which  has  been  widely  used
for the modeling of hysteresis, has been developed based
on incorporates relay operators25,26. Relay operator is the
simplest  example  for  a  hysteresis  nonlinearity,  which  is
characterized  by  threshold a1<a2 and  output  values  +1
and  –1,  as  depicted  in Fig. 4(a).  For  a  given  input x(t),
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the  output  of  the  Preisach  model y(t)  can  be  expressed
as27: 

y(t) =
w +∞

0

w +∞

−∞
d(r, s)Rs−r,s+r[x](t)dsdr , (4)

where d(r, s)  is  the  density  function, Rs−r,s+r[∙] is  the  re-
lay  operator, r=(a2−a1)/2  is  the  half-width  value,  and
s=(a1+a2)/2 is the mean value of the relay operator. A di-
viding curve, ψ(r, t), is defined to divide the relay operat-
or into two distinct regions.  The output value of the re-
lay operator is +1 in the region below the curve and -1 in
the  region  above  the  curve,  respectively.  The  dividing
curve ψ(r, t)  can be  considered as  the  play  between two
mechanical elements of relay. Therefore, a play operator
Pr[x] is determined, and the corresponding input-output

behavior  is  illustrated  in Fig. 4(b).  Mathematically,  the
play operator can be obtained by linear superposition of
relay elements as follows27: 

ψ(r, t) = Pr[x](t) =
1
2

w +∞

−∞
Rs−r,s+r[x](t)ds . (5)

Therefore, the Preisach operator can be expressed as: 

y(t) =
w ∞

0
q(r, Pr[x](t))dr , (6)

where 

q(r, s) = 2
w s

0
w(r, σ)dσ . (7)

According to the general form in Eq. (7), the Preisach
model can be decomposed into a continuous set  of  play
operators  and  a  one-to-one  mapping  function.
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Generally,  the  input-output  relationship  of  the  Preisach
model can be defined as: 

y(t) = F(Pr[x](t)) , (8)

where F(∙) is a function that maps the play operators set
in the real-valued output y(t).  Thus,  the Preisach model
can  be  implemented  by  approximating  the  mapping
function based on the input and output value of real hys-
teresis  materials  through  some  identification  methods,
such as nonnegative least squares. 

Least square support vector machine model
Least square support vector machine (LS-SVM) has been
successfully  introduced  in  modeling  application  for  the
global  optimization  property28. Compared  to  the  stand-
ard  SVM,  LS-SVM  uses  the  least  squared  loss  function
instead of the ε-insensitive loss function. Hence, the ana-
lytical  solutions  of  LS-SVM  can  be  obtained  by  solving
linear equations instead of quadratic programming prob-
lem. For a given training data set {(ui, yi), ui∈Rn, yi∈R},
the LS-SVM model is expressed as: 

y(u) = wT · f(u) + b , (9)
where f(u)  is  the  nonlinear  mapping  from  the  input
space to higher feature space, w is the weight vector, and
b is the bias. The optimization problem in the LS-SVM is
obtained through the equation: 

minR(w, ξ) = 1
2
∥w∥2 + C

n∑
i

ξ2i

s.t. yi = wT · f(ui) + b+ ξi, i = 1, 2, ..., n ,

(10)

where C is the regularization parameters, and ξi is the er-
ror between the actual output and predictive output. The
problem can be solved by defining the Lagrangian equa-
tion as follow: 

L(w, b, ξ, a) = R(w, ξ)−
n∑
i
ai(wT · f(ui) + b+ ξi − yi) ,

(11)
where ai is the Lagrangian multiplier. The conditions for
optimality are the saddle point of L, which can be found
by solving the partial derivatives. After eliminating the w

and ξi, the solution is given by the following linear equa-
tions:  [

0 eT
e Ω+ I/2C

] [
b
a

]
=

[ 0
y
]
, (12)

where e=[1,  ···,  1]T, y=[y1,  ···, yn]T, a=[a1,  ···, an]T are the
support  vectors, I is  the  identity  matrix,  and  the  Gram
matrix Ω is defined as follows: 

Ωij = K(ui, uj) = f(ui)·f(uj) (i = 1, · · · , n; j = 1, · · · , n) ,
(13)

where K(ui, uj) is the kernel function, which can be used
to  avoid  the  computation  of  the  mapping  function f(u).
Thus, the LS-SVM model for function regression can be
formulated as: 

y(u) =
n∑

k=1

akK(u, uk) + b , (14)

where ak and b are the solutions of the Eq. (13). The ker-
nel function must satisfy the Mercer condition29. The ra-
dial base function (RBF) kernel is widely used in nonlin-
ear function regression, which is expressed as: 

K(u, uk) = exp
(
−∥u− uk∥

σ

)
, (15)

where σ is the width parameter of the KBF kernel. There-
fore,  for preassigned hyperparameter σ and C, the map-
ping  function  can  be  determined  through  Eq.  (13).
Moreover,  the  hyperparameters σ and C determine  the
generalization  ability  and  complexity  of  the  LS-SVM
model, which should be optimized to ensure a high mod-
eling accuracy along with high testing accuracy. 

LS-SVM based hysteresis model
To establish a Preisach model, the density function d(r, s)
of the  model  should  be  approximated  from  real  hyster-
esis  loops.  In  the  classical  Preisach  model,  the  model
parameters can  be  tuned  by  two  approaches.  One  ap-
proach is predefined mathematical forms with a few free
parameters30, and another approach is using the numer-
ical  density  function  whose  values  are  identified  by  the
method of nonnegative least squares31. However, both of
the  two  methods  are  complex  and  time-consuming.  As
an alternative  approach,  the  LS-SVM is  an  adaptive  ap-
proximation  strategy,  which  can  be  used  as  a  general
function  estimator  to  approximate  the  Preisach  model
mapping  function F(∙).  The  LS-SVM  based  hysteresis
model consists of two parts: a discrete play operator, and
a memoryless  mapping function,  which are exhibited in
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Fig. 5. The discrete play operator memory is used to con-
vert  the  Preisach  model  in  Eq.  (7)  into  a  discrete  form,
which comprises m play operators with threshold values
r1, r2,  ···, rm.  The threshold values are determined by the
following equation: 

ri =
i

m+ 1
· |x|max, i = 1, 2, · · · ,m , (16)

ẋ (t)

ẋ (t)

where |x|max is the maximum absolute value of the input
x(t).  The  number  of  the  hysteresis  play  operator m de-
termines  the  modeling  accuracy  and  complexity  of  the
hysteresis  model.  Additionally,  due  to  that  the  classical
Preisach  model  is  a  rate-independent  hysteresis  model,
the rate of the input signal  is included in the model
so  that  the  model  can  be  used  to  estimate  the  rate-de-
pendent hysteresis  behavior.  Therefore,  the input vector
of the LS-SVM u consists of m play operators, input sig-
nal x(t), and the rate of input . Formally, the output
function of play operator z(t)=Pr[x](t) on each subinter-
val  [ti, ti+1],  where x(t)  is  piecewise  monotonic  on
0=t0<t1<t2<…<tN=tE, is inductively defined by27: 

z(0) = pr(x(0), 0),
z(t) = pr(x(t), z(ti)),

for ti < t < ti+1, 0 ≤ i ≤ N− 1 , (17)

where 

pr(x, y) = max{x− r,min{x+ r, y}} , (18)

where r is the threshold value of the play operator. After
converting the model input x(t) into the discrete paly op-
erators,  the  operator  vectors  set  are  used  to  obtain  the
memoryless function F(∙) through the memoryless map-
ping  function,  which  is  established  by  a  LS-SVM.  The
LS-SVM  is  trained  though  the  Eq.  (13)  with  the  given
training  data.  The  hyperparameters σ and C of  the  LS-
SVM  are  tuned  by  the k-fold  cross-validation  to  ensure
the high generalization ability of the hysteresis model. 

Results and discussion
In the experiment, an optical fiber with 112 SEPs array is

enclosed in the sensing cable with the packaging method
as  shown  in Fig. 1. The  SEPs  array  possess  -45  dB  re-
flectivity  with  an  interval  of   5  m.  When  a  probe  laser
pulse is injected into the sensing cable, the coherent beat
signals backscattering  from  the  sensing  cable  are  recor-
ded  in Fig. 6(a).  It  is  obvious  the  backscattering  signal
has 112 stable beat frequency pulses with high SNR, cor-
responding to  112 SEPs.  The former 56 beats  frequency
pulses  scattering  from  the  SEPs  belong  to  the  sensing
fiber and the latter part come from the reference fiber. As
the sensing  principle  describes  above,  the  56  beat  fre-
quency  pulses  from  the  sensing  fiber  or  reference  fiber
can compose into 55 sensing channels Si (1≤i≤55) and 55
reference channels Ri (1≤i≤55), respectively. The sensing
channel  Si and  the  corresponding  reference  channel Rj

(j=56-i)  are  combined into  a  sensor  element.  Therefore,
the  proposed  strain  sensor  network  can  interrogate  a
sensing cable  with 55 sensing elements.  To calibrate  the
strain sensitivity of the sensor elements,  the static strain
from  2  με  to  20  με  with  a  step  of  2  με  is  applied  to  the
sensor  element  28  at  the  end  of  the  sensing  cable  by  a
precision  displacement  stage.  The  relationship  between
the phase  change and the  applied strain amplitude is  il-
lustrated  in Fig. 7,  which presents  a  high sensitivity  of  -
47.04  rad/με  and  high  precision  with R-square  over
0.999.
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To  train  the  hysteresis  model  between  the  sensing
channel  and  reference  channel,  a  triangular-wave
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Fig. 5 | Block diagram of the LS-SVM based hysteresis model.

Opto-Electron Adv  4, 200037 (2021) https://doi.org/10.29026/oea.2021.200037

200037-7

 



temperature with the same period and variable  rate  was
applied to the sensor element 28,  which is  shown as the
red  line  in Fig. 8(a).  The  triangular-wave  temperature
fluctuation used to train the LS-SVM model can provide
a  temperature  change  with  different  input  rate,  which
can construct a complete set of training data. The corres-
ponding  phase  of  the  sensing  channel  and  reference
channel are also plotted in the Fig. 8(a), respectively. The
relationship  between  the  sensing  channel  and  reference
channel  is  illustrated  as  the  color  scatter  distribution  in
Fig. 8(b).  The  hysteresis  loops  curve  reveals  that  the
thermal hysteresis  characters  of  the  strain  sensor  is  de-
pendent  on  the  change  rate  of  the  applied  temperature.
The larger change rate of the temperature will introduce
the wider hysteresis loop. Therefore, the thermal hyster-
esis  of  the  proposed  strain  sensor  is  a  rate-dependent
hysteresis model. The phase signal of the reference chan-
nel is set as the input of the proposed LS-SVM based hys-
teresis model, while the phase signal of the sensing chan-
nel  is  the  output.  The  regression  result  of  the  LS-SVM
based hysteresis model is plotted as the black line in Fig.
8(b). The results prove the highly regression accurate for
the  thermal  hysteresis  modeling.  The  modeling  error  of
the  LS-SVM  based  hysteresis  model  is  also  exhibited  in
the Fig. 8(c). Compared to the large compensation error
of the direct differential method, the root mean squared
error  (RMSE)  between  the  LS-SVM  model  output  and
phase signal of the sensing channel is less than 0.095 rad.

After  training  the  hysteresis  model  by  the  hysteresis
operator LS-SVM, the phase  signal  of  the sensing chan-
nel  is  compensated  by  the  trained  hysteresis  model.  To
estimate  the  compensation  accuracy  of  the  hysteresis
model, the sensor element 28 is applied with a temperat-

ure fluctuation with amplitude of 5 °C, and strain signal
with  frequency  of  0.01  Hz  and  amplitude  of  20  nε.  The
original  signals  of  the  sensing  channel  and  reference
channel  are  plotted  in  the Fig. 9(a).  The  compensation
result  of  the  directly  differential  method  and  hysteresis
model  are  illustrated  in Fig. 9(b),  respectively.  It  can  be
seen that the measured strain signal by the direct differ-
entiation method is almost buried in the phase noise in-
duced  by  the  temperature  fluctuation.  However,  the
strain  signal  can  be  observed clearly  in  the  phase  of  the
sensing  channel  compensated  by  the  hysteresis  model.
Moreover, the power spectrum density (PSD) of the ori-
ginal  signal,  compensated  signals  by  direct  differential
method and hysteresis model is exhibited in the Fig. 9(c).
In the PSD of the original signal and signal compensated
by direct  differentiation,  the  signal  peak  of  strain  vibra-
tion at  0.01  Hz  is  almost  buried  in  the  noise  peaks  in-
duced  by  the  temperature  fluctuation.  However,  after
compensating  by  LS-SVM  based  hysteresis  model,  the
signal  of  the  strain  vibration  can  be  obtained  more
clearly, and the signal to noise ratio (SNR) of a strain vi-
bration at  0.01  Hz greatly  increases  by  24  dB compared
to  that  of  the  sensing  fiber  for  direct  compensation.
Moreover,  the  bias  drift  induced  by  the  laser  frequency
shift is  also  suppressed  compared  with  the  uncom-
pensated original signal.

Additionally,  to  evaluate  the  strain  resolution  of  the
proposed  strain  sensor  network,  the  sensing  cable  is
placed in  a  quiet  environment  and  isolated  with  vibra-
tion and strain. The original phase signals of the sensing
channel  and  reference  channel  from  sensor  element  28
are  plotted  in Fig. 10(a), where  a  severe  phase  drift  in-
duced by the environment temperature change and laser
frequency variation is observed. The compensated phase
in time domain and frequency domain are illustrated in
Figs. 10(b) and 10(c) respectively.  The  sine  wave  phase
noise in the sensing channel and reference channel with
frequency nearly 0.001 Hz is introduced by the air condi-
tioner  system  in  the  lab,  which  will  control  the  room
temperature with fixed period. The bias drift of the sens-
ing channel in time domain is eliminated by compensat-
ing with the LS-SVM based hysteresis model. In the fre-
quency domain,  the  noise  PSD  below  0.1  Hz  is  sup-
pressed clearly by compensation. Compared to the com-
pensation  method  by  direct  differentiation,  the  noise  of
the  compensated  sensor  by  LS-SVM hysteresis  model  is
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further suppressed  by  20  dB  below  0.01  Hz.  For  com-
pensation by hysteresis  model,  the phase power spectral
density of the compensated sensor element is better than
Sp(f)=5.01×10-4 rad·Hz-1/2 in  the  frequency  range  above
10 Hz, corresponding to a minimum dynamic strain res-
olution  of  10.5  pε·Hz-1/2.  Moreover,  the  phase  noise
power spectral density below 0.01 Hz even at 0.001 Hz is
superior to 0.251 rad·Hz-1/2, which suggests the ultra-low
frequency strain  resolution  of  166  pε  @  0.001  Hz.  Re-
markably,  the  quasi-static  sensing  resolution  in  mHz
range of the strain sensor network can compete with the

high-quality  single  point  fiber  sensor.  Moreover,  the
sensor network proves a 55 sensor elements access capa-
city  in  the  experiment  and possesses  a  potential  sensing
capacity up to thousands of sensing channels which can
match with the DAS system. It is the first reported strain
sensor network  to  have  sub-nε  resolution  in  mHz  fre-
quency  range  along  with  ultra-large  sensing  capacity  to
the  best  of  our  knowledge.  The  large  sensing  capacity
along  with  ultra-high  quasi-static  sensing  resolution
makes the proposed strain sensor network has  potential
applications in geoscience research. 
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Conclusions
We  have  demonstrated  an  ultra-high  resolution  strain
sensor network based on φ-OTDR technology and SEPs
array fiber.  To  reduce  the  ultra-low frequency  noise  in-
duced by the laser frequency shift and temperature field
change, the phase of the sensing fiber is compensated by
the reference fiber with strain isolated package. The hys-
teresis operator based LS-SVM hysteresis model is intro-
duced  to  reduce  the  thermal  hysteresis  nonlinearity
between the sensing fiber and reference fiber. After com-
pensated by the hysteresis model, the SNR of a sinusoid-
al  strain  vibration  with  a  frequency  of  0.01  Hz  increase
by  24  dB  compared  with  direct  compensation,  which
proves the  compensation  accuracy  of  the  LS-SVM  hys-
teresis model. Moreover, the phase noise level in the quilt
environment  presents  a  high  dynamic  resolution  of
10.5 pε·Hz-1/2 in the frequency range above 10 Hz, and ul-
tra-low  frequency  sensing  resolution  of  166  pε  at  0.001
Hz.  The  high  resolution  in  the  ultra-low  frequency  and

the large  sensing  capacity  make  the  strain  sensor  net-
work play  an  irreplaceable  role  in  the  geoscience  re-
search.
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